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Abstract

This position paper argues that the Baldwin effect

is widely misunderstood by the evolutionary

computation community. The misunderstandings

appear to fall into two general categories. Firstly,

it is commonly believed that the Baldwin effect is

concerned with the synergy that results when

there is an evolving population of learning indi-

viduals. This is only half of the story. The full

story is more complicated and more interesting.

The Baldwin effect is concerned with the costs

and benefits of lifetime learning by individuals in

an evolving population. Several researchers have

focussed exclusively on the benefits, but there is

much to be gained from attention to the costs.

This paper explains the two sides of the story and

enumerates ten of the costs and benefits of life-

time learning by individuals in an evolving popu-

lation. Secondly, there is a cluster of

misunderstandings about the relationship

between the Baldwin effect and Lamarckian

inheritance of acquired characteristics. The Bald-

win effect is not Lamarckian. A Lamarckian

algorithm is not better for most evolutionary

computing problems than a Baldwinian algo-

rithm. Finally, Lamarckian inheritance is not a

better model of memetic (cultural) evolution than

the Baldwin effect.

1 Introduction

Since Hinton and Nowlan’s (1987) classic paper, several

researchers have observed a synergetic effect in evolution-

ary computation when there is an evolving population of

learning individuals (Ackley and Littman, 1991; Belew,

1989; Belew et al., 1991; French and Messinger, 1994;

Hart, 1994; Hart and Belew, 1996; Hightower et al., 1996;

Whitley and Gruau, 1993; Whitley et al., 1994). This syn-

ergetic effect is usually called the Baldwin effect. This has

produced the misleading impression that there is nothing

more to the Baldwin effect than synergy. A myth or legend

has arisen that the Baldwin effect is simply a special

instance of synergy. One of the goals of this paper is to

dispel this myth.

Roughly speaking (we will be more precise later), the

Baldwin effect has two aspects. First, lifetime learning in

individuals can, in some situations, accelerate evolution.

Second, learning is expensive. Therefore, in relatively sta-

ble environments, there is a selective pressure for the evo-

lution of instinctive behaviors. Recent research in

evolutionary computation has focussed almost exclusively

on the first aspect of the Baldwin effect. This paper is an

attempt to encourage a more balanced view. Learning has

benefits (the first aspect of the Baldwin effect) but it also

has costs (the second aspect). The Baldwin effect is con-

cerned with the costs and benefits of lifetime learning in

an evolving population.

The second goal of this paper is to clarify the relationship

between the Baldwin effect and Lamarckian inheritance of

acquired characteristics. The Baldwin effect resembles

Lamarckism in some ways: behaviors that are learned in

one generation become instinctive in a later generation.

However, the Baldwin effect is purely Darwinian. Unlike

Lamarckism, acquired characteristics (behaviors that an

individual acquires by lifetime learning) are not directly

inherited. What is inherited is the ability to acquire the

characteristics (the ability to learn).



We begin in Section 2 with a brief discussion of terminol-

ogy. Section 3 attempts to accurately describe the Baldwin

effect. We then discuss the costs and benefits of lifetime

learning in an evolving population in Section 4. The rela-

tionship between Lamarckism and the Baldwin effect is

examined in Section 5. We conclude in Section 6.

2 Terminology

Before we continue, we should define a few terms. The

genotype is the genetic constitution of an individual. In a

living organism, this is typically the organism’s DNA. In

evolutionary computation, it is typically a string of bits.

The phenotype is the set of observable characteristics of an

organism, as determined by the organism’s genotype and

environment. Roughly speaking, the genotype is the DNA

and the phenotype is the body. The distinction between

genotype and phenotype is clear in biological evolution,

but the distinction does not exist in many of the simpler

examples of evolutionary computation.

Lifetime learning is learning during the lifetime of an indi-

vidual. The evolution of a species may also be viewed as a

form of learning, but it is learning at the level of popula-

tions, while lifetime learning is learning at the level of the

individual. Phenotypic plasticity is the ability of an organ-

ism to adapt to its environment. The most obvious form of

phenotypic plasticity is lifetime learning. However, there

are many other forms of phenotypic plasticity, such as our

ability to tan in sunny environments or our ability to form

a callus when our skin is repeatedly abraded. In its most

general sense, the Baldwin effect deals with the impact of

phenotypic plasticity on evolution. The impact of lifetime

learning on evolution is only one example of the Baldwin

effect.

3 The Baldwin Effect

The “Baldwin effect” is a misnomer, because the Baldwin

effect was discovered independently by Baldwin (1896),

Morgan (1896), and Osborn (1896), and also because it is

not a single effect. It is rather a cluster of effects, or per-

haps a cluster of observations.

1. Benefits of phenotypic plasticity: Briefly, phenotypic

plasticity smooths the fitness landscape, which can facili-

tate evolution. In more detail, phenotypic plasticity

enables the organism to explore neighboring regions of

phenotype space. The fitness of an organism is then deter-

mined (approximately) by the maximum fitness in its local

region of phenotype space. If the genotype and the pheno-

type are correlated, so that a small change in one usually

corresponds to a small change in the other, then the fitness

of the genotype of a plastic individual is given (approxi-

mately) by the maximum fitness in the local region in gen-

otype space. Therefore, plasticity has the effect of

smoothing the fitness landscape. This makes it easier for

evolution to climb to peaks in the landscape.

2. Benefits of phenotypic rigidity: Phenotypic rigidity

can be advantageous in many situations. Therefore organ-

isms may slowly evolve rigid mechanisms that replace or

augment their plastic mechanisms. (The term “mecha-

nism” is intended to include both behaviors and physical

structures.) For example, learning requires experimenta-

tion, which can be dangerous. There can be advantages to

instinctively avoiding snakes, instead of learning this

behavior by trial-and-error. Similarly, it takes time to build

a callus. There can be advantages to being born with thick-

ened skin on the palms and soles.

3. Plasticity of behavior: Behaviors tend to be more plas-

tic than physical structures. To learn a new behavior, an

organism must make changes to its nervous system. The

nervous system tends to be more flexible and adaptable

than other structures in the body. For example, tanning is

one way to adapt to the sun. Learning provides us with

many other ways to adapt: we may seek shade, wear

clothes, or use sun screen.

4. Plasticity of learning: Learned behaviors tend to be

more plastic than instinctive behaviors. That is, the

learned-instinctive continuum is an instance of the plastic-

rigid continuum. Instincts are part of how we adapt to our

environment, but learning is more flexible than instinct;

learning allows adaptation to a wider range of environ-

ments.

Most of the work in the artificial life and genetic algorithm

communities has focused on the benefits of phenotypic

plasticity and the plasticity of learning (observations 1 and

4) (Ackley and Littman, 1991; Belew, 1989; Belew et al.,

1991; French and Messinger, 1994; Hart, 1994; Hart and

Belew, 1996; Hightower et al., 1996; Whitley and Gruau,

1993; Whitley et al., 1994; Balakrishnan and Honavar,

1995; Belew and Mitchell, 1996). Together, these observa-

tions imply that learning can facilitate evolution.

Some recent work in ALife and GA has combined analysis

of the benefits of phenotypic plasticity, phenotypic rigid-

ity, and the plasticity of learning (observations 1, 2, and 4)

(Anderson, 1995a, 1995b; Cecconi, 1995; Hinton and

Nowlan, 1987; Behera and Nanjundiah, 1995). These

observations imply that learning can facilitate evolution,

but learned behaviors may eventually be replaced by

instinctive behaviors.



Biologists have focused on analysis of the benefits of phe-

notypic plasticity, phenotypic rigidity, and the plasticity of

behavior (observations 1, 2, and 3) (Wcislo, 1989; May-

nard Smith, 1987; Waddington, 1942; Scheiner, 1993;

Simpson, 1953; West-Eberhard, 1989; Gottlieb, 1992).

These observations imply that behaviors can facilitate the

evolution of physical structures.

The biological work (observations 1, 2, 3) makes an inter-

esting contrast to the GA/ALife work (observations 1, 2,

4). Many computer simulations have modelled the distinc-

tion between learning and instinct, but (as far as we know)

no simulations have modelled the distinction between

physical structure and behavior. It is not clear that this dis-

tinction has any meaning in a computer simulation. It

appears to require evolving physical robots.

Our focus in this paper will be on learning versus instinct,

since our primary interest is in evolutionary computation.

Most of what we say here about learning and instinct

applies more generally to phenotypic plasticity and pheno-

typic rigidity, but we will usually leave it to the reader to

make this generalization, since it is not clear that the more

general view is relevant to evolutionary computation.

4 Costs and Benefits of Phenotypic

Plasticity and Rigidity

There is a common, seductive sentiment that learning is

always good; that evolution always selects for more pow-

erful, general-purpose learning engines. In fact, learning is

not always advantageous. Learning is expensive, in many

different ways. Evolution is constantly selecting the best

balance between learning and instinct, and the best bal-

ance varies as behaviors evolve and the environment

changes. There is growing evidence that the human brain

has many more instinctive elements than we usually

acknowledge (Barkow et al., 1992; Pinker, 1994).

Another related myth is that the Baldwin effect is merely a

kind of synergy effect; that the Baldwin effect is the syn-

ergy that results when learning (in individuals) is com-

bined with evolution (in populations). This is only part of

the truth. It is the first observation we listed in the preced-

ing section. In fact, it is false unless it is carefully quali-

fied. Learning can accelerate evolution under certain

circumstances, but it can also slow evolution under other

circumstances.

Baldwin (1896) proposed that learning (phenotypic plas-

ticity) is advantageous when a new behavior is starting to

evolve in a population. Learning smooths the fitness land-

scape, which facilitates evolution (observation 1). If it is

possible for the behavior to be performed by an instinctive

mechanism, it will usually be advantageous for such a

mechanism to evolve, since instinctive mechanisms tend

to be less expensive than learned mechanisms. However,

when a new behavior is first evolving, an instinctive mech-

anism may require the population to make a large evolu-

tionary leap, while a learned mechanism may be able to

arise in smaller evolutionary increments. Learning may

allow the behavior to eventually become common and

robust in the population, which then gives evolution the

time required to find an instinctive mechanism to replace

the learned mechanism. In summary, at first learning is

advantageous, but later it is not.

This picture still requires further qualification. The funda-

mental insight is that there are trade-offs between learning

(plasticity) and instinct (rigidity). The optimal balance

may vary over time, as the population and environment

change. The precise course of this varying balance over

time may not always follow the path that Baldwin (1896)

described. The important lesson from Baldwin (1896) is

not the precise course of the balance; it is that there are

trade-offs. Table 1 is an attempt to list these trade-offs.

1. Time scale of environmental change: Evolution and

learning operate at different time scales (Unemi et al.,

Table 1: Trade-offs in evolution between phenotypic rigidity and

phenotypic plasticity.

dimension of

trade-off

phenotypic rigidity

(e.g., instinct)

phenotypic plasticity

(e.g., learning)

1 time scale of

environmental change

relatively static relatively dynamic

2 variance,

reliability

low variance,

high reliability

high variance,

low reliability

3 energy,

CPU consumption

low energy,

low CPU

high energy,

high CPU

4 length of learning

period

short learning

period

long learning period

5 global versus local

search

more global search more local search

6 adaptability brittle adaptive

7 fitness landscape rugged smooth

8 reinforcement

learning versus

supervised learning

reinforcement

learning

supervised learning

9 bias direction strong bias:

direction of bias

crucial to success

weak bias: direction

of bias not as

important

10 global goals versus

local goals

emphasis on global

goals

emphasis on local

goals



1994; Anderson, 1995a). In a dynamic environment, evo-

lution cannot adapt fast enough, so there is an advantage to

learning (phenotypic plasticity). In a static environment,

evolution can adapt, so there is no penalty for instinct

(phenotypic rigidity), at least in this dimension (the time

scale dimension).

2. Variance and reliability: Learning is based on experi-

ence and requires the right kind of experience. If an indi-

vidual is unfortunate, the right experience will not be

available. This factor makes learning more stochastic or

probabilistic than instinct. If all the other factors are equal,

evolution will eventually replace learning with instinct,

simply because instinct is more reliable (Sober, 1994). On

the positive side, learning can increase the variation in the

population, which can facilitate evolution in some circum-

stances (such as a dynamic environment) (Anderson,

1995a).

3. Energy consumption and CPU consumption: Learn-

ing requires acquisition of data, which involves sensors

and experiments. A living organism or a robot must

expend energy in order to learn. In evolutionary computa-

tion, the CPU is a limited resource. Local search (learning)

requires CPU time, which means that less CPU time is

available for global search (evolution).

4. Length of learning period: An organism (or a robot) is

vulnerable during the period before it has fully learned a

certain behavior. For example, if the behavior is self-

defense, the organism is easier to kill before it has mas-

tered the behavior. If all the other factors are equal, evolu-

tion will select for shorter learning periods (Cecconi et al.,

1995; Anderson, 1995a).

5. Global versus local search: Evolution performs a kind

of global search (Holland’s Schema Theorem) while indi-

vidual learning performs a kind of local search (in the phe-

notype space centered on a given genome). An organism

with strong instincts is putting more emphasis on the glo-

bal search, while an organism with weak instincts is put-

ting more emphasis on the local search. The right trade-off

depends on the fitness landscape and the current location

of the population on that fitness landscape. Thus the right

trade-off varies over the course of the evolution of a given

behavior.

6. Adaptability versus brittleness: Learning is better

able to adjust to variation in the environment. Instinct

tends to be brittle.

7. Fitness landscape: Learning smooths the slope of the

fitness landscape. If the slope is already smooth, learning

may have little advantage over instinct (Hightower et al.,

1996). The relevant smoothness is the smoothness of the

landscape around the current population location, which

varies over the course of the evolution of a given behavior.

8. Reinforcement versus supervised learning: A genetic

algorithm is a type of reinforcement learning algorithm.

Therefore it is situated somewhere between unsupervised

learning and supervised learning, in terms of its use of

feedback from the environment. In a supervised learning

task (e.g., learning to classify from examples), a standard

supervised learner (e.g., backpropagation neural networks

or decision tree induction) has an advantage over a rein-

forcement learner (e.g., a genetic algorithm), because the

supervised learner uses more of the feedback from the

environment. Suppose there are 10 classes and a learner

mistakenly assigns an example to class 3 instead of class 8.

A supervised learner can note that examples of this type

should be assigned to class 8 in the future. A reinforce-

ment learner can only note that examples of this type

should not be assigned to class 3. A hybrid of a genetic

algorithm and a supervised learning algorithm can have an

advantage over a pure genetic algorithm when the environ-

ment provides detailed feedback (Nolfi et al., 1994).

9. Bias direction: Bias is a familiar concept in machine

learning: every inductive learner requires a bias in order to

select one hypothesis from the infinite set of hypotheses

that are consistent with a given set of observations (Haus-

sler, 1988; Rendell, 1986; Utgoff, 1986). For example, a

preference for simpler hypotheses is a form of bias. Bias

has direction (correctness) and strength (Utgoff, 1986).

There is a strong analogy between the learned-instinctive

continuum and the strong-weak bias continuum. A

strongly biased machine learning system is like an organ-

ism that emphasizes instinctive behaviors. A weakly

biased machine learning system is like an organism that

emphasizes learned behaviors. If the bias direction is cor-

rect (for example, if simpler hypotheses are more likely to

be true than complex hypotheses), strong bias (instinct) is

best, since a strong and correct bias accelerates learning

(Utgoff, 1986). If the bias direction is incorrect (for exam-

ple, there is no correlation between the complexity of

hypotheses and the truth of hypotheses), weak bias (learn-

ing) is best, since a weak bias can be corrected with fewer

data than a strong bias.

10. Global goals versus local goals: Evolution and learn-

ing have different goals. Evolution seeks to maximize fit-

ness, but individuals have more immediate goals, such as

to eat food that tastes good. Learning is used by individu-

als to help them achieve their immediate goals, which may

not match with the goals of evolution (Nolfi et al., 1994;

Menczer & Belew, 1994; Turney, 1995). In biological evo-

lution, no organism can have “maximize expected inclu-

sive fitness” as a goal, because it is too difficult to



determine whether a given action will contribute to this

goal. Instead, biological organisms must substitute simpler

goals, such as “seek sweet, fatty food”. Whether these

simpler goals will serve as reasonable substitutes for the

goal of fitness is contingent on the environment. In evolu-

tionary computation, evolution and learning can have

identical goals. However, as the complexity of problems

tackled by evolutionary computation increases, we may

expect it to become more similar to biological evolution in

this respect. For example, in machine learning, the prob-

lem of learning to classify accurately is simpler than the

problem of learning to classify with low cost. One

approach to classifying with low cost is to evolve a popu-

lation of learners, where each individual has the goal of

learning to classify accurately, but the fitness of the indi-

viduals is determined by the cost of classification (Turney,

1995).

The above list is not necessarily exhaustive and there may

be some overlap in the items. The more we contemplate

the Baldwin effect, the longer the list grows.

5 Lamarckism and the Baldwin Effect

In this section, we examine a cluster of myths and legends

involving the relationship between Lamarckism and the

Baldwin effect.

5.1 The Baldwin Effect is Purely Darwinian

Lamarck believed in the inheritance of acquired character-

istics. In biology and in more complex evolutionary com-

putation, there is a distinction between the genotype and

the phenotype. Lamarckism requires an inverse mapping

from phenotype and environment to genotype. This

inverse mapping is biologically implausible. However, the

Baldwin effect is purely Darwinian; not Lamarckian. The

Baldwin effect does not involve any inverse mapping.

Suppose a short-necked animal learns to stretch its neck to

reach nutritious leaves on a tall tree. Lamarck believed

that the animal’s offspring would inherit slightly longer

necks than they would otherwise have had. This would

require a mechanism for modifying the DNA of the parent,

to alter its genes for neck length, based on its habit of

stretching its neck.

The Baldwin effect has consequences that are similar to

Lamarckian evolution. Over many generations, animals

that stretch their necks may evolve longer necks. How-

ever, the mechanism is purely Darwinian. Parents who

stretch their necks will pass on to their children not their

longer necks, but rather their ability to stretch their necks.

Evolution will select for the ability to stretch. Over many

generations, the population will evolve to consist largely

of animals that are very good at stretching their necks.

However, there can be advantages to being born with a

longer neck. Given sufficient time, the population may

eventually evolve longer necks. Their ability to stretch

their necks is what grants them the time required to evolve

longer necks. The point of this story is that the Baldwin

effect is somewhat Lamarckian in its results, but it is not

Lamarckian in its mechanisms.

5.2 Lamarckism is Computationally Intractable in

General

It might be argued that, although Lamarckism is not bio-

logically accurate, it is ideal for evolutionary computation.

Living organisms do not modify their DNA, based on their

experience, but we can simulate Lamarckian evolution in a

computer. Perhaps Lamarckian evolution is superior to the

Baldwin effect, when we are attempting to solve problems

by evolutionary computation (Belew, 1990; Hightower et

al., 1996; Whitley et al., 1994; Moscato, 1989, 1993; Mos-

cato and Fontanari, 1990; Norman and Moscato, 1989;

Moscato and Norman, 1992; Radcliffe and Surry, 1994;

Paechter et al., 1995; Burke et al., 1995).

Lamarckian evolution requires an inverse mapping from

phenotype and environment to genotype. This inverse

mapping may be computable in many simple applications

of evolutionary computation. However, we believe that the

computation will typically be intractable, for interesting,

real-world problem solving. For example, we applied the

Baldwin effect to the problem of learning to classify with

low cost (Turney, 1995). The genotype was a string of bits,

specifying a bias for a decision tree induction system. The

phenotype was a decision tree. The environment was the

data. The mapping from genotype (bias) and environment

(data) to phenotype (decision tree) was easily computed,

but there is no known algorithm for the inverse mapping

from phenotype (decision tree) and environment (data) to

genotype (bias). As our applications for evolutionary com-

putation grow increasingly complex, Lamarckian evolu-

tion will become decreasingly feasible.

In some recent work with Lamarckian evolution, there is

no distinction between the phenotype and the genotype

(Whitley et al., 1994; Paechter et al., 1995; Burke et al.,

1995). This produces the misleading impression that the

inverse mapping is trivial. It may well be trivial for many

interesting and worthwhile problems, but we believe that it

is generally intractable. With progress in evolutionary

computing, we will eventually encounter the limits of the

Lamarckian approach.



It has also been pointed out that Lamarckian evolution dis-

torts the population so that the Schema Theorem no longer

applies (Whitley et al., 1994). The Baldwin effect alters

the fitness landscape, but it does not modify the basic evo-

lutionary mechanism (i.e., it is purely Darwinian). There-

fore the Schema Theorem still applies to the Baldwin

effect.

5.3 Memes are Not Necessarily Lamarckian

We would like to discuss one more myth concerning

Lamarckian evolution and the Baldwin effect. Dawkins

(1976) proposed that ideas evolve in culture in much the

same sense as organisms evolve in biology, and he coined

the term meme for the basic unit of cultural transmission,

analogous to the gene in biological evolution. Dawkins

(1982) and Gould (1991) have suggested that memes

evolve by Lamarckian mechanisms. Several authors have

used the term memetic evolution as essentially synony-

mous with Lamarckian evolution (Moscato, 1989, 1993;

Moscato and Fontanari, 1990; Norman and Moscato,

1989; Moscato and Norman, 1992; Radcliffe and Surry,

1994; Paechter et al., 1995; Burke et al., 1995). Cziko

(1995) argues to the contrary that meme evolution is

purely Darwinian. We agree with Cziko (1995).

Let us examine some of the arguments for Lamarckian

evolution of memes. To begin, we need to define the geno-

type-phenotype distinction for memes, since both

Lamarckian evolution and the Baldwin effect require this

distinction. The devices by which we express our ideas are

analogous to genotypes; the ideas themselves are analo-

gous to phenotypes. Since memes are defined as analogous

to genes (Dawkins, 1976), we will use the term meme to

refer to the devices by which we express our ideas. Exam-

ples of memes are spoken sentences, written sentences,

live music, recorded music, theatre, and cinema. We will

use the term idea to refer to the ideas themselves.

When a human brain receives a meme (i.e., is colonized by

a meme), the meme slowly (over seconds or days) matures

into an idea. Eventually the human may decide to commu-

nicate the idea to another person. Communication involves

transmitting a meme. If memes use Lamarckian evolution,

then there is a kind of reverse engineering in the host

brain, by which the mature idea is transformed into a

meme that captures the content of the mature idea. If

memes use Darwinian evolution, then the meme that is

transmitted is the result of mutation and crossover with

other memes in the host brain. Introspection suggests that

Lamarckian evolution is more accurate: memes appear to

be a kind of encoding of mature ideas. However, intro-

spection is notoriously unreliable. We will consider two

other arguments for Lamarckian evolution of memes.

One argument for Lamarckian memes is based on compar-

ing what people hear to what people say. The meme that is

received by a brain is generally quite different from the

meme that is later transmitted. We are not merely record-

ing machines that can only play back what we have heard.

However, this does not imply that memes are non-Darwin-

ian. Suppose that a human brain colonized by memes is

analogous to an island colonized by birds. The memes that

shuttle back and forth from brain to brain are analogous to

those birds that dare to leave their island of birth and fly to

another island. If we see one type of bird fly to an island

and then ten-thousand years later see a quite different type

of bird leave the island, we would be wrong to infer that

we had witnessed a case of Lamarckian evolution. It seems

possible that memes in our brains may evolve as much in a

few minutes or days as birds evolve in ten-thousand years.

A second argument for Lamarckian memes is based on

creativity. Creative thought often seems to consist of com-

bining ideas to make new ideas. This might appear to sup-

port a Lamarckian view. However, perhaps creative

thought is a mating of memes, rather than a merging of

ideas. Unlike biological organisms, memes do not seem to

respect species boundaries; any two memes might mate

with each other and produce fertile offspring. The evi-

dence appears to be compatible with both Lamarck and

Darwin.

We do not have proof that memes are Darwinian, nor that

they are not Lamarckian. Our argument is that it is possi-

ble that memes are not Lamarckian. Therefore it is prema-

ture to use memetic evolution as a synonym for

Lamarckian evolution.

5.4 Memes May Be Baldwinian

We believe that memes may evolve by exploiting the Bald-

win effect. In support of this claim, we will argue that

memes satisfy all of the necessary conditions for the mani-

festation of the Baldwin effect.

The Baldwin effect requires Darwinian evolution, which

requires entities that reproduce, with heritable traits and

some degree of variation, and selection, which typically

arises from competition for limited resources. Dawkins

(1976) has already argued persuasively that memes satisfy

the requirements for Darwinian evolution. In addition, the

Baldwin effect requires phenotypic plasticity. The popula-

tion must display heritable variation in phenotypic plastic-

ity, and plasticity must have costs and benefits, in terms of

the mechanism of selection.

Ideas (the phenotypes of memes) clearly have varying

degrees of plasticity. That is, some ideas are more flexible

and adaptable than others. The environment to which ideas



must adapt consists mainly of the other ideas that inhabit

the host brain. The mechanism of selection is familiar,

although poorly understood: we choose to entertain some

ideas and ignore other ideas. In general, we choose plastic

ideas; ideas that get along well with the other ideas we

accept; ideas that fit into the ecology of the host brain. But

plastic ideas also have costs. For an idea to adapt as a phe-

notype, during its lifetime in a particular host brain, the

host brain must process the idea; the idea must consume

brain time; the human host has to think hard. Therefore

plasticity in ideas has both costs and benefits.

It appears that memes satisfy all of the requirements for

manifestation of the Baldwin effect. We previously argued

(Section 5.3) that memes are not necessarily Lamarckian.

We believe that memes are more likely to be Baldwinian

than Lamarckian. Our arguments do not prove this, but

they at least show that Baldwinian memes are at least as

plausible as Lamarckian memes.

Baldwinian and Lamarckian evolution are virtually indis-

tinguishable in their effect. We believe that no “external”

(e.g., linguistic) analysis of memes will be able to resolve

the Baldwin/Lamarck meme dispute. It seems to us that

only an “internal” (e.g., neurological) analysis can settle

the arguments, just as Lamarck could only be properly

rejected for biological evolution when the distinction

between somatic and germ cells was discovered by the

embryologist August Weismann.

6 Conclusion

We have argued that the Baldwin effect is widely misun-

derstood. There seem to be two general categories of mis-

understandings. We discussed the first category in

Section 4: many researchers have focused on the benefits

of lifetime learning in an evolving population, but there

are also costs. We listed some of the costs and benefits, but

our list may be far from complete. The Baldwin effect has

depths that we have not yet plumbed.

Section 5 examined the second category of myths and leg-

ends: those involving the relationship between Lamarck-

ian evolution and the Baldwin effect. We argued three

points: (1) The Baldwin effect is not Lamarckian. It is

purely Darwinian. (2) There are reasons to believe that the

Baldwin effect has more applications in evolutionary com-

putation than Lamarckian evolution. Lamarckian evolu-

tion requires an inverse mapping from phenotype and

environment to genotype. We believe that computing this

mapping is intractable in general. (3) Contrary to popular

opinion, it is not clear that memes use Lamarckian evolu-

tion. It is equally plausible that they use the Baldwin

effect.
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