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Abstract— This paper studies the properties of a hybrid
technique for model discovery in multivariate time series, us-
ing similarity based hybrid neuro-fuzzy neural networks and
genetic algorithms. This method discovers dependency patterns
relating future values of a target series with past values of all
examined series, and also constructs a prediction function. It
accepts a mixture of numeric and non-numeric variables, fuzzy
information, and missing values. Experiments were made with
a real multivariate time series for studying the model discovery
ability and the influence of missing values. Results show that the
method is very robust, discovers relevant interdependencies, gives
accurate predictions and is tolerant to considerable proportions
of missing information.

I. INTRODUCTION

Multivariate time-varying processes occur in many domains
and their importance is increasing with the developments in
sensor technologies and advanced monitoring systems. Pro-
cesses of this kind involve many variables changing simultane-
ously with time. In general, these processes are heterogeneous
in nature, consisting of numeric and non-numeric quantities,
typically with missing values (i.e. gaps in the observations
occur due to sensor saturation, malfunctioning, etc.), which
do not necessarily distribute in the same way in the different
observed variables. Also, measurements and observations are
obtained with different degrees of precision and indetermi-
nation (e.g. data may be fuzzy). One of the most important
data mining and knowledge discovery tasks in the study of
time dependent information is finding interesting dependencies
between past and future values of the observed variables
(i.e. dependency patterns or models). Another goal is to find
suitable prediction estimators for forecasting purposes. The
use of classical methods is limited by different factors. Some
factors are related to the underlying assumptions about the data
concerning type, volume, homogeneity, complexity, precision,
the curse of dimensionality, etc. In many cases these methods
are based on assumptions which don’t hold or are unpractical
to verify. From a soft-computing approach to solving this
problem, neural networks have been applied extensively for
time series and signal analysis, however, the multivariate case
is less frequently studied. A technique for model discovery and
prediction in multivariate time series was introduced recently
in [6]. That method accepts heterogeneous, large series with

different degrees of imprecision (possibly with missing data)
and uses hybrid networks mixing different neuron models
(similarity-based and classical). These networks operate in a
neuro-fuzzy mode. Preliminary applications showed interest-
ing behavior with respect to speed, performance and sensitivity
to detect internal dependencies. This paper studies the behavior
of this kind of network in a strongly multivariate time series
modeling and forecasting problem. The paper also shows
the network’s robustness w.r.t. increased presence of missing
values in the time series, and choice of algorithm parameters.

II. METHOD OUTLINE

The objective is to extract plausible dependency models in
heterogeneous multivariate time varying processes, express-
ing the relationship between future values of a previously
selected time series (the target), and the entire set of series.
Heterogeneity means the presence of ratio, interval, ordinal or
nominal scales, and fuzzy magnitudes. Moreover, the series
may contain missing values. The first step is to set a conceptual
class of functional models and in this case a generalized non-
linear auto-regressive (AR) model was used (1) (other classes
of functional models are also possible),

ST (t) =F
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where ST (t) is the target signal at time t, Si is the i-th time
series, n is the total number of signals, pi is the number of
time lag terms from signal i influencing ST (t), τi,k is the k-th
lag term corresponding to signal i (k ∈ [1, pi]), and F is the
unknown function describing the process. The second step in
the proposed method, is the simultaneous determination of: i)
the number of required lags for each series, ii) the particular
lags within each one carrying the dependency information, and
iii) the prediction function. A natural requirement on function
F is the property of minimizing a suitable prediction error.
This is approached with a soft computing precedure based
on: (a) exploration of a subset of the entire model space
with a genetic algorithm, and (b) use of a similarity-based



neuro-fuzzy system representation for the unknown prediction
function.

Evolving neuro-fuzzy networks with genetic algorithms has
been done for a long time, but only for training purposes
and in the context of a single network. The situation here
is very different: it involves the construction and evaluation of
thousands or even millions of networks, since the search in the
space of dependency models is equivalent to the search in the
space of networks. Thus, the use of conventional architectures
and training procedures becomes prohibitive. Other difficulties
with classical approaches include finding the number of hidden
layers and their composition, using mixed numeric, non-
numeric, fuzzy and missing values, etc. The present approach
is based on the heterogeneous neuron model [5], [1], [7],
which considers a neuron as a general mapping between
heterogeneous multidimensional spaces h : Ĥ × Ĥ → Y ,
where Y is an abstract set. If ←−x ,←−w ∈ Ĥ (the input and the
neuron weights respectively) and y ∈ Y , then y = h(←−x ,←−w ).

In the similarity-based h-neuron model, the aggregation
function is given by a similarity function s(x,w) between the
input and the neuron weights (vectors from a heterogeneous
space), whereas the activation is a non-linear function. For the
h-neuron used in the experiments, the chosen aggregation is
a similarity function constructed by non-linearly transforming
a distance function (allowing missing values), and the chosen
activation function is the identity. Several distance functions
were used in the experiments (see section III). This neuron
maps a n-dimensional heterogeneous space onto the extended
[0,1] real interval in such a way that the output expresses
the degree of similarity between the input pattern and neuron
weights s : (Ĥ × Ĥ) → [0, 1] ∪ {X}, where X is the
symbol denoting the missing value. A hybrid network layout
using heterogeneous neurons in the hidden layer and classical
neurons in the output layer is suitable for the purpose of model
mining. In the particular case of multivariate heterogeneous
time series, where a single time series is targeted for prediction
based on the entire signal set, a suitable network architecture
is shown in (Fig-1).

Network operation is as follows: Each neuron in the hidden
layer computes its similarity with the input vector and the k-
best responses are retained (k is a pre-set number of h-neurons
to select). They represent the fuzzy memberships of the inputs
w.r.t. the classes defined by the hidden layer neurons. Neurons
in the output layer compute a normalized linear combination
of the expected target values used as neuron weights (Wi),
with the k-similarities coming from the hidden layer.

output = (1/Θ)
∑

i∈K

hiWi, Θ =
∑

i∈K

hi (2)

where K is the set of k-best h-neurons of the hidden layer
and hi is the similarity of the i-best h-neuron w.r.t the input
vector, representing a fuzzy estimate for the predicted value.

Assuming that a similarity function S has been chosen
and that the target is a single time series, this case-based
neuro-fuzzy network is built and trained as follows: Define
a similarity threshold T ∈ [0, 1] and extract the subset
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Fig. 1. Neuro-fuzzy network composed by h-neurons in the hidden layer
and one classical neuron in the output layer.

L of the set of input patterns Ω (L ⊆ Ω) such that for
every input pattern x ∈ Ω, there exist a l ∈ L such that
S(x, l) ≥ T . The hidden layer is constructed by using the
elements of L as h-neurons, while the output layer is built
by using the corresponding target outputs as the weights of
the neuron(s). This training procedure is very fast and allows
for the rapid construction and testing of many networks, as
training complexity is O(n2) (In the case of T = 1, training
is exactly Ω(n)=O(n)).

A parallel implementation following a master-slave ap-
proach was made using LAM/MPI [3] and the GaLib [8]. The
slaves construct and evaluate individual neuro-fuzzy networks
based on models received from the master, which controls the
genetic algorithm process at the population level. The system
architecture is shown in Fig-2.

Fig. 2. Multivariate Time Series Model Miner System Architecture. The
arc is the parallel genetic algorithm evolving populations of similarity-based
networks. They represent different dependency patterns which are generated
and evaluated during the search in the space of multivariate time series models.

The system’s behavior is controlled by three classes of
factors related to: i) the neuro-fuzzy network, ii) the genetic
algorithm, and iii) the parallel implementation. Related to
(i) are the specific similarity function modeling the neuron’s
computation (Sf ), the number of responsive neurons in the
hidden layer (Rn) representing the number of terms used



to compute (2), the similarity threshold (St) determining the
hidden layer composition, the maximun lag depth (Ld), and
the relative percentage of the training set vs test set (Rp)
when learning the prediction function for a given time series
dependency model. In all experiments St was kept fixed and
equal to 1.

The process of model search is performed by the genetic
algorithm. Binary chromosomes coding model components as
given by (1) were used with single and double point crossover
operators and standard bit-reversal mutation. Selection was
kept constant (roulette wheel method) and complete population
replacement with elitism were used. In (ii) the influence of
the number of generations (Ng), and the crossover operator
were investigated. Population size Ps controls the richness of
the ”genetic pool” used in the evolutionary process. In these
experiments it was fixed at 50. As for (iii) the number of
physical nodes was fixed at three (dual CPUs), and the number
of slaves fixed at 15 in all runs.

III. EXPERIMENTAL SETUP

A multivariate time series data set consisting of 10 series
with 1140 observations of average monthly temperatures from
different sites in the Washington State (USA) was chosen.
They were recorded during the period 1895-1989 [4], and
compiled by the National Oceanic and Atmospheric Admin-
istration (USA). Originally this data had no missing values
and is shown in Fig-3. The West Olympic Coastal drainage
region (the top series) was chosen as the target for a model
mining study. No preprocessing was applied to the time series.
This is not the usual way to analyze time series data, but by
eliminating additional effects, the properties of the proposed
procedure, in terms of approximation capacity and robustness,
are better exposed.

With the purpose of investigating the behavior of the hybrid
heterogeneous network, three new sets of time series were
constructed by introducing 25%, 50% and 75% of uniformly
distributed missing values into all 10 original series. The
introduction of the missing values was done in a ”signal-
wise” manner. Each series was divided evenly into a training
set and a test set. The training set for each signal contains
the same precentage of introduced missing values, while the
test sets were left intact. In this way, all signals contain
exactly the same amount of missing values, as defined by the
corresponding preset percentage. These training set variants
were used by the evolutionary algorithm to explore the model
space. The reported error measure is, in all cases, the root
mean squared error (RMS error) computed by applying the
trained networks to the test set.

The similarity functions were constructed from versions
of the Euclidean, Clark and Canberra distance functions [2],
and account for missing values. Given two vectors ←−x =<
x1, · · · , xn >,←−y =< y1, · · · , yn >∈

�
n, defined by a set

of variables (i.e. attributes) A = A1, · · · , An, let Ac ⊆ A
be the subset of attributes s.t. xi 6= X and yi 6= X. Then
the corresponding distance functions are given in Table-I.
Note that they are normalized distances and therefore, are
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Fig. 3. Temperature data from 10 Washington State sites (Farenheit). See
text for details.

independent of the number of attributes, and that no imputation
of missing values to the data set is performed.

Name Distance

Euclidean
∑

Ac
(xi−yi)

2

card(Ac)

Clark

∑

Ac

(xi−yi)
2

(xi+yi)
2

card(Ac)

Canberra
∑

Ac

|xi−yi|
(xi+yi)

card(Ac)

TABLE I
EUCLIDEAN, CLARK, AND CANBERRA MODIFIED DISTANCES

A total of 288 experiments were made varying the two
classes of controlling factors and their corresponding param-
eters. In fact, 72 experiments were performed for each of the
4 missing value data set variants ([0%− 75%]). See Table-II.

The experiments were conducted on a Beowulf cluster
consisting of three dual Xeon processor units operating at 2
Ghz frequency, each with 1Gb RAM. The cluster operates
with 100 Mbit Ethernet connections. The operating system is
Red Hat Linux 7.2 running LAM-MPI version 6.5.4/MPI 2,
C++/ROMIO.



Factors Parameter Values
(i) Sf (1/(1 + d))

Rn < 1, 3, 5, 7, 13, 20 >
Ld < 5, 10, 20, 30, 50 >
Rp < 50% >

(ii) Ng < 2, 10, 100 >
Ps < 50 >
Cp < 0.6 >
Mp < 0.01 >
Ct < single, double >

TABLE II
EXPERIMENTAL PARAMETERS. IN (i) d STANDS FOR EUCLIDEAN, CLARK,

OR CANBERRA NORMALIZED DISTANCES.

IV. RESULTS

The distribution of the RMS error for all data sets ([0%−
75%] of missing data) is shown in Fig-4. All distributions
are highly skewed towards the lower end of the RMS error
measure. For the present analysis the range corresponding to
the best error was considered to be the interval [2.167− 2.3].
Due to the skewness of the RMS error distribution, the selected
range comprises 75% of all the models found with 0% missing
values. It is interesting that the series with 75% missing values
still have more than 25% of their models with error in this
lower end. The Q1-Q3 interquartile range (between the first
and third quartiles) gets broader as would be expected since
the information content in the series decreases. However it
does it very slowly up until 75%, when it abruptly increases.
Remarkably, the absolute minimum errors are almost constant,
even considering the extreme 75% case. Thus, the algorithm
exhibits a very robust behavior and a capacity to retrieve
good models in this data set, even though it contains scarce
information.

Fig. 4. Boxplots showing the main distribution parameters of the RMS
Error for the different percentages of missing values for all experiments. Stars
represent outlying elements in the tail of the distribution.

A. Influence of neuro-fuzzy network parameters

The neuro-fuzzy network relies on the responses of the
heterogeneous neurons in the hidden layer which happen to
be similarity-based units. Similarity functions are known to be

sensitive to data structure, which in turn, is influenced by data
dilution. The relations between the combination of percentage
of missing values and the different similarity functions are
shown in Fig-5 as boxplots of their corresponding error
distributions.

Fig. 5. Boxplots showing the main distribution parameters of the RMS Error
for the different percentages of missing values and similarity measures for all
experiments. Stars represent outlying elements in the tail of the distribution.

The different similarity measures don’t appear to exert a
large influence on the RMS error for most of the missing value
variants, with the exception of 75%. Overall, errors for all
cases except this last one, are within a relatively narrow band
at the lower end. In the range [0%−50%] there are no within
variant pairwise differences between similarities. In the 75%
case the similarity function based on Clark ’s distance clearly
under performs and actually is responsible for the increase
of the interquartile range in the overall (see Fig-4). It is also
interesting to observe that with the exception of this last case,
models with good prediction errors can be found with any
choice of distance measure for all missing data set variants.
Within the set of selected similarities, none of them performs
significantly better than the others. In the context of this kind
of data, the similarity function was not influential w.r.t the
quality of the models discovered.

The number of responsive neurons (Rn) is an important
parameter controlling the neuro-fuzzy network output. It de-
termines the number of terms used in computing the fuzzy
interpolation (2). The dependency of the RMS error with the



number of responsive neurons (Rn) and the percentage of
missing values is shown in Fig-6. In the specific case when
Rn = 1 (representing the ”winner take all” strategy), errors
are systematically several times higher than those obtained
from other larger choices of Rn, for all missing value variants.
In general, in order to achieve a good fuzzy estimate for
the predicted output, comparatively few terms (small Rn) are
required in (2).

Fig. 6. Dependency of the mean RMS errors with the percentage of missing
values and the number of responsive neurons (Rn).

The maximum lag (Ld) parameter defines the size of the
search space of models by imposing an upper bound in the
number of lag terms available for model construction. A
value too small may preclude the discovery of good models
if the memory of the process is large, whereas a value too
large will increase unnecessarily the search space (it does
it exponentially), thus decreasing the chances of discovery
by ”diluting” the good models. Moreover, it introduces noise
in the search process. The behavior of Ld for the cases of
[0%− 75%] missing values is shown in Fig-7

Clearly, when information is complete (0%), maximum lag
depth has no influence on the error level. Therefore, small
Ld values lead to compact, short-memory models. When data
is severely affected by missing information larger Ld values
(medium-memory models) are necessary in order to obtain
comparable error levels. As missing values increases, the
required lag depth increases and it does it linearly with a highly
significant correlation coefficient (0.977). Moreover, the model
mining procedure proved that looking deeper into the past
of the process, does not necessarily improve the explanation
of the target series, as shown by the large plateau in the
investigated ranges of missing values and lag depths.

B. Influence of genetic algorithm parameters

Most of the parameters controlling the behavior of the
genetic algorithm responsible for the evolutionary process of
model discovery were kept fixed. However, a few experiments

Fig. 7. Dependency of the RMS Error with the percent of missing values
and the Lag Depth (Ld).

varying the number of generations (Ng) and crossover type
(Ct) were performed. The behavior of the number of genera-
tions of the genetic algorithm (Ng) is shown in Table-III.

Ng 0% miss 25% miss 50% miss 75% miss
2 2.3013 2.2987 2.3020 2.3870
10 2.2842 2.2832 2.2849 2.2875

100 2.2374 2.2146 2.2296 2.2510

TABLE III
DISTRIBUTION OF RMSerror W.R.T. THE NUMBER OF GENERATIONS.

Clearly, the experiments show that it is enough to let the
system evolve a medium-to-small number of generations in
order to discover accurate models. Since a small number of
generations are required, appropriate models can be found
quickly. For a fixed Ng , doesn’t affect the average error
substantially, another indication of the robustness of the neuro-
fuzzy network.

Single and double point crossover operators were used and
their relation with the percentage of missing values and the
RMSerror is shown in the boxplots of Fig-8.

The interquartile ranges up until 50% missing value are
comparable. However, there seems to be a slight advantage for
choosing double point over single point. This is demonstrated
most clearly in the 75% case. Again, the overall minimum for
each of the combinations is comparable. That is, model quality
is not affected by the particular crossover operator.

C. Prediction Example

The performance of the overall best model found for the
test set is shown in Fig-9. In the model, all 10 signals are
contributing with different lag terms to the prediction of the
target series. This best selected model is not significantly
different from the top 20 models in terms of RMS error and
further 65% of these models contained complete information.
The other 35% contain 25% missing values.



Fig. 8. Dependency of the RMS Error with the percent of missing values
and the Crossover Type (Ct).
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Fig. 9. Behavior of the overall best model found for the target series
(West Olympic Coastal) in the test set. RMS error = 2.167 (1: observed,
2: predicted).

V. CONCLUSIONS

The results obtained show that the method studied here
is robust, effective, and able to discover accurate models
in a consistent way. Taking into account the astronomical
size of the search space for the experiments performed, it
is remarkable that the exploration of the extremely small
fraction covered by the chosen parameters lead to extremely
simple and very accurate models, even with 75% missing
data. These features make this method appropriate for the
study of poorly known or unknown processes for data of
this kind. The experiments proved that there is an optimal
combination of neuro-fuzzy and genetic algorithm parameters
which maximizes the chances of discovering good models.
Moreover, it is clear that the construction of a fuzzy estimate
of the predicted signal based on more than one responsive
neuron in the heterogeneous layer is decisive in obtaining
good predictions. Clearly, these results are conditioned to
multivariate data of the kind used in this paper and no claims
are made outside of this context. Further studies must be
carried out with multivariate series data coming from different

processes in order to study the properties of the model mining
technique proposed and determine the conditions of its optimal
use.
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