
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The First IEEE International Workshop on Requirements Engineering for Services
(REFS'07)/The 31st Annual IEEE International Computer Software and
Applications Conference [Proceedings], 2007

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=34968f6f-62c7-4248-a050-9a94aa4a3c5a

https://publications-cnrc.canada.ca/fra/voir/objet/?id=34968f6f-62c7-4248-a050-9a94aa4a3c5a

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Towards an agile infrastructure to provision devices, applications and

networks: a service-oriented approach
Liu, Sandy; Spencer, Bruce; Lian, Y.; Xu, B.; Zhang, L.; Brooks, Martin

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Towards an Agile Infrastructure to provision

Devices, Applications and Networks: A

Service-Oriented Approach *

Liu, S., Spencer, B., Lian, Y., Xu, B., Zhang, L., Brooks, M.F.
July 2007

* published at The First IEEE International Workshop on Requirements
Engineering for Services (REFS’07)/The 31st Annual IEEE International
Computer Software and Applications Conference. Beijing, China. July 23-
27, 2007. NRC 49324.

Copyright 2007 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Towards an Agile Infrastructure to Provision

Devices, Applications, and Networks: A

Service-oriented Approach

Sandy Liu, Bruce Spencer, Yong Liang, Bo Xu, Libo Zhang, Martin Brooks

Institute for Information Technology, National Research Council Canada

{FirstName.LastName}@nrc.gc.ca

Abstract—Most industries and organizations use collections of
tools, devices, and applications that are growing in complexity.
New tools or applications may be acquired and old tools may
become obsolete over time. They are often running on a variety
of platforms, have different bandwidth and QoS requirements,
and in most cases they cannot be accessed through a single point
of entry. Moreover, some tools may require specific configurations
done by technical experts. To address these issues, we propose
an extensible, reliable, and simple software architecture that can
hide the complexity of provisioning the network and running
the tools. This paper introduces a service-oriented approach for
creating an agile infrastructure to provision devices, applications,
and their underlying networks.

The Eucalyptus prototype is developed as an empirical appli-
cation to test this approach. Eucalyptus is built on a set of generic
fine-grained Web Services to manage and configure available
resources, where new resources can be custom-built or imported
from a third party. They can be integrated into Eucalyptus
using a set of Web Service-enabled APIs. Our user community
consists of architects and industrial designers. Eucalyptus can
manage and configure the resources needed by geographically
distributed groups of architects who need to collaborate in real
time on the design of buildings, in a virtual Participatory Design
Studio (PDS). Eucalyptus provides a single point of entry for
the architects to access a wide variety of tools: videoconference
applications, visualization services, rendering services employing
parallel computers, etc. Eucalyptus provides a set of upper layer
services for users to provision devices and applications running
on high-speed broadband networks, as well as the commercial
IP networks.

I. INTRODUCTION

Although the personal computer made its debut only

decades ago, today, we find networks of computers running

communicating software applications in almost every dis-

cipline and every aspect of our lives. Most industries and

organizations use collections of tools, devices, and applications

(which we refer to as resources in this paper) that are not

supplied from one single vendor or they were built by different

groups of developers over time. Some will become obsolete

and new tools will be acquired. As a result, many resources

are working in isolation - on different machines, platforms, or

networks.

On the other hand, different resources require different net-

work bandwidth and QoS. For example, a real-time application

like VoIP, has little tolerance of any network interruptions

and requires high priority for its packets; high-definition video

conference applications require stable broadband connections.

These resource demands have implications for the underlying

network infrastructure. Currently, networking resources and

configurations are mostly pre-configured by network engi-

neers. As shown in the seven-layer OSI model [1], each layer

can only communicate with the layer above or below. The

application layer is at the top of the stack, typically it cannot

talk to the network layer directly. But with Bill St. Arnaud’s

vision [2], the network should not be treated as a invariable

component to the application; it can also be seen as a resource

that provides different capabilities and topologies as services

tailoring to the end user or application needs.

Beyond the demand for networks, many resources require

custom configurations by technical experts. Since the users of

these applications or tools are not necessarily IT professionals,

they may not want to know the details of how to configure

the tools and networks. However, as subject experts, they

may want to control how these applications or tools are

connected and how the data should be directed or shared

amongst different geographically distributed groups.

Therefore, there is a need for a light-weight and agile

infrastructure that can provide an extensible tool box allowing

query, insertion or removal, and remote configuration of the

resources, and can coordinate the usage of the resources in

a configurable network. In this paper, we propose a Service-

oriented approach for resource provisioning and management

to fulfill these needs.

We employed this approach in developing a Participatory

Design Studio (PDS) called Eucalyptus for architects and

industrial designers. Architectural design is an advanced pro-

fession requiring collaboration of diverse teams exploiting

a large set of powerful design, visualization, modeling, and

deployment tools. This set of tools is not fixed; each may be

running on a different platform requiring a different configu-

ration. For example, the IBM Deep Computing Visualization

runs only on Linux platform, and the Pleora uncompressed

Standard Definition video-conference devices are accessible

only through Windows machines.

Challenging factors such as design complexity, economic

and environmental factors, new materials, and construction

planning require the design team to access diverse and often

distributed expertise. Architects who are away from their

design studio to do field work often need to communicate

with what they have observed on site with their counterparts

in the studio, and also need to use resources such as the

rendering farm to conduct their work efficiently. Until now,

insufficient bandwidth and crudely coordinated tools have

resulted in distributed, task-based modes of collaboration,

which often hinders the full participation by members of a

distributed design team. As most architects are not IT experts,

the motivation of Eucalyptus is to develop a single access

point for architects to provision the resources required in a

participatory design session without knowing the details of

the configuration and the network.

Since some resources such as the UltraGrid [3] uncom-

pressed high definition video-conference requires at least

880Mbps bandwidth, the corresponding network needs to be

able to accommodate this much traffic volume. Therefore, the

system needs to be able to switch to the suitable network

topology accordingly. Thus we opt for the use of UCLP (User-

Controlled Lightpath Provisioning)[4], and therefore it is a

UCLP-enabled PDS (UCLP-PDS, a.k.a. Eucalyptus).

In the next section, we briefly introduce the underlying

technologies, the Web Services based Service-oriented Archi-

tecture (SoA) and the UCLP tool. In section 3, we outline the

overall design of our proposed solution; then we describe how

we follow this approach to implement Eucalyptus. Finally we

conclude with some issues we experienced, the contributions,

and future work.

II. ENABLING TECHNOLOGIES

A. Web Services based SoA

SoA is the latest software architecture style to built flex-

ible and extensible applications. OASIS describes SoA as

“a paradigm for organizing and utilizing distributed capa-

bilities that may be under the control of different owner-

ship domains” [5]. It provides a uniform means to offer,

discover, interact with and use capabilities to produce de-

sired effects consistent with measurable preconditions and

expectations. Web Service’s component-based, web-oriented,

standard-based, language, platform, and domain independent

nature makes it an appropriate solution for many data in-

tegration projects. We adopt this approach for provisioning

resources spanning from networks to devices.

B. UCLP, Articulated Private Network and Hybrid Networks

With the exponential growth of the Internet and the in-

creased cost of routing, the layer 3 (IP network) sometimes

cannot provide the required bandwidth and stability required

by certain applications. Many e-science projects involve the

usage of remote sensors and instruments generating very large

volumes of data that need to be delivered and processed in

far away facilities. Architect design teams, our users, need

to share high quality multimedia files in real-time, which

calls for high transport capacity networks, often for a limited

set of destinations. Advanced network organizations such as

CANARIE (A non-profit organization who provides a national

optical Internet research and education network in Canada.

http://www.canarie.ca/canet4/index.html.) have been investi-

gating and promoting ways to provide application-oriented and

user-controlled networks services.

A resulting product is called the UCLP tool. UCLP [2] is

a Web Services based solution for provisioning lightpaths. A

lightpath is an abstraction of a connection between two or

more switches in an optical network, and typically connects

two points on the network at speeds up to 10 gigabits per

second. UCLP can be thought of as a configuration and

partition manager that exposes each lightpath in a physical

network and each network element associated with a lightpath

as an “object” or “service” that can be put under the control

of different network users to create their own logical IP

network topologies. The network users can then reconfigure

and partition the lightpaths. This privately articulated end-to-

end network is therefore called Articulated Private Network

(APN). Within each APN, a number of network scenarios

(i.e. logical topologies) can be specified to support different

applications and usage scenarios. The APN Web Service can

then be generated and deployed for users or applications to

invoke it.

Geared with Web Services and UCLP technologies, we

can operate a hybrid network that can offer end users both

traditional services that runs on the IP network and services

supported by the dedicated lightpaths. This can be achieved

by setting up gateway computers that have access to both IP

networks and lightpaths; or it can also be configured through

corporate switches/routers. With hybrid networks, people can

conveniently look up resources (including network resources)

via the conventional Internet, and provision the resources (in-

cluding the underlying networks) on both networks effectively

through different Web Services.

III. AN SOA FOR RESOURCE PROVISIONING

A. Resource Wrapping

As stated, we consider resources to be any software ap-

plications, devices that can be controlled through computer

programs, network elements, and the network itself. To make

all resources accessible through Web Services, we developed a

generic approach for resource wrapping. Note that we are only

concerned about provisioning of the resource, not the actual

data communication among resources. The basic tasks include

launching, shutting down, or checking status of resources. For

example, to start the multi-point video-conference application,

we start the conference application with the proper parameters

and configure the underlying network to make sure it can

support the bandwidth requirement. The actual communication

among different conference machines is handled by the native

application. In order to generate the wrappers efficiently, we

define each non-network resource with an XML description

file. Figure 1 shows the schema for defining resources.

Each resource is assigned by a Resource ID and is described by

a set of non-functional descriptions, including name, category

(e.g. communication tools, visualization tools, etc.) , physical

Fig. 1. Resource Schema

location, URL, port, the admin user, the access restrictions

(which user group has access to this resource), what platform

is this resource is running on (i.e. Windows, Linux), the

login information for accessing the machine, which router

or switch it is connected to, the bandwidth requirement, and

any resources it depends upon. In addition, the XML file

also specifies the operations supported by this resource; each

operation is described by a command and the corresponding

parameters. With this information, we can use the resource

wrapping utility to quickly generate the corresponding Web

Service for each resource.

As a result, for adding a new instance of an existing type

of resource, all we need is do deploy the Web Service of the

same type to the machine that hosts that resource.

B. Management Services

By wrapping the resource with our Resource Wrapper, we

have the resources accessible for provisioning through Web

Services. However, we also need a set of management Web

Services to manage and coordinate the usage of the resource,

such that we can use the Web Services as a control plane

to all the available resources. This section will introduce the

set of generic management Web Services. These management

services form the basic building blocks of the infrastructure

we have built.

1) Resource Management Web Service (RMWS): The

RMWS provides services to add new resources and modify

the properties of existing resources such as changing the IP

address of a resource. The RMWS also acts as a registry, where

one can look up available resources by its properties, and get

the current status of different resources.

2) User Management Web Service (UMWS): The UMWS

provides services to define user profiles, add new users, modify

and delete existing users. It also keeps track of the contact

information, login status, as well as the user groups.

Typically each resource specifies the access restriction.

When a resource is being requested, the RMWS will contact

the UMWS to verify if the user has the proper permission to

use that resource.

3) Session Management Web Service (SMWS): A session

is a collection of users and resources. A session starts when a

user engages in using some resources. A user can potentially

be involved in multiple sessions. For example, a user can

participate in a session using a video-conference application

with another two users while using a visualization resource

for displaying some designs.

To reserve a session, a thread-safe check is made that each

included resource is available to all included people. Then the

session can be reserved. In more detail, a resource is available

to a person if at least the following conditions are met: 1)

The resource can be provided to that person via their own

computer, or via another computer in the same room (location

check is required); 2) The resource is permitted to be used

by this user; 3) The resource is not otherwise allocated to

other user through some other session, unless that resource

can be part of two different sessions. Text messaging systems

can be part of multiple sessions, as one can text messaging in

more than one conversation at the same time, but two different

video-conference sessions may not be hosted by one computer.

4) Workflow Management Web Service (WMWS): A work-

flow clearly defines the sequence of activities that must be

performed in order to accomplish a certain task, and for each

activity, it defines the preconditions required. In the context

of Eucalyptus, activities are performed by Web Services. The

Web Service workflow can be defined by a workflow language

such as WS-BPEL[6]. Users can orchestrate a set of Web

Services together to perform certain tasks. The workflow de-

fined has to comply with the dependency relations associated

with every resource participating in the workflow. We employ

ActiveBPEL [7] as the runtime engine for workflows.

IV. EUCALYPTUS: AN EMPIRICAL APPLICATION

Equipped with the Management Web Services, Eucalyptus

incorporates the set of resources needed by architects into a

uniform service-oriented system. This section outlines some

implementation details of this system.

A. Overall System Design

All the core functions in Eucalyptus are provided by Web

Services, either as a single service or a combination of

services. We divide the services into two groups: task-oriented

services and management services. As the name implies, task-

oriented services offer the capability to conduct a task, such

as submitting a rendering job to the rendering farm. We use

the generic management services described in the previous

section to provide support and management for the task-

oriented services. For instance, the Resource Management WS

is responsible for managing all the resources that are made

available by Eucalyptus. Figure 2 illustrates the overall system

design in Eucalyptus.

Note that we consider the APN setup Web Service as a

task-oriented service. This service allows the Eucalyptus ad-

ministrative user to set up different APNs, each with different

configuration scenarios through the Web Services provided by

UCLP. The Euclayptus end-user can later invoke an APN setup

service or switching from one scenario to another within the

same APN.

�����������

	�
���
������

���������������

��
���������������

	�������������
������ �

!���
"�������������#�
��� ������� ������������� ���"$��%
��������%����
� �����

!����
�����

!����
������������

�&!��'�����

'���(
���)��
������

!����
������������
����������
"*����

���������
�

+���������������
�

��������	

�

���
��������	�

�

�����
�����	

�

��
 $��������������
�

,
�*��������

���%�)�

���"���%

���������%�

)�

!��������

)�

�����+���

)�

��
����������

)�

����
�����	

�

	���������

�)�

����������

)�

�"���	���

)�

�����������������

Fig. 2. Eucalyptus System Overview

We group the computers that make up our solution into three

categories according to each role:

PDSF refers to PDS Framework computers. These com-

puters have the Web Services platform installed and are

generally used for exposing resources in Eucalyptus. A Web

Services platform typically includes an HTTP server (e.g.

Apache), a SOAP engine (e.g. Axis), and a Servlet container

(e.g. Tomcat) that hosts the Web Services.

PDSC refers to PDS Client computers. These computers

have the PDS Dashboard installed and are typically used

by end users. The PDS Dashboard will be explained in the

following section. In some cases, a PDSC computer can make

certain local resources (e.g. VNC) available to the people

in the session, but these resources are not exposed as Web

Services on the local machines; instead, the access parameters

are posted via the resource management service. For example,

a PDSC can host a VNC server, and publish its access

information (e.g. IP address) through the resource management

service. Generally there is one active user using each PDSC

computer.

PDSB refers to PDS Backend computers or devices such

as the Deep Computing Visualization Server (an IBM Blade-

Server) and the Rendering Farm, which is a collection of

high performance computers devoted to rendering. They are

accessed via the PDSF computers and do not communicate

directly with PDSC computers.

Note that one computer can play multiple roles. For ex-

ample, a computer can run the Eucalyptus dashboard (PDSC)

while hosting some Web Services (PDSF) for a few resources.

We categorize task-oriented services into different types

according to the functionalities of the associated resources:

communication tools, visualizing tools, management tools and

so on (as shown in Figure 3). For example, Isabel (A multi-

point videoconference for PCs, http://www.agora-2000.com/)

is a kind of communication tool. This categorization allows us

to retrieve available resources by type and also facilitates our

implementation which will be mentioned in a later section.

Fig. 3. Resource Category Definition

The resources in each category have similar functions,

which means every resource in the same category has similar

operations to be exposed to the user. For example, in commu-

nication tools, all resources should have following functions:

start(), stop(), getStatus(). Different resources

have different input and output parameters in their functions.

To make the generic Web Service interface extensible to all

of the more specific resource type, we declare all the input

parameters and the return type as String. We will use

parameter information described in XML resource description

file to parse the input and output strings properly.

B. Customizable Service Client

To provide a single entry point to provision the resources,

we provide a dashboard to provide a graphical user interface

for users to effectively use resources and provision partici-

patory design sessions. One of the goals of Eucalyptus is to

provide easy access remotely to many high-end resources that

are typically not available in most labs. Thus the dashboard

hides the complexities of configuring the resources required,

providing access to those resources through a few clicks of

buttons.

In Eucalyptus, we decided to develop the integrated client

as a desktop application as opposed to a web application for

several reasons: 1) Web applications have limited functionality

on the client computer. There is no easy way to access the

local file systems. 2) The implementations of the HTML, CSS,

DOM and some other tools are browser specific and they often

act inconsistently in different browsers. 3) It is less convenient

to maintain an accurate reflection of status of all the resources.

Eucalyptus Dashboard

Fig. 4. The Eucalyptus Dashboard

To maintain a desktop application over many computers is

normally not an easy task. However, with the help of Java Web

Start [8], the deployment and maintenance of Java desktop

applications become easier. The advantages of Java Web Start

include automatic application update, desktop integration, plat-

form independence, Java runtime environment management,

and security.

The Dashboard interface is carefully designed to be unob-

trusive and user-friendly. Inspired by DragThing [9], it is

implemented as a floating dock, similar to the Mac OS X

system dock. Each resource is represented as a graphical icon

as shown in Fight 4, the dashboard (sometimes also referred

to as FloatingDock) only appears at the bottom of the desktop,

and it can be anchored to any other edge of the desktop.

Each resource has its own button on the dashboard. The user

can define his/her own often used-resources on the dashboard

and can add them as new buttons. Existing executable appli-

cation can also be dragged and snapped into the dashboard,

as a shortcut to launch that application.

C. Steps to Provision a Session

There are a few steps involved in setting up a session. The

Web Service for each specific resource can only be invoked by

the RMWS. If someone requests an Isabel session, the request

will be first handled by the SMWS. The SMWS will contact

the RMWS and the UMWS prior to the invocation of the

Isabel video-conference WS to ensure that only authenticated

and authorized user have access to it. The example shown in

Figure 5 demonstrates how to start a four-site Isabel video-

conference session. (1)The user selects the participants’ sites

and provide the input parameters through the Dashboard GUI.

(2)(3)The SMWS asks UMWS to get the user’s access permis-

sion information. (4)(5)The SMWS then makes the request

to the RMWS, then the corresponding Isabel Web Services

will be invoked in parallel. (6)Each Isabel computer returns its

status indicating whether the resource is successfully reserved.

(7)(8)The session status is returned to the user.

Fig. 5. Steps to Launch an Isabel Session

In order to correctly provision a resource, we need to properly

detect its status. However, Web Services are typically stateless

and passive. They only respond to service request initiated

from the requestor, but not vice versa. One way to get the

status of a particular resource is by creating Web Service that

can return the status and having the client to poll such a service

periodically. This approach introduces traffic to the service

host and depending on the polling interval, it may not reflect

the latest status of that resource. This is a common problem

for Web Service projects.

In the current prototype, we introduce a lightweight TCP

daemon, namely PDSDaemon, to detect changes and relate the

changes back to clients who are interested in such changes.

PDSDaemon is a TCP listener based on the MVC (Model-

View-Controller) architecture. It listens to the client’s request,

forwards the request to management service and then sends

the result back to all registered clients.

When a user logs in to Eucalyptus, the Floatingdock will

send a connection request to the PDSDaemon. The PDSDae-

mon then creates a thread for the client who is requesting

a connection. The resulting connection between the Floating-

dock and the PDSDaemon will stay alive until the user logs

out of the system. For each connected Floatingdock client,

there is a separate thread that connects back to the daemon.

V. RESULTS AND CONCLUSION

We introduced an agile infrastructure that is built on Web

Services and SoA. It provides the middleware to quickly make

a resource available for provisioning through Web Services.

It also provides an effective approach to put together a set

of ad hoc tools into a single integrated service client for

quick access and provisioning. We introduced an empirical

application, Eucalyptus, and how to use this approach applied

in the architectural design field.

In terms of development, we emphasize on a spiral ap-

proach, where we have many design, development, testing,

deployment (in actual labs) and feedback (from authentic

users) cycles. Each cycle we revisit the previous prototype

and revise it according to the user feedback. This proved to

be an efficient approach. The Eucalyptus prototype is useful

in assisting architects to do collaborative design in distributed

labs [10] [11]. Consequently, the school of architecture in

Pennsylvania State University, and the Carleton University

(Canada) have adopted Eucalyptus in their collaborative course

work for their architecture students.

Although the current prototype is applied for architectural

design, using Web Services in provisioning is indeed ap-

plicable to many industries. St. Arnaud [12] advocates that

this type of agile infrastructure will have real potential and

significant impact in many other fields and disciplines. In

summary, this service-oriented approach can serve as a basic

building block for agile low-cost enterprize system without

investing on expensive enterprise solutions. Our approach

makes provisioning, running, and monitoring heterogeneous

networks and network-enabled resources relatively easy and

intuitive.

VI. FUTURE WORK

Our framework will be used to provision an increasing

number of collaborative tools, some of which will have similar

capabilities. Thus users may want the system to choose a tool

set that is most appropriate at a given time for a given task. To

support this, the tools and resources should be grouped into a

class hierarchy to show the sets of available choices. Each class

will be distinguished by a set of properties that distinguish

its capabilities. This knowledge about classes and properties

can be represented conveniently by description logic, where

resource dependencies can also be outlined.

Semantic descriptions can also add more intelligence to

the overall infrastructure. Currently, there is no semantic

description for the network elements and the connections

that are configured by UCLP, while the configuration and

the topology at the layer 1 or 2 need to be understood by

the application layer in order for it to take advantage of

the articulated network. Ideally, the topology of the network

is dictated by the user needs at the application level and

the network can be re-configured on-demand if the current

configuration does not fit. To fulfill this vision, the end-to-end

network and its potential configurations need to be clearly

described. UCLP takes care of the physical network up to the

switches at the edge of the optical network, but the connection

between the LAN and the optical switch are defined neither by

the application nor by the UCLP tool. The scenarios defined

by UCLP, therefore, have to be pre-defined and shared with the

application in order to select the proper scenario at runtime.

We plan to study ways to model the end-to-end network and

give meaningful descriptions to each level to increase the

efficiency of provisioning.

REFERENCES

[1] H. Zimmermann, “OSI Reference Model - The ISO Model of Ar-
chitecture for Open Systems Interconnection,” IEEE Transactions on

Communications, vol. 28, no. 4, pp. 425–432, 4 1980.

[2] B. St.Arnaud, “CA*net4 research program update - UCLP roadmap:
Web Services workflow for connecting research instruments and sensors
to networks,” http://www.canarie.ca, December 2004.

[3] the UltraGrid Project team, “UltraGrid: A High Definition Collabora-
tory,” http://ultragrid.east.isi.edu/.

[4] The UCLP Development Team, “User Controlled Lightpaths,” http://
www.uclp.ca, 2006.

[5] The OASIS Service Oriented Architecture TC, “OASIS Reference
Model for Service-Oriented Architecture,” http://www.oasis-open.org/
committees/download.php/16587/wd-soa-rm-cd1ED.pdf, 2 2007.

[6] T. A. et al., “Business Process Execu-
tion Language for Web Services version 1.1,”
“ftp://www6.software.ibm.com/software/developer/library/ws-
bpel11.pdf”, 2003.

[7] ActiveBPEL, LLC, “ActiveBPEL, the Open Source BPEL Engine,” http:
//www.activebpel.org.

[8] Sun MicroSystems, Inc., “Java Web Start Overview, White Pa-
per,” http://java.sun.com/developer/technicalArticles/WebServices/JWS
2/JWS White Paper.pdf, May 2005.

[9] J. Thomson, “DragThing,” http://www.dragthing.com.
[10] M. Jemtrud, M. Brooks, B. Ho, S. Liu, P. Nguyen, J. Spence, and

B. Spencer, “Eucalyptus: User controlled lightpath enabled participatory
design studio,” in ACADIA(The Association for Computer-Aided Design

in Architecture)International Conference 2006, 10 2006.
[11] M. Jemtrud, P. Nguyen, B. Spencer, M. Brooks, S. Liu, Y. Liang,

B. Xu, and L. Zhang, “Eucalyptus: Intelligent Infrastructure Enabled
Participatory Design Studio,” in WSC ’06: Proceedings of the 37th

conference on Winter simulation. Winter Simulation Conference, 2006,
pp. 2047–2054.

[12] B. St.Arnaud, “Cyber-infrastructure and grids for Architecture Collabo-
rative Design,” http://lists.canarie.ca/pipermail/news/2006/000362.html,
12 2006.

