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A two-continuous-phase sulfur-asphalt composite was developed for use as a road repair 
material. Two methods to obtain a continuous sulfur phase in a continuous asphalt phase are 
described. Scanning electron microscopy and mercury porosimetry technique provided evidence 
for a continuous sulfur phase. Mechanical properties-determined from hardness, uniaxial 
tension, and fracture energy measurements--of the two-continuous-phase sulfur-asphalt com- 
posite were studied at 22 and -31°C. Mechanical properties of fiber-reinforced (up to 2% by 
volume of dacron fibers) sulfur-asphalt composites were also studied. 

On a mis au point un composite continu biphasique soufre-asphalte destine i servirde materiau 
de reparation routitre. L'article decrit deux methodes qui permettent d'obtenir une phase 
continue de soufre dans une phase continue d'asphalte. Les techniques de microscopie par 
balayage electronique et porosimetrie au mercure ont mis en evidence I'existence d'une phase 
continue de soufre. 

A partird'essais dedurete, de traction simple etd'energie de fracture, on a etudie les proprietes 
mecaniques du composite continu biphasique soufre-asphalte ii 22 et -3 1°C. Ont ete egalement 
etudiees les proprietes mecaniques des composires soufre-asphalte renforces de fibres (jusqu'a 
2% en volume de fibres de  dacron). 

Can. J .  Civ. Eng.6.406-412(1979) [Traduit par la revue] 

Introduction 
In recent years the availability of large quantities 

of elemental sulfur in western Canada has generated 
a resurgence of interest in and research on the utiliza- 
tion of sulfur in construction materials (Sulfur Insti- 
tute, London 1976; Loov et al. 1974; Malhotra 1975). 

Numerous investigations have been undertaken 
and patents filed on sulfur-asphalt systems (Santucci 
et al. 1976; Garrigues et al. 1976; Shell Internationale 
Research Maatschappij N. V. 1966; McConnaughay 
1973), in which sulfur was distributed as discrete 
particles acting to improve fluidity for compaction 
when molten and as a filler when solidified. It was 
considered possible that a sulfur-asphalt composite 
could be produced in which the sulfur would form 
an interconnected network, thus giving the system 
additional structural rigidity. Such a composite 
could have interesting possibilities as a repair 
material for roads damaged by traffic and frost 
action. It was recognized that for this application, 
the material should be sufficiently fluid to self-com- 
pact and be able to form a good bond with the sub- 
strate. 

The development undertaken at the Division of 
Building Research has resulted in the production of 
a two-continuous-phase sulfur-asphalt composite 
of unique capability (Beaudoin and Sereda 1978a,b). 
This paper describes the fabrication, characteriza- 
tion, and properties of this system. 

Experimental 
Sulfur-Asphalt Composite 

A two-continuous-phase sulfur-asphalt system 
was achieved by using two methods to add the sulfur 
to liquid asphalt (type 111) maintained at 150°C. For 
both these methods the sulfur-asphalt ratio necessary 
to produce two-continuous phases was approxi- 
mately 2.0 by weight. 

In the preparation of the composite it is necessary 
to first obtain a stable emulsion of the liquid sulfur 
dispersed in liquid asphalt. As the density of sulfur 
is approximately twice that of asphalt, a very fine 
droplet size of sulfur must be obtained. The following 
two methods were found satisfactory to achieve a 
stable emulsion. 

The first method-method A-involved the addi- 
tion of particulate sulfur (5 pm diameter) to hot 
liquid asphalt while stirring continuously to melt the 
sulfur. The molten mixture could then be cast to the 
desired shape. 

The second method-method B-involved the 
addition of liquid sulfur maintained at 150°C to the 
liquid asphalt followed by high-speed mixing (speed 
is dependent on the geometry of the stirrer blade and 
mixing vessel) with sufficient shear to form an emul- 
sion of the liquid sulfur in the bituminous material. 
When the emulsion of sulfur in asphalt, having a 
sulfur-asphalt ratio of approximately 2, is cooled 
below the melting point of sulfur, a microporous 
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continuous crystalline sulfur phase is formed in a 
continuous viscoelastic bituminous phase. It is this 
two-continuous-phase system that results in a com- 
posite of unique properties; evidence for the exis- 
tence of a continuous sulfur phase follows. 

Evidence for a Continuous Sulfur Phase 
(a )  Scanning Electron Microscopy 

In order to examine the microstructure of the sul- 
fur phase in the mixture and to demonstrate the 
presence of a continuous sulfur phase, scanning 
electron microscopy was utilized. The micrographs 
(Fig. 1) show three different sulfur-asphalt prepara- 
tions from which the asphalt has been leached using 
Varsol; samples are approximately 12.5 mm x 
12.5 mm x 6.2 mm thick. The three sulfur-asphalt 
preparations are as follows. 

(1) Sulfur-asphalt ratio equals 2.0. The sample 
was prepared by method B. Pore-size distribution 
data to be presented subsequently showed that 
method A gives a similar structure. 

(2)  Sulfur-asphalt ratio equals 2.0. The sample 
was prepared by manual or slow-speed mixing of 
liquid sulfur and asphalt at 150°C as in French 
Patent No. 1,444,629 (Shell Internationale Research 
Maatschappij N. V. 1966). 

(3) Sulfur-asphalt ratio equals 1.0. The sample 
was prepared by addition of 5 pm sulfur particles 
to liquid asphalt at 150°C according to Garrigues' 
patent, U.S. Patent No. 3,970,468 (Garrigues et al. 
1976). 

Figure l a  shows the continuous porous sulfur 
network formed in preparation 1 samples. Figure 16 
illustrates the discrete sulfur particles remaining after 
asphalt has been leached from preparation 2 samples. 
The particles are larger than those shown in Fig. l a  
and it is apparent that a continuous sulfur network 
has not formed even though the sulfur-asphalt ratio 
is 2.0. Figure l c  shows the structure of the sulfur 
remaining after leaching preparation 3. It has the 
appearance of a pile of sulfur particles, which have 
formed a close-packed array as a result of structural 
collapse due to leaching of the asphalt phase. 

Sulfur microstructures, as revealed in the micro- 
graphs, are consistent with the observations that the 
mechanical properties for preparation 1 are signifi- 
cantly higher than those for preparations 2 and 3. 

( b )  Pore-size Distribution of Continuous Sulfur Phase 
in Samples Prepared by Method A 

In order to establish that a continuous sulfur 
phase had, in fact, been produced the asphalt was 
extracted from several samples having sulfur-asphalt 
ratios of 1.5-5.0 using Varsol; extraction time was 
2-3 months. The sulfur network at a sulfur-asphalt 
ratio of 1.5 is very weak as the continuous phase 

FIG. 1. (a) Preparation I ,  sulfur-asphalt = 2.0; (b) prepara- 
tion 2, sulfur-asphalt = 2.0; and (c) preparation 3, sulfur- 
asphalt = 1.0. 
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TABLE 1. Pore-size distribution of continuous sulfur phase 

Remarks 
Sulfur-asphalt Pore size 

ratio Porosity (pm) (%) ( ~ m )  

appears to be just beginning to form. Preparations 
at high sulfur-asphalt ratios required continuous 
stirring even during casting to avoid segregation of 
sulfur. Pore-size distributions were determined on 
the sulfur phase using a mercury porosimeter, at 
pressures up to 102 MPa. The results are listed in 
Table 1. 

Mechanical Properties of Two-continuous-phase 
Sulfur-Asphalt Composite 

(a )  Hardness 
Hardness measurements were made on companion 

samples to those listed in Table 1. The load produced 
by air pressure in a piston-cylinder arrangement was 
applied in steps of 13.4 N and the penetration depth 
was measured at each level after 30 s. A plot of load 
versus the depth of penetration squared generally 

0 . 1  
1 0  2 0  30 4 0  5 0  6 0  

P O R O S I T Y .  % 

FIG. 2. Sulfur-asphalt composite hardness vs. porosity of 
sulfur matrix (obtained by extraction of asphalt from the com- 
posite). 

gave two linear regions with the greater slope for the 
first part of the penetration. The major number of 
measurements were made for the deeper penetra- 
tions, and the dependence of penetration on load for 
that condition is believed to represent the hardness 
of the three-dimensional structures. The hardness 
is calculated as the applied load per unit area (the 
circumferential area of the 60" cone in contact with 
the sample) according to the following formula: 

where Hc = hardness (MPa); P = load (N); and 
h = depth of penetration (mm). 

In Fig. 2 the logarithm of the hardness of the com- 
posite is plotted against porosity of the sulfur matrix 
after extraction of asphalt. The log hardness de- 
creases as porosity of the continuous sulfur phase 
increases. 

Hardness is plotted against sulfur content of the 
sulfur-asphalt mixture in Fig. 3. There is a large in- 
crease in the slope of the curve in the range in which 
the continuous sulfur phase begins to form (sulfur- 
asphalt ratios of 1.5-2.0). 

0 
o 20 40 60 a o l o o  

S U L F U R  C O N T E N T .  % w e i g h t  o f  s o l i d s  

FIG. 3. Hardness vs. sulfur content of sulfur asphalt mix- 
tures. 
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TABLE 2. Results of tensile tests 

Initial tangent 
modulus of Failure 

Temperature elasticity E, Sulfur-asphalt strain Failure stress of 
Cc)  WPa) ratio E~ x 10' (MPa x lo2) 

(6) Tensile Tests 
Uniaxial tension tests were performed on standard 

tensile specimen's (ASTM D638) having cross-sec- 
tional areas of 80.6 mm2 and guage lengths of 57.2 
mm. Stress-strain curves for various sulfur-asphalt 
mixtures are plotted in Fig. 4. Crosshead speed was 
0.0042 mm/s. 

Values of the initial tangent modulus of elasticity, 
E,, failure strain, E*, and failure stress, of, are re- 
corded in Table 2. At 22"C, E, and of increase with 
sulfur-asphalt ratio; E, decreases with sulfur-asphalt 
ratio. At -31°C, E, increases with sulfur-asphalt 
ratio whereas of remains approximately constant; E, 

decreases with sulfur-asphalt ratio and has lower 
values at - 31°C than at 22°C for each sulfur-asphalt 
ratio. 

(c) Time-dependent Deformation at Constant Load 
Cone area (expressed as circumferential area of 

S T R A I N  x l o 3  

FIG. 4. Sulfur-asphalt composite uniaxial tension tests. 

cone penetrometer) at a given time after loading 
(240 s) decreases as the sulfur-asphalt ratio increases. 
At sulfur-asphalt ratios between 1.75 and 2.0 an 
anomalous increase in cone area occurs (Fig. 5). It is 
postulated that the continuous phase begins to form 
at these sulfur-asphalt ratios. 

With further additions of sulfur, cone area de- 
creases. 
(d) Fracture Energy 

Work of fracture (and hence an estimate of tough- 
ness) was measured using the integral work of frac- 
ture method according to the procedure of Tattersall 
and Tappin (1966). Load-deflection curves using 
Tattersall-Tappin specimens are plotted in Fig. 6. 
This procedure cannot be employed if the sulfur- 
asphalt ratio is less than 1.75 because the material is 
then viscoelastic. The material becomes brittle when 
two continuous phases form. 

N 

- 

L O A D ,  N 

1 2 3 4 

S U L F U R  - A S P H A L T  R A T I O  

FIG. 5. Cone indentation area of sulfur-asphalt system at 
t = 240 s. 
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FIG. 6. Load-deflection curves from measurements of in- 
tegral work of fracture (Tattersall and Tappin 1966). 

TABLE 3. Fracture energy of sulphur-asphalt 
composite 

Temperature Fracture energy 
("C) Sulfur-asphalt (J/mZ x lo3) 

F I B E R  V O L U M E .  V , ,  % 

FIG. 7. Hardness vs. fiber volume. 

Data in Table 3 demonstrate the effect of the 
sulfur-asphalt ratio on toughness. 

Reinforcement of Sulfur-Asphalt Composite Binder 
Studies were conducted to ascertain the merits of 

reinforcing the sulfur-asphalt composite by the in- 
clusion of a relatively small amount (up to about 2% 
by volume) of a flake and (or) fibrous material. Work 
with dacron fibers will be reported here. The fibers 
used were nominally 0.025 mm in diameter and 
approximately 2.5 mm long. 

The following tests were conducted on the fiber- 
reinforced sulfur-asphalt composite. 

(a )  Hardness 
Figure 7 is a plot of hardness versus fiber content 

with a matrix material having a sulfur-asphalt ratio 
of 2. The fiber aspect ratio is varied from 120 to 360 
by varying the length of the fibers. Hardness de- 
creases as the aspect ratio increases. Hardness in- 
creases as the volume fraction of fiber increases up 
to a maximum at fiber volume fractions of approxi- 
mately 1.1-1.35%. This will be discussed later. 

(b)  Tensile Tests 
Stress-strain curves for the sulfur-asphalt com- 

posite containing up to 1% by volume dacron fibers 
are plotted in Fig. 8. The fiber aspect ratio is 120 

A S P H A L T  

F I B E R  A S P E C T  R A T I O  = 120 

0 10 20 3 0  41 

FIG. 8. Reinforced sulfur-asphalt composite uniaxial tension 
tests. 

and the sulfur-asphalt ratio is 2. The initial tangent 
modulus increases from 38.3 MPa for 0% fibers up to 
approximately 85.5 MPa for 1% fibers. Tests show 
that cracking takes place in the sulfur-asphalt matrix 
followed by stress transfer to the fibers, which them- 
selves ultimately fracture. Presence of fibers up to 1% 
by volume increases tensile strength up to 30%. 

(c)  Fracture Energy 
Work of fracture measurements clearly show that 
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FIG. 9. Load-deflection curves from measurements of in- 
tegral work of fracture (Tattersall and Tappin 1966). 

I F I B E R  A S P E C T  R A T I O  = 120 I 

FIG. 10. Load-deflection curves from measurements of 
integral work of fracture (Tattersall and Tappin 1966). 

at 20°C the presence of fibers at volume fractions of 
0.67% results in a significant increase in fracture 
energy of the composite (Fig. 9). 

The contribution of the fibers to fracture energy is 
much greater at - 31°C (Fig. 10). 

(d) Scanning Electron Microscopy 
Fracture surfaces of integral work of fracture 

specimens were examined by scanning electron 
microscopy. Ends of fibers remain anchored in the 
matrix after fracture although partial pull-out has 

FIG. 1 1. (a) Fracture surface fiber-reinforced sulfur-asphalt 
composite; (b)  material adhering to fiber-fiber-reinforced 
sulfur-asphalt composite; and (cyfiber passing through con- 
tinuous sulfur network. 
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occurred (Fig. 1 la). Matrix material adhering to the 2. The continuous sulfur network formed when 
fiber is illustrated in Fig. 116. In Fig. l l c  a fiber the sulfur-asphalt ratio was approximately 2.0 in- 
passes through the porous sulfur network, revealed creases the hardness and tensile strength of the com- 
using the leaching technique described previously. posite. 

3. Toughness, modulus of elasticity, tensile strength, 
Discussion and hardness of the sulfur-asphalt composite are 

For the first time in asphalt technology, it has increased by the addition of up to 1% by volume of 
been demonstrated that sulfur can exist as a con- dacron fibers. The increase in these properties is 
tinuous phase in a sulfur-asphalt mixture. The con- significant at temperatures as low as - 31°C. 
tinuous sulfur phase contributes to the structural 
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Conclusions 
1. A two-continuous-phase sulfur-asphalt com- 

posite has been developed. 


