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Abstract: The discovery of patterns of dependency in

heterogeneous multivariate dynamic systems is approached with

similarity-based neuro-fuzzy networks and evolutionary algorithms.

Search space contains general auto-regressive non-linear models

representing the dependency structure of the process. Examples

show that the proposed approach gives better results than the
classical statistical one.

1 INTRODUCTION

Multivariate time-varying processes, are common in a wide

variety of important domains like medicine, economics,

industry, communications, environmental sciences, etc.

Processes of this kind are usually described by sets of

variables, sometimes of heterogeneous nature. Some are

numeric representing quantitative magnitudes, and others are

non-numeric and describe variation in terms of discrete

states. Typical from real world settings is the practical

impossibility of recording all variables at all time frames,

thereby generating incomplete information. On another hand,

the degree of accuracy associated with the observed variables

is very irregular, resulting in data corpuses with different

types and levels of imprecision.  In recent times,

developments in sensor and communication technology

enables the simultaneous monitoring and recording of large

sets of variables quickly, therefore generating  large sets of

data.

Most of the classical methods for the study of time dependent

data are limited in their applicability by the problems just

mentioned. Many of them are based on  ideal assumptions

which are not fulfilled by real data, or suffer from lack of

robustness. Some of them can’t be applied in the presence of

missing values, or were derived only for single-type data

(usually for real valued only). Often they turn too

complicated or intractable with the increase in

dimensionality, or can’t tolerate or even account for

imprecision. Finally, the univariate case (or single channel

time series) has been  the most studied w.r.t the multivariate,

for complexity reasons.

Predicting a system's behavior is one of the most important

problems investigated, and there is a large set of algorithms

and techniques developed from a variety of conceptual

approaches [1], [2]. They have very different theoretical

foundations, competence, robustness and interpretability.

Some of them are based on models concerning the system's

structure and composition while others are model-free and

rely only on general input-output descriptions. In recent

years, model-free approaches based on soft-computing

techniques [3] are receiving increasing attention.  In

particular, neural networks, fuzzy systems , evolutionary

algorithms  and hybrid techniques involving these are

excellent function approximators and have been used

extensively for time series analysis and prediction [4], [5].

In order to train a neural network or to set a fuzzy prediction

system, a model of the time dependencies has to be set forth

in advance. In complex, highly multivariate, or poorly known

processes, these patterns of internal dependencies are

unknown and precisely what is required is to discover them

in order to construct suitable prediction operators. The

problem of finding these models of internal dependencies has

received much smaller attention in comparison with the

construction of accurate prediction operators.

This paper presents a soft computing approach to model

discovery. This is an extremely complex problem and instead

of trying to seek  a general solution, the present approach

presents a strategy for model finding within a particular class

of dependency patterns and functional relationships. A

particular family of models is chosen and the search space of

possible particular models is explored with evolutionary

algorithms (in this paper with genetic algorithms). Model

quality during the evolutionary process is evaluated by

constructing a similarity-based neuro-fuzzy network

representing the functional relationship and computing its

prediction error. This kind of network has the advantage of

having extremely short training time, therefore allowing the

fast construction and evaluation of many candidate models,

as required by the evolutionary algorithm. Once a set of

“optimal” models is found, they can be used in a second step

for building more accurate prediction operators. These might

be feed-forward networks, radial basis functions, fuzzy

predictors, or others, using more sophisticated training

methods (usually also more time consuming).

2 PROBLEM FORMULATION

The objective is to analyze a multivariate time varying

process and to extract plausible dependency models



expressing the relationship between future values of a

previously selected time series (the target), and the rest of the

time series, possibly including itself. From the point of view

of the nature of the variables composing the process, some

might be numeric (ratio or interval scales), and some

qualitative (ordinal or nominal scales), for instance, a Markov

chain. Moreover, these series might contain mis sing values.

The set of possible functional models describing the

dependency of future values of a target series on the previous

values of the others and itself is clearly unlimited. The

classical theory of time series has studied extensively the AR,

MA, ARMA and ARIMA models (all linear) [1], and others

can be considered as well. From the methodological point of

view considered here, the main goal  is the pattern  of mutual

dependencies. Clearly, the particular choice of the functional

family will influence the overall result. In this respect,

generalized AR or ARMA are intuitively appealing and the

simplest one is the generalized non-linear AR model.

   As stated previously, the methodology presented here does

not rely on a model of a particular kind. However,  the

generalized AR model expressed in (1) will be used as an

example to illustrate the proposed approach, which can be

easily extended to other time series models.

    Once the model type is chosen, the problem of pattern

dependency search can be described as the simultaneous

determination of the number of required lags for each series,

the particular lags within each one carrying the dependency

information, and the prediction function. A natural

requirement on function F is the property of minimizing a

suitable prediction error.
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    The exponential size of the space of possible mo dels (even

for only a few series and a limited number of allowed time

lags), prevents an approach based on exhaustive search. Also,

the lack of assumptions about the prediction function makes

the set of candidates unlimited.

2.1 A SOFT COMPUTING MODEL MINING STRATEGY

A direct soft computing approach to the model mining

problem can be based on: (a) exploration of a subset of the

entire model space with evolutionary algorithms, and (b) use

of a neural network of a fuzzy system representation for the

unknown prediction function. The use of evolutionary

algorithms avoids the search of the entire model space and

gives as a result a set of  “quasi-optimal” models, in the sense

of the model quality criterion defined in advance. The use of

a neural network, due to its properties as a general function

approximator, allows a flexible, robust and accurate predictor

function operator. Feed-forward networks, radial basis

functions or other network paradigms are classical choices.

However, the use of these classical network paradigms in (b),

might turn out to be difficult or even prohibitive, considering

that for each candidate model, a function of this kind has to

be constructed (i.e. trained) during search space exploration,

thus, involving long training times. Issues like the

determination of the number of neurons in the hidden layer,

the mixing of numeric and non-numeric information

(required in real world mult ivariate problems), and the

inclusion of imprecise values add even more complexity.

These can be treated in a natural way by using the

heterogeneous neuron model [6], [7]. This model considers a

neuron as a general mapping from a heterogeneous

multidimensional space composed by cartesian products of

the so called extended sets, to another heterogeneous space.

These are formed by the union of real, ordinal, nominal, and

fuzzy sets (other kind of sets are possible), with the missing

value. Their cartesian product forms the heterogeneous space.

    (2)

In this type of neuron (h-neuron), the inputs, as well as the

weights, are elements of the n-dimensional heterogeneous

input space. Among the many kinds of mappings which can

be defined, the one using a similarity function [8] as the

aggregation function and the identity mapping as the

activation function is particularly appealing. This neuron

maps a n-dimensional heterogeneous space onto the [0,1] real

interval in such a way that the output expresses the degree of

similarity between the input pattern and neuron weights.

Such neuron is shown in Fig-1.

Fig-1. A heterogeneous neuron with fuzzy, real, ordinal and

nominal inputs. ( ? is a missing input value).



   This kind of neuron can be used in conjunction with the

classical (with dot product as aggregation and the sigmoid

function or hyperbolic tangent as activation, respectively),

forming hybrid network architectures. Networks constructed

in this way exhibit general function approximation properties

[9]. The training of such networks is usually done with

evolutionary algorithms due to the lack of continuity, typical

of heterogeneous spaces, and the presence of missing values

which precludes the use of backpropagation-like algorithms.

Since the aggregation is given by a similarity function,

there are many possible choices. Moreover, the input data

structure can be taken into consideration, resulting in tailored

neurons, more sensible to particular data properties.

A  type of hybrid network especially appropriate for the

task of model mining can be constructed by joining a hidden

layer composed by h-neurons with an output layer having

classical neurons (for example, with dot-product as

aggregation and a linear function as activation). The weights

of the output layer neuron are defined as the corresponding

values of the target series when the input is a vector identical

to the weight vector of a neuron in the hidden layer. In the

case of predicting a single real-valued target time series, the

architecture is shown in Fig-2.

Fig-2. A hybrid network with h-neurons in the hidden layer

and one classical neuron (O) in the output layer. Input is a

multivariate vector and output is a real value .

The operation of this network can be defined as a casting of

a k-best interpolator algorithm: Let each neuron in the hidden

layer compute its similarity with the input vector and retain

the k-best responses, where k is a pre-set number of selected

h-neurons. If there is a hidden neuron identical to the input,

then its output (i.e. its similarity) is 1. Then, set the output of

the other neurons in the hidden layer to 0 (i.e. disregard

them) and go to the output layer. As they are neurons with

classical dot-product aggregation, the resulting value will be

exactly the weight of the output layer neuron connected with

the single responsive h-neuron with similarity 1. Therefore,

the network response will be the observed target series value.

If there is no h-neuron identical to the input vector, then

retain the k-best similarity values, set to 0 the outputs of the

rest of the hidden layer neurons and compute the dot-product

aggregation of the neurons in the output layer. Using as

activation a linear function with a single coefficient, equal to

the inverse of the sum of the k-similarities coming from the

hidden layer, the output is the estimate given by (3).
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where K is the set of k  best h-neurons of the hidden layer

and kh is the similarity value of the k-best h-neuron w.r.t the

input vector. Since those similarity values represents the

fuzzy memberships of the input vector to the set classes

defined by the neurons in the hidden layer, (3) represents a

fuzzy estimate for the predicted value.

Assuming that a similarity function S has been chosen and

that a single time series is the target, this “case-based” neuro-

fuzzy network can be built and trained as follows: Define a

similarity threshold T and extract the subset L of the set of

input patterns such that for every Ll ∈  and every input

pattern x , TlxS ≥),( . Several algorithms for extracting

subsets with this property can be constructed in a single cycle

through the input pattern set, and are classical in cluster

analysis (note that in the particular case of a threshold T=1,

the hidden layer becomes the whole training set). Now

construct the hidden layer by using the elements of L as h-

neurons, and use their corresponding outputs as the weights

of the output layer neuron O. This training procedure is

extremely fast and therefore many hybrid neuro-fuzzy

networks of this kind can be constructed and tested. The

dimension and composition of input training vectors will

depend on the dependency model considered for the set of

time series. Different sets of individual lags selected from

each time series will define different training sets, and

therefore, different hybrid neuro-fuzzy networks. This one-

one correspondence between dependency models and neuro-

fuzzy networks (defined as above), makes the search in the

space of models equivalent to the search in the space of

networks. Then, given a model describing the dependencies

and a set of time series, a network can be constructed

according to the described procedure, and tested for its

prediction error on a segment of the target series not used for

training (building) the network. Root mean squared error on a

test set is a typical measure.

Clearly, for each model there is a quality indicator given by

the prediction error on a test set of its equivalent similarity-

based neuro-fuzzy network, which is also a representation of

the prediction function controlled by the dependencies

expressed in the model. In this way, the search for “optimal”

models can be made with an evolutionary algorithm

minimizing the prediction error measure. Genetic Algorithms

and Evolution Strategies are well suited for this task. In the

case of genetic algorithms a simple model coding can be used

with binary chromosomes of length equal to the sum of the

number of lags considered for each of the time series.

Clearly, other problem representations are possible. Within

each chromosome segment corresponding to a given series,



the non-zero values will indicate which time lags should be

included in the model, as shown in Fig-3.

Fig-3. Binary chromosome decodification.

    The set of multivariate series is divided into two parts:

training and test. Given a binary chromosome, a model is

constructed by applying the decodification illustrated in Fig-

3. With the model and the multivariate series, a hybrid neuro-

fuzzy network is constructed and trained, giving a

representation for the prediction function. Then, the network

is applied to the test set and a prediction error is obtained.

This prediction error is also a measure of network (and

model) quality and is used by the genetic algorithm selection

and crossover internal operators. Models with smaller

prediction error are the fittest. The entire process is illustrated

in Fig-4.

Fig-4. Genetic search in the space of dependency models.

Chromosomes representing models are used for constructing

neuro-fuzzy networks which are trained and evaluated, thus

rating models according to their prediction error.

At the end of the evolutionary search, the best model (or

models) are obtained and if the associated test errors are

acceptable, they represents meaningful dependencies within

the multivariate process. It is well known that evolutionary

algorithms can’t guarantee the discovery of the “true”

optimum. Thus, the set of models found can be taken only as

plausible descriptors of important interrelationships present

in the data set. It must be taken into account that models are

ranked and evolved according to the prediction error given by

the function represented by the particular kind of neuro-fuzzy

network used, therefore, maybe other kind of neural networks

based on the same model may have better aproximation

capabilities. In this sense, the proposed scheme can be seen

as giving a coarse prediction operator. The advantage is the

speed with which many thousands of models can be explored

and tested in a systematic way. Once the best of them are

found, they can be refined by using more powerful function

approximators like other type of neural networks, fuzzy

systems, or other techniques, like those of  [5], [10] and many

others.

3 EXAMPLES

The described technique has been applied to different

examples from the literature [11], and a few are presented

here for illustrative purposes. Deliberately, no preprocessing

of any kind was made to any of the time series used. In other

words, raw data were used in all cases. This is not the way in

which time series data are analyzed, but by eliminating

additional effects the properties of the proposed procedure in

terms of approximation capacity and robustness are easier to

asses.

   For simplicity, the same set of parameters was kept as fixed

as possible, with only minor exceptions. In particular, in all

cases the similarity threshold for the h-neurons was set to 1.

The similarity function used was S=(1/(1+d)) , where d is a

normalized euclidean distance, and the number of responsive

h-neurons in the hidden layer set to k=7. No attempt to

optimize these was made, but the subject will be commented

later. The genetic algorithm was applied in its simplest form,

with: roulette selection, single point crossover, crossover

rate=0.6, mutation rate = 0.01, generation gap=1 (i.e. the

entire population is replaced in each generation). All

structures were evaluated in each generation and elitism was

allowed.

3.1 LYNX DATA

   This univariate process describes the annual number of

Canadian lynx trapped on the Mackenzie River for the years

1821-1934 [11], and it is an example of a quasi-periodical

series with 114 observations. In this case, the first 90 were

used as training and the remaining 24 for testing. A

maximum time lag of 20 years was set, defining a search

space size of  2^(20) models. After  20000 generations with

500 individuals each a stable solution was found starting

from generation 14500. The best model found relates future

values at time t with the values at lags (t - 1), (t - 2), (t - 10),

(t - 14), (t - 15), with a RMS test set prediction error of 549.2.



18=τ

For comparison, an ARIMA model (20,0,0) was computed

under the same conditions, giving a RMS error of 1516.18.

   The soft-computing model not only gives better results, but

also a simpler dependency structure.

In the soft computing model miner technique only 5 time lags

were found to be relevant for the best model found (only 25%

of the number of potentially available lags). Actually, the

best 5 models resulting from the genetic exploration, have an

average of 4.6 lags per model with prediction errors in the

range (549.2- 565.7).  However, note that in the case of the

classical AR model, 20 coefficients are required. When

dealing with highly multivariate processes and exploring

deeper time windows in terms of maximum lags, big

difficulties may arise. Moreover, this model can be used only

in the presence of real-valued data.

The behavior of the predicted time series in the test set

segment (observations 91-114) for the proposed technique

and the AR model of order 20 is shown in Fig-5.

Fig-5. Comparison of the real and predicted lynx population

in the test set according to the proposed soft computing

technique and a classical autoregressive model of the same

order.

  It is interesting to observe that the soft-computing technique

is not only better in terms of RMS error and model

simplicity, , but also in terms of its phase behavior w.r.t the

original process. This is not the case of the classical AR

model.

3.2 MACKEY-GLASS SERIES.

   This is a well known chaotic time series defined as

                     (4)

   Here was used and a series with 1200

observations was generated. The first 1000 were used for

training and the remaining 200 for test. A maximum time lag

of 20 time intervals was set, and 1000 generations with 100

individuals each were used in the genetic exploration with the

same settings described above. The best model found had a

RMS error = 0.00499 and was composed by the following set

of lags: lags ( t -1), ( t - 4), (t - 17), (t -18), (t - 19). The

theoretical set of lags is (t-1), (t-18) were retrived, but also a

spurious lag at (t-4), as well as two others at (t-17) and (t-19),

however, they are symmetrical around the expected (t-18).

Only as reference, an ARIMA (20,0,0) model was computed

under the same conditions w.r.t the training and test sets, and

the results are shown in Fig-6.

Fig-6. Comparison of the real and predicted Mackey-Glass

series in the test set according to the proposed soft computing

technique and a classical autoregressive model of the same

order.

   This example shows that the proposed technique is

effectively sensitive to the interdependencies hidden in a

process, which is its main purpose. The fact that the

approximation matches so closely the theoretical function

shows that the influence of the (t-4) is small and that the

overall model is a plausible one. Probably other with other

experimental parameters could narrow the gap between the

real underlying dependency model and the one found by the

genetic algorithm.

3.3 GAS FURNACE DATA

In this example, input Gas Rate and Output CO2 in a

chemical plant define a bivariate process [ 11]. The 246

available observations were divided into a training set with

the first 249 and a test set with the remaining 47. In this case

the model included dependencies from both the input and the

output series and a maximum exploration lag of 50 was set

for each. The target series was the Output CO2. Only 20

populations were generated, with 50 individuals each. The

rest of the genetic algorithm parameters were the same as in

the previous experiments.

The best model found was composed by 26 lag terms from

the input Gas Rate series, and 25 from the Output CO2, for a

total of 51 lags. This is almost one half of the potentially

allotted model size. The RMS error obtained for the best

model was 2.045 and for the 5 best found the error range was

(2.045-2.308), with an average of 48.4 lag-terms/model.

Clearly this result indicates the ability of the technique to find

dependency models with reasonable size and accuracy.



The predicted Output CO2 for the test set is shown in Fig-7.

The prognosed behavior follows the real values reasonably

well in both the magnitude and the phase.

Fig-7. Comparison of the real and predicted Output CO2 in

a bivariate process. Only the test set part is shown.

This is confirmed by a regression analysis of the expected

and predicted values shown in Fig-8. A highly significant

correlation coefficient of 0.908 was obtained and it is also

interesting to observe that the slope is almost 1, as should be

expected in the case of theoretical coincidence.

Fig-8. Regression analysis of the real and the multivariate

time series model miner  prediction for Output CO2

(mvtsmm). Dashed lines shows the 95% confidence band.

Correlation coefficient is 0.908.

4. CONCLUSIONS

The proposed soft-computing technique constructed with

similarity-based neuro-fuzzy networks and evolutionary

algorithms is a reasonable approach to the problem of

determining the dependency structure of complex

multivariate heterogeneous time-dependent processes. This is

shown by the presented examples, some of them using real

world data. As with other data exploration techniques, its

results can be further refined by using more sophisticated

prediction operators, once the dependency structure is known

or approximated. The approach exhibit a fair degree of

robustness and non-linearity as shown by the examples, in

which the raw time series were used without any

preprocessing, and the comparison with the classical auto-

regressive model.

The technique, like many others, depends on different

parameters which must be set forth in advance (some of them

are conceptual, like the similarity function used). Their

influence on the results must be investigated, as well as the

limits for its applicability. For this purpose, meta-

evolutionary paradigms are particularly appropriate, as a

higher order evolutionary process can explore the space of

the parameters. Also, more experiments must be made in

order to study the influence of other factors, like the  size of

the training set required, the tolerance to imprecision and

missing information, etc. Nevertheless, this results are only

preliminary and further experiments, research and

comparison with other approaches are required.
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