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Posture Invariant Surface Description and Feature Extraction

Stefanie Wuhrer1 Zouhour Ben Azouz2 Chang Shu1

Abstract

We propose a posture invariant surface descriptor for

triangular meshes. Using intrinsic geometry, the surface

is first transformed into a representation that is indepen-

dent of the posture. Spin image is then adapted to derive

a descriptor for the representation. The descriptor is used

for extracting surface features automatically. It is invariant

with respect to rigid and isometric deformations, and robust

to noise and changes in resolution. The result is demon-

strated by using the automatically extracted features to find

correspondences between articulated meshes.

1. Introduction

Surface meshes obtained through active and passive 3-D

sensing such as range scanning, structured-light projection,

and stereo have increasingly become a new media for rep-

resenting the 3-D shapes of the real-world objects. In prac-

tice, we need certain processing techniques that are simi-

lar to what can be found in image processing. Automati-

cally extracting and corresponding prominent surface fea-

tures are examples of these techniques that arise in various

applications such shape correspondence [23], object recog-

nition [10], and segmentation [11].

Existing methods that extract large numbers of features

based on the geometry of a surface are not invariant with

respect to significant non-rigid deformations. Hence, fea-

tures extracted for different poses of an articulated object

do not correspond to the same intrinsic locations. In this

paper, we consider the problem of posture invariant surface

description and feature extraction. We derive a posture in-

variant surface descriptor and use it to extract features. This

way, we can extract large numbers of features for meshes

with significant articulation. Note that these corresponding

features can be used to find dense point-to-point correspon-

dences between articulated shapes [23].

More precisely, this paper proposes a descriptor that is

invariant with respect to rigid and isometric transformations

of an triangular manifold mesh S. A transformation of S is
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isometric if and only if all of the lengths measured on S are

preserved. Isometric transformations are relevant in prac-

tice because the locomotions of humans and many animals

are approximately isometric.

The basic idea is to first map different shapes into a

space in which the postures of the same shape under isomet-

ric transformations have similar representations. Feature

extraction can subsequently be performed on the posture-

invariant representation. One approach for this is to map the

intrinsic geometry of S into R
3 using Multi-Dimensional

Scaling (MDS). This mapping removes the non-intrinsic

shape variations and thus obtains a posture-invariant rep-

resentation known as a canonical form [7].

To obtain a posture invariant descriptor, we propose to

use a novel modification of the Spin image [10] computed

on the canonical form of S. A spin image is a rotation-

invariant surface descriptor that is obtained by projecting

part of the surface into the local coordinate system of a ver-

tex. By varying the projection area, it is possible to control

the descriptor continuously from local to global.

Spin images are defined on oriented points, which are

3-D points with surface normal. However, the canonical

form obtained through MDS does not preserve the surface

orientation. We will show, in Section 3.3, that Spin images

can be modified to allow their use on non-oriented surfaces.

Finally, we extract features on S by finding the vertices

of S that have the most unusual descriptors. We demon-

strate that the proposed feature finder is robust to surface

noise and change of resolution. We also validate the ap-

proach by finding corresponding features between pairs of

poses of articulated models.

2. Related Work

This section reviews approaches that describe a surface

locally. First, we review approaches that are suitable for

large posture change. Katz et al. [11] proposed to extract as

feature points vertices that correspond to local maxima of

the average geodesic distance function and that are located

on the convex hull of the canonical form [7]. They used

these feature points to compute a posture invariant segmen-

tation. Due to the restriction that only vertices on the con-

vex hull of the canonical form are selected, this approach

can only extract features that are tips of prominent com-

1



ponents. Furthermore, no special care is taken to address

possibly self-intersecting canonical forms. While this suf-

fices to compute a segmentation, applications such as shape

recognition or shape correspondence require more features.

Tierny et al. [17] developed shape signatures to locally de-

scribe patches of the shape. The approach uses the Reeb

graph to decompose a shape into patches (disks and annuli)

and maps each patch to a plane in a canonical way. The sur-

face is described by the amount of stretch required to map

the patches to their canonical shape in the plane. Note that

not every vertex has a descriptor. Hence, this approach can-

not be used to extract features. Hilaga et al. [9] proposed a

descriptor based on the average geodesic distance function

on a surface. Zhang et al. [22] used this descriptor com-

bined with Reeb graphs to find features. However, they did

not show that the approach is suitable for posture invariant

feature extraction.

Second, we review approaches that allow for restricted

posture change. Gelfand et al. [8] proposed a surface de-

scriptor based on local volume. Hence, this descriptor is

invariant with respect to deformations that locally main-

tain the volume. Gelfand et al. did not demonstrate that

the descriptor is posture invariant with respect to any de-

formation in practice. Zaharescu et al. [20] recently pro-

posed a descriptor that can incorporate both geometric and

photometric information. The descriptor is an extension of

SIFT [14] in that it uses a scale space. Although the de-

scriptor is applied to compute the correspondences between

two non-rigid objects, all of the illustrated deformations are

small. The descriptor proposed in this paper is applied to

models with large deformations.

Third, we review approaches that can be adapted to al-

low for posture changes. Note that none of the following

approaches allows for posture changes in its current form.

Zhang and Hebert [21] computed a descriptor by comput-

ing a local parameterization of a surface patch using har-

monic maps. The harmonic map is then transformed to an

image by giving each pixel a color corresponding to the

mean curvature at the corresponding surface point. Sun

and Abidi [16] proposed a descriptor that projects geodesic

contours at a vertex p to the tangent plane at p. While the

geodesic contours are posture invariant, the orientation of

the tangent plane at p is not.

3. Surface Descriptor

This section outlines a surface descriptor that is invari-

ant with respect to rigid transformations and isometric de-

formations. Suppose S contain n vertices. Denote a vertex

of S by p and denote the position vector of p by ~p. For each

vertex, we compute a descriptor that is posture invariant.

The descriptor at a vertex p of S is computed as a modifi-

cation of the Spin image at p of the canonical form of S. In

the following, we review canonical forms and Spin images.

3.1. Canonical Form

Elad and Kimmel [7] define the canonical form X of a

triangular manifold S as the mapping of S to R
3, such that

the Euclidean distances between the mapped vertices ap-

proximate the geodesic distances between the original ver-

tices well. Let δ(p, q) denote the geodesic distance on S be-

tween two vertices p and qon S and let dX(p, q) denote the

Euclidean distance between the two points in X that corre-

spond to p and q. The canonical form of X is computed via

multi-dimensional scaling with the geodesic distances be-

tween vertices on the triangular manifold as dissimilarities.

That is, the canonical form is the embedding that minimizes

E =
∑

p,q∈S(δ(p, q)−dX(p, q))2. The canonical form has

the desirable property that it is posture invariant. Note that

the energy E is invariant with respect to translation, rota-

tion, and reflection of X .

We use fast marching [12] to compute geodesic distances

on S. We then use least-squares multi-dimensional scal-

ing [2, p.146-155] to compute the canonical form in R
3.

For increased space efficiency, we compute the canonical

form using a coarse-to-fine strategy as outlined by Wuhrer

et al. [19]. The approach by Wuhrer et al. consists of two

steps. First, n′ vertices of S are used to compute a canonical

form at low resolution. Second, the remaining vertices of S

are added to the canonical form one by one by minimizing

a least-squares energy function.

The canonical form X of S is a set of vertices in R
3. We

can enhance X by adding the edges and triangles present

in S to their corresponding vertices in X . This yields a

possibly self-intersecting triangular manifold mesh. On this

mesh, we can estimate the normal at a vertex p as the aver-

age of the normals of the faces incident to p. In the follow-

ing, when referring to X , we refer to this mesh. Since X

is invariant with respect to reflections, the orientation of the

normal of X at p is ambiguous.

3.2. Spin Image

Johnson and Hebert [10] define the Spin image of an ori-

ented triangular manifold S at a vertex p as an image ob-

tained by projecting part of S into a local coordinate system

defined by the surface normal ~n(p) at p. The projection of

a point q to the Spin image of p uses a reminiscent of cylin-

drical coordinates. That is, the x-coordinate of the Spin

image corresponds to the distance from q to the line in di-

rection ~n(p) passing through p and the y-coordinate of the

Spin image corresponds to the signed distance from q to the

tangent plane of p. It remains to define what part of S is

projected to the Spin image of p. This depends on three pa-

rameters: the width w of the (square) Spin image, the bin

size b of the Spin image, and the support angle α. A ver-

tex q of S is projected to the Spin image of p if and only

if ‖q − p‖ < wbr and ∠(~n(p), ~q − ~p) < α, where ‖q − p‖



denotes the Euclidean distance between q and q, r denotes

the resolution of the mesh, and ∠(~n(p), ~q − ~p) denotes the

angle between the two vectors ~n(p) and ~q − ~p.

Spin images have a variety of desirable properties. They

are invariant with respect to rotation, translation, and scal-

ing and robust with respect to noise and clutter. By adjust-

ing w or b, Spin images can go from a local representation

at p to a global representation of S.

3.3. Descriptor

We combine canonical forms and Spin images to ob-

tain a surface descriptor that is invariant with respect to

rigid transformations and isometric deformations. This

is achieved by eliminating posture dependence using the

canonical form X of S and by eliminating dependence on

rigid transformations using Spin images of X . That is, for

a vertex p of S, we use as descriptor a modification of the

Spin image of X at the vertex of X corresponding to p. We

next describe the modification of the Spin images.

Spin images are defined for oriented surfaces. However,

we wish to use Spin images of the canonical form X as sur-

face descriptors. Recall that orientation of normals on X are

ambiguous. By setting the support angle α to 180◦ and by

folding the Spin image along the median y-coordinate, such

that the y-axis corresponds to the unsigned distance, we can

eliminate the dependence on orientation. This is required

when using Spin images of canonical forms. Denote the

modified Spin image by folded Spin image. In the follow-

ing, we denote the folded Spin image of X at the vertex of

X corresponding to p with parameters b and w by Db,w(p)
and we use Db,w(p) as surface descriptor.

3.4. Dissimilarity

To extract features based on the surface descriptors,

we need to compare the surface descriptors Db,w(p) and

Db,w(q), where p and q are vertices of S. We use a dis-

similarity based on the normalized linear correlation coeffi-

cient R(Db,w(p), Db,w(q)) between Db,w(p) and Db,w(q)
as suggested by Johnson and Hebert [10]. The coeffi-

cient R(Db,w(p), Db,w(q)) takes values between −1 and

1. We define the dissimilarity d(Db,w(p), Db,w(q)) as

1 − R(Db,w(p), Db,w(q)). Note that d(Db,w(p), Db,w(q))
is always positive. The smaller d(Db,w(p), Db,w(q)), the

larger the similarity between Db,w(p) and Db,w(q).

3.5. Properties

The surface descriptor Db,w(p) has a number of desir-

able properties.

• Invariance with respect to rigid transformations since

folded Spin images have this property.

• Invariance with respect to isometric deformations

since canonical forms have this property.

• Can capture both local and global shape properties by

varying b and w.

• Robustness with respect to noise. Although canoni-

cal forms are not invariant to noise, we demonstrate in

Section 5 that features extracted using this descriptor

are robust with respect to small amounts of noise that

do not alter the global shape of the canonical form.

This is due to the use of multiple levels of folded Spin

images as outlined below.

• Robustness with respect to changes in the mesh reso-

lution. Although folded Spin images are not invariant

to the resolution of the mesh, we demonstrate in Sec-

tion 5 that features extracted using this descriptor are

robust with respect to changes in the mesh resolution.

4. Feature Extraction

This section introduces an algorithm to extract surface

features based on the descriptor introduced in the previous

section. We discuss a basic algorithm and its variant for

improved efficiency.

4.1. Basic Feature Extraction

We aim to extract features that are robust with respect

to noise and changes in resolution. When scalar surface

descriptors are considered, reducing sensitivity to noise is

often achieved using a scale-space representation [20].

The descriptor proposed in this paper is not a scalar func-

tion. However, since our surface descriptor can describe the

surface both locally and globally, we use m levels of Spin

images to make the feature extraction algorithm robust to

noise as follows. We start with a local descriptor computed

with bin size b (level zero) and gradually increase the bin

size of the descriptor to capture more global shape informa-

tion for higher levels. The descriptor at level i is Dib,w(p).
The approach extracts features in each of the m levels

independently and combines the features in different levels.

We extract k features in level i as the k vertices with the

most unusual descriptors Dib,w(p).
To find the vertices that have the most unusual descrip-

tors in level i, we use a modification of the approach by

Gelfand et al. [8]. We proceed in two steps.

First, we compute the descriptors at level i for all ver-

tices of S. Our goal is to efficiently compute a reminiscent

of a histogram of the descriptors based on the pairwise dis-

similarities d(Dib,w(p), Dib,w(q)), where p and q are two

vertices of S. Instead of computing a histogram in a high-

dimensional space, we compute for each vertex p the aver-

age of the dissimilarities between the descriptor of p and its



l most similar descriptors. Using an average of l most simi-

lar descriptors instead of the most similar descriptor makes

the approach more robust to noise. We set l =
⌈

n
100

⌉

in our

experiments.

Second, we extract as features the vertices with the

largest average values. These vertices have a descriptor that

is most dissimilar from its most similar descriptors. If two

vertices have the same average value, we cannot distinguish

them and we need to either extract both vertices as features

or none of them. Our algorithm repeatedly finds sets of fea-

tures that have the largest average value not yet considered.

We add the set to the feature set as long as the total num-

ber of features does not exceed k. Otherwise, the algorithm

terminates.

To avoid double-counting of features, when extracting

features, we do not accept a new feature that is located

within a 2-ring neighborhood of an existing feature.

In a last step, the features found over m levels are com-

bined as follows. A feature is reported if it was extracted in

at least two consecutive levels. That is, if p was extracted

as feature at level i and at least one vertex in 2-ring neigh-

borhood of p was extracted as feature at level i− 1 or level

i + 1, then we consider p to be a feature. As before, we

do not accept a new feature that is located within a 2-ring

neighborhood of an existing feature.

Finally, we analyze the running time for the feature ex-

traction. Since both m and k are constants, it takes on aver-

age O(n2 log n) time to extract the features.

Note that the feature extraction algorithm has the desir-

able property that if we extract a set F1 of k1 features and

if we extract a set F2 of k2 > k1 features using the same

parameters b, w, and m, then F1 ⊆ F2.

4.2. Sampling for Improved Efficiency

Computing folded Spin images of all of the vertices of

X at each level is time consuming. We therefore propose

to use only a sample set of the original vertices for feature

extraction. That is, we only consider a sample set P of n′′

vertices of S as possible features. This has the effect that we

only need to compute n′′ folded Spin images at each level.

Note that we do not change the resolution of S.

While this approach makes the algorithm more time effi-

cient, it produces results that are less accurate, thereby giv-

ing a way to trade off between time and accuracy.

In our experiments, we set n′′ = n′. This way, we only

need to compute one set of samples. When computing the

folded Spin image of a sample vertex v, we use the average

of all the normals on X corresponding to vertices in v’s 2-

ring neighborhood.

5. Results

The experiments were conducted on an Intel Pentium D

with 3.5 GB of RAM using a C++ implementation. The

cat models contain 7207 vertices and the horse models con-

tain 8431 vertices. Both data sets were created by Sum-

ner et al. [15]. The models of a female dancer and a male

dancer contain 3400 vertices and were created by Bronstein

et al. [5]. The models of a female dancer in a skirt were cre-

ated by Vlasic et al. [18]. We down sampled these models

to contain about 4000 vertices.

For the experiments in this paper, if each vertex is a pos-

sible feature, we set w = 10, b = 0.25, m = 5. If the

sampling strategy is used, we set w = 10, b = 0.25, and

m = 3. In all of the figures, features are shown in red.

5.1. Properties

We demonstrate the properties of using the proposed de-

scriptor for feature extraction. Namely, we demonstrate that

descriptor is robust with respect to non-rigid deformations,

Gaussian noise, and changes in resolution. We set k = 20.

For the following experiments, we do not use the sampling

strategy.

Figures 1 (top) and 2 show the effect of non-rigid defor-

mations of the mesh. Although the poses vary significantly,

similar features are found.

Figure 1. Top: Effect of non-rigid deformation model. Bottom:

Effect of the sampling strategy.

Figure 3 shows the effect of adding noise to the mesh.

We add random Gaussian noise to the model of a cat. The

noise has mean 0.005r (middle) and 0.01r (right), where r



Figure 2. Effect of non-rigid deformation model.

Figure 3. Effect of adding Gaussian noise to the model.

is the average edge length of the mesh. We can see that most

of the features are preserved.

Figure 4 shows the effect of changing the resolution of

the mesh. Although the proposed descriptor is not invariant

with respect to the resolution of the mesh in theory, we can

see that similar features are found for all resolutions. The

reason is the use of multiple levels of Spin images.

The bottom row of Figure 1 shows the features found for

the dancer model when using the sampling strategy. Note

that the features are similar to the ones shown in the top row

of Figure 1. With the sampling strategy, it takes about 39

seconds to extract the features for each of the poses. When

each vertex is considered as a possible feature, it takes about

140 seconds to extract the features for each of the poses.

5.2. Comparison

We compare the features extracted using our approach to

the features extracted by Katz et al. [11]. For our approach,

we set k = 60. For Katz et al., the number of extracted

features is fixed. We use qhull for the convex hull computa-

tion [1].

Figure 5 shows the features extracted on different poses

of a horse. The top row shows the result using our algorithm

and the bottom row shows the result using the algorithm by

Katz et al. While the features extracted by Katz et al.’s algo-

rithm are posture invariant, there are few features because

it only extracts features at extremities of prominent com-

ponents. That is, the algorithm cannot extract features on

joints of an animal. In the example shown in Figure 5, not

every extremity contains features. For instance, no features

are extracted on the front legs of the horse. In contrast, our

algorithm is able to extract many posture invariant features

located at extremities and joints of prominent components.

5.3. Application to Surface Correspondence

We validate our approach by computing correspon-

dences between the features extracted on articulated mod-

els. The correspondences between features can be used to

find dense point-to-point correspondences [23]. In all of the

experiments, corresponding vertices are shown in the same

color.

The correspondence is computed greedily by corre-

sponding the vertices with the most similar descriptor val-

ues. We compute the similarity between two feature points

by averaging the descriptor similarities between the two fea-

tures over all m levels. Furthermore, we compute the dis-

similarity between two features as the minimum dissimilar-

ity between descriptor values in a 2-ring neighborhood of

the features. If the most similar descriptor value is not sym-

metric for a feature, then no correspondence is assigned.

Note that this greedy correspondence is intended for val-

idation only. We do not intend to solve the correspondence

problem efficiently in this paper.

We first compute the correspondences for the horse

dataset with known ground truth. The experiment com-

putes the correspondences between the features extracted

on two pairs of poses. We set k = 60. Figure 6 shows the

feature correspondences that are obtained with and with-

out the sampling strategy. Note that not all of the features

are visible in this figure. Figure 7 shows the histograms

of the errors of the feature correspondences with respect to

the ground truth correspondences. The error is measured

as the number of edges on the shortest path between the

ground truth correspondence and the computed feature cor-

respondence. This error measure is suitable for nearly uni-

form meshes. Note that this means that errors obtained by

matching features to symmetric parts of the horse are po-

tentially huge. However, since a surface descriptor cannot

distinguish locally between symmetric parts, these symmet-

ric mismatches should not be counted as errors.

We discuss the results obtained with and without using

the sampling strategy. First, we discuss the results obtained

when all of the vertices are possible features. It takes about

10.5 minutes to compute the features for each of the poses.

For the pair of poses on the right, all but four of the mis-

matched features are matched to symmetric body parts. For

the pair of poses on the left, all but two of the mismatched

features are matched to symmetric body parts. Hence, the



Figure 4. Effect of changing the resolution of the model. The left model contains 14410 triangles, the model in the middle contains 5000

triangles, and the right model contains 1024 triangles.

Figure 5. Comparison. Top: Result of our algorithm with k = 60. Bottom: Result by Katz et al. [11].

accuracy of the computed correspondences is high.

Second, we discuss the results obtained when the sam-

pling strategy is used. It takes about 4 minutes to compute

the features for each of the poses. For the pair of poses on

the right, all but two of the mismatched features are matched

to symmetric body parts. For the pair of poses on the left,

all but three of the mismatched features are matched to sym-

metric body parts. The accuracy of the result is lower than

before, as can be seen in Figure 7. Furthermore, fewer fea-

tures are extracted when the sampling strategy is used.

All of the following experiments use all of the vertices

as possible features. Figure 8 shows the correspondences

between the features extracted with k = 20 on three pairs

of dancers. Note that all of the correspondences are ei-

ther close to the true correspondence or on symmetric body

parts.

Finally, we use the method to establish correspondences

between surfaces with similar, but not identical intrinsic ge-

ometry. Figure 9 shows the correspondences between the

features extracted with k = 20 on a male and a female

dancer. Although both models are humans, they are not

isometric to each other. Note that all but one of the cor-

respondences are either close to the true correspondence or

on symmetric body parts of the dancers. Figure 10 shows

the correspondences between the features extracted with

k = 60 on two female dancers wearing a skirt. Note that

the surface joining the skirt and the legs of the dancer moves

in a non-isometric fashion during the motion of the dancer.

The left of Figure 10 shows the front view of the pair of

dancers and the right of Figure 10 shows the back and side

view of the same pair of dancers. Note that most of the

correspondences are either close to the true correspondence

or on symmetric body parts of the dancers. Hence, the ap-

proach is suitable for surfaces with similar, but not identical

intrinsic geometry.

Figure 9. Correspondences.

6. Conclusion

This paper introduces a posture invariant shape descrip-

tor and applies it to feature extraction and feature correspon-

dence. The descriptor is invariant with respect to rigid and

isometric transformations and it is robust with respect to

noise and changes in mesh resolution. Furthermore, the de-

scriptor can describe the shape locally and globally.

The user can set the following parameters: the number

of features to be extracted, the bin size b, the width w, and

the number of levels m. We leave it for future work to find



Figure 6. Correspondences. Top: All vertices are possible features. Bottom: Sampling strategy is used.

Figure 7. Comparison to ground truth. Grey columns correspond to the poses in Figure 6(left). Black columns correspond to the poses in

Figure 6(right). Left: All vertices are possible features. Right: Sampling strategy is used.

the best b, w, and m automatically.

We leave the following limitations for future work.

• The descriptor is not suitable for surfaces with non-

Euclidean geometry. This limitation can be remedied

if prior knowledge about the surface’s intrinsic geome-

try is available by using generalized multi-dimensional

scaling [4].

• The descriptor is sensitive with respect to topologi-

cal noise because geodesics are used to compute the

canonical forms.

• For meshes with boundaries, many features are ex-

tracted along boundaries of the mesh because vertices

along a boundary have fewer close neighbors.

• The approach is not suitable for partial matching be-

cause two globally different shapes have different

canonical forms.
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