
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Towards engineer-to-order product configuration
Xie, H.; Lau, F.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=2c3064b8-3253-482d-a9c9-81354e0c70f1

https://publications-cnrc.canada.ca/fra/voir/objet/?id=2c3064b8-3253-482d-a9c9-81354e0c70f1

http://irc.nrc-cnrc.gc.ca

T o w a r d s e n g i n e e r - t o - o r d e r p r o d u c t
c o n f i g u r a t i o n

 I M T I - X P - 1 0 5

X i e , H . ; L a u , F .

A version of this document is published in / Une version de ce document se trouve dans:
15

th
 International Conference on Computer Application in Industry and Engineering, San

Diego, CA., Nov. 1, 2002, pp. 1-5

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements :

http://lois.justice.gc.ca/fr/showtdm/cs/C-42

http://irc.nrc-cnrc.gc.ca/
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42

Towards Engineer-to-order Product Configuration

Helen Xie and Foster Lau

Integrated Manufacturing Technologies Institute

National Research Council Canada

800 Collip Circle, London, Ontario, Canada N6G 4X8

Helen.Xie@nrc.ca and Foster.Lau@nrc.ca

Abstract

Constraint satisfaction problem (CSP) paradigm

has proved highly successful for solving product

configuration problems, particularly for build-to-order

configuration in determining combination of different pre-

defined component types. However, many real world

customized products deal with engineer-to-order

configuration, where product configuration is generated

not only from combinations of different types of

components, but also from varying different design

parameters to satisfy pre-defined design constraints. The

challenge posted by engineer-to-order configuration stems

from n-ary constraints with continuous variables.

Consequently, incorporating n-ary constraints and

continuous variables into constraint satisfaction paradigm

typically involves expensive search. Therefore, effective

search strategies along with a modeling approach

supporting the search strategies are the main issues in

solving engineer-to-order configuration. In this paper, we

present an approach to engineer-to-order product

configuration where configuration problems are

represented as CSP with n-ary constraints and variables

with both discrete and continuous domains. We extended

CSP by introducing two types of variables, where

controllable variables can be independently assigned with

values and dependable variables are derived based on

those controllable variables. By limiting it into a set of

controllable variables, search space is considerably

reduced, and therefore, search efficiency is significant

improved. The search algorithm is based on repair

strategy in which min-conflicts heuristic is applied along

with backtracking search. A case study indicated that this

approach could effectively solve engineer-to-order

product configuration by reducing its search space.

Keywords: engineer-to-order, product configuration,

constraint satisfaction, search algorithms, repair-based

heuristic

1 INTRODUCTION

Market trends that affect today’s competitive

environment are changing dramatically. Customers

demand products with lower prices, higher quality and

faster delivery, but they also want products customized to

match their unique needs [1]. To meet these demands,

manufacturers have to adapt their business model to mass

customization that allows customers to select, order and

receive customized products, often choosing from among

hundreds of product features and options, at a low cost.

Successful implementation of mass customization,

however, requires significant information technology

capabilities across broad application supports. One of the

key enabling technologies in the implementation is

product configurators.

A product configurator is a software tool that

captures customer’s requirements as input and generates

product configuration exactly matching a customer’s

specific needs, based on pre-defined design constraints.

The application scope of the product configurator is

regarded for routine design tasks, in which one keeps to

known and established solution principles and adapts the

concrete design to changed requirements [2]. Noticeably,

there are two types of routine design tasks for

accomplishing customized products: build-to-order (BTO)

and engineer-to-order (ETO). The build-to-order

configuration typically uses a set of pre-defined

component types while taking into account a set of well-

defined restrictions on how the component types can be

combined [3]. The engineer-to-order configuration

extends beyond build-to-order configuration, in which

each component type is also associated with a pre-defined

set of parameters, where each parameter has a predefined

set of possible values [4]. The product configuration

should satisfy the pre-defined design constraints among

those design parameters as well.

Modeling configuration problems as Constraint

Satisfaction Problems (CSP) [5] as well as its extension

Dynamic Constraint Satisfaction Problems (DCSP) [6],

Generative Constraint Satisfaction Problems [7][8], and

Composite Constraint Satisfaction Problems (CCSP) [9],

has proved highly successful for build-to-order product

configuration problems. In a CSP, component types and

their ports are represented as discrete variables

with finite domains. Constraints among components

restrict the ways various components can be combined to

form a valid configuration. The configuration tasks are to

assign values to all the variables without violating any

constraints. The benefits using CSP to solve

configuration problems is due to its declarative

representation structure, effective and flexible

computability.

Most of the configuration research using CSP

paradigm has been concentrated on build-to-order product

configuration. However, engineer-to-order configuration

problems have posted more challenges for CSP paradigm.

In engineer-to-order configuration problems, constraints

with n-ary variables are common, and constraint types

among those variables are diverse and complex.

Moreover, domains of the variables are usually

continuous in a range. Most of the previous work on CSP

algorithms has assumed binary constraints and variables

with an enumerable discrete domain. Theoretically, a n-

ary constraint can be easily approximated by a binary

constraint by projecting the n-ary constraint onto the pairs

of variables it contains. However, after continuous

variables are converted into discrete variables with an

interval, the domain of the variables usually becomes so

large that the projection process itself is a very time

consuming task. Furthermore, search space for such a

large domain of variables has been considerably

expanded. Therefore, conventional CSP search

algorithms for binary constraints with discrete variables

are not efficient enough for solving engineer-to-order

product configuration problems. An effective search

strategy should focus on reducing search space. In

addition, many variables involved in engineer-to-order

configuration are interdependent; changes on one variable

would propagate changes on many other variables too.

Therefore, an approach to effective update variables to

accommodate constraint evaluation is essential to improve

the efficiency of search algorithms.

To address the problems of solving engineering

tasks represented as CSP, Gelle et al. [10] introduced a

new type of local consistency for handling numeric and

discrete variables to narrow down the search space

effectively. In this paper, engineer-to-order configuration

problems are represented as CSP with n-ary constraints

and variables with both discrete and continuous domains.

To reduce search space, we extended CSP by introducing

two types of variables, where controllable variables can

be assigned a value and dependable variables are derived

based on controllable variables. Search space is only

limited to controllable variables. The search algorithm is

based on repair strategy in which mini-conflict heuristic is

applied along with backtracking search [11]. This

approach first generates a complete, but inconsistent

assignment and then repairs constraint violations until a

consistent assignment is achieved. In the next section, we

introduce a framework as a CSP extension for engineer-

to-order product configuration. We then introduce the

search strategies for the framework in section 3. A case

study for configuring an elevator system is presented in

section 4. Section 5 is conclusions.

2 MODELING ENGINEER-TO-ORDER

PRODUCT CONFIGURATION AS AN

EXTENSION TO CSP

Before we define the engineer-to-order product

configuration model, we would give a definition of

typical constraint satisfaction problems.

Definition 1. Constraint Satisfaction Problem: A

Constraint Satisfaction Problem (CSP) is defined as a

triplet <X, D, C>, where

- X ={X1, X2, …, Xn} is a finite set of variables,

- Each Xi can take its value from a finite domain Di,

where Di={Di1∪…∪Din}, and

- A set of constraints C restricting the combination of

values that variables can take.

A solution to a CSP is an assignment of a value from its

domain to every variable from X, in such a way that every

constraint from C is satisfied.

There are some limitations in representing

engineering product configuration into CSP. First of all,

variables in CSP are directly restricted by constraints.

Hence, values can be directly selected for a variable to

satisfy constraints. In engineering configuration

problems, however, many design parameters, as variables

cannot take an independent value, because they are also

associated with other design parameters. Therefore,

evaluating constraints involves the assignment of the

associated design parameters. Secondly, the domain of

variables in CSP is usually enumerable and discrete.

However, most of the design parameters in engineering

configuration problems are modeled as continuous

domains. Continuous domains can be converted to

discrete domains with an interval, but in terms of

expanded search space, it would take a long time to

search to find a satisfied solution. Hence, an effective

model is essential for engineering configuration problems

in order to achieve effective search performance.

By analyzing engineering configuration problems,

we have recognized that many variables cannot take

independent values because of their inherited constraints.

If we let the search algorithm skip these variables, it will

reduce huge search space. Based on this idea, we

proposed a framework as an extension to CSP for

representing engineering configuration problems. In the

framework, the variables are first classified as

controllable variables, dependable variables, and user-

defined variables (Figure 2.1). The controllable variables

can be independently assigned a value in their domains to

satisfy constraints. The dependable variables are derived

from one or more controllable variables, other dependable

variables, and user-defined variables. The user-defined

variables take input from user requirements as a value.

Secondly, The constraints are classified as assignment

constraints, conditional constraints, range constraints, and

user requirement constraints. The assignment constraints

and conditional constraints are used to determine the

value of dependable variables. The assignment

constraints derive a dependable variable using formula.

The conditional constraints are usually represented as “if

– then” structure to derive a dependable variable. The

range constraints specify the satisfaction criteria for

variables, especially, dependable variables. If a

dependable variable does not satisfy a range constraint,

the corresponding controllable variables have to be

modified, so that the resulting value of the dependable

variable will satisfy the range constraint. The user

requirement constraints are a set of unary constraints to

restrict the user to assign a value from its domain to the

user-defined variables. These variables are usually fixed

once the user assigns one, but some of them could also be

modified if no solution is found. Finally, the variables are

clustered according to the component they belong to. By

clustering variables into individual components, most

variables can be solved independently within a

component to avoid interaction and coupling among

components.

 UV1 CV1 CV2 CV3

RC1 RC2 RC3 RC4

CCi

DVi

Controllable variable

Dependable variable

Assignment/conditional

constraint

Range constraint

User-defined variable

Figure 2.1 Variables and Constraints in Product

Configuration Problems

In the following description, we will give

definitions for engineer-to-order configuration as an

extension of CSP. In terms of engineer-to-order products,

a product configuration is defined by a set of components

(CP) along with their associated design parameters and a

set of constraints over those design parameters. The goal

of the product configuration is to find a set of values for

each design parameter that satisfy each constraint. The

set of values for design parameters is referred to a valid

configuration.

Definition 2. Engineer-to-order configuration EC is

defined as a set <CP, DP, D, C>, where

- CP = {CP1, …, CPn} is a finite set of components,

- DPCPi = {DPCPi1, …, DPCPin} is a finite set of design

parameters belong to each component CPi,

- Each DPCPij can take its value from a finite domain

DCPi, where D= {DCPi1∪ …∪ DCPin},

- A set of constraints C restricting the combination of

values the design parameters can take.

A solution to an engineer-to-order configuration EC is an

assignment of a value from its domain to every design

parameter from DP, in such a way that every constraint

from C is satisfied.

Definition 3. Design parameter (DP): DP is a set of

variables that fall in one of three categories: controllable

variable (CV), and dependable variable (DV), and user-

defined variable (UV). DP = {CV∪DV∪UV}. The

domain of DP can be discrete or continuous. In case of

continuous domain, it is usually converted to discrete

domain with an interval. In either cases, D is a finite

domain D={V1, …, Vn}. In configuration process, CV

can be assigned any value within its domain as (CVi = V),

where CVi ∈ CV, V is an element of the domain of CVi.

DVi may be derived from CV= {CVi, …, CVj}, UV=

{UVi, …, UVj}, or other DV = {DV1, …, DVi-1, DVi+1,

…} based on its assignment constraints and/or conditional

constraints. UV is usually assigned a value from the user

from its domain. UVi = V, where V∈D.

The major difference between the framework for

engineering configuration problems and typical constraint

satisfaction problems is the ability to distinguish variables

as controlled variables, dependable variables, and user-

defined variables, so that the search space can be limited

to the controlled variables and search efficiency can be

improved.

3 REPAIR-BASED SEARCH STRATEGIES

Having defined engineer-to-order product

configuration as an extension to CSP, we used repair

based search strategy for solving the engineering product

configuration. This approach first generates a complete,

but inconsistence assignment for each variable, and then

repairs violation constraints based on min-conflicts

heuristic to achieve a valid solution. The approach is

implemented through a product component module and a

constraint-solving module.

The main function of the product component

module is to update dependable variables for constraint

evaluation. The design parameters, including controllable

variables, dependable variables, and user-defined

variables, are organized under their corresponding

components. Given controllable variables and user-

defined variables, the module specifies how to derive

dependable variables using assignment constraints and

conditional constraints. Most of dependable variables are

self-contained in their corresponding components, but a

few of them also depend on variables from other

components. In these cases, an observer pattern is applied

for updating the dependable variables once new

information becomes available. Assuming the sequence

for deriving the dependable variables is from CP1, CP2,

to CP3, the values for DV1 and DV2 are not correct

without a current value for DV3 (Figure 3.1). The

dependable variables DV1 and DV2 register themselves

to DV3, and DV1 registers itself to DV2. Whenever a

value for DV3 is modified, DV3 notifies DV1 and DV2 to

update their values. DV1 and DV2 respond differently to

the notification. Since DV2 depends only one external

variable, it updates itself immediately. DV3 depends not

only DV1 but also DV2. Therefore, it cannot update itself

until it receives a notification from DV2.

CP1

DV1

CP2

DV2

CP3

DV3

Figure 3.1 Process for updating dependable variables

The constraint-solving module constructs a

configuration problem with a set of range constraints.

Within each range constraint, the condition of constraint

satisfaction is specified with a dependable variable. In

addition, controllable variables required for fixing the

constraint as well as their domains are also specified for

each range constraint. A range constraint can usually be

fixed by one or multiple controllable variables. The

priority of the set of range constraints is assigned to the

constraints with multiple controllable variables.

In solving a configuration problem, we start with

an initial solution by deriving dependable variables based

on user input and controllable variable assignment. Then

each range constraint is evaluated and a list of violated

constraints is found. The iterative process then starts by

assigning a value for controllable variable in constraint-

solving module, deriving related dependable variables in

product component module, evaluating the dependable

variable against a range constraint in constraint-solving

module, until each constraint is satisfied at the same time.

The search algorithm is described in details in Figure 3.2.

Procedure MIN-CONFLICT (CONFLICT SATISFIED)
 If CONFLICT is empty, then solution found, stop
 Let CON= a constraint in CONFLICT
 Remove CON from CONFLICT
 Put CON to SATISFIED
 Let VARS= list of controllable variables in CON
 For each VAR in VARS, until solution found
 Let VALUES= list of possible values in VAR
 For each VALUE in VALUES
 Update dependable variables

If VALUE and the dependable variables do not
conflict with any constraint in SATISFIED

 Then assign VALUE to VAR
 Call MIN-CONFLICT (CONFLICT SATISFIED)
 End if
 End for
 End for
End procedure

Begin program
 Let CONSTRAINTS= list of range constraints
 Assign user-defined variables from user input
Initiate controllable variables with the first
value in their domains

 Update dependable variables
Evaluate the assignment of variables against
CONSTRAINTS
Let CONFLICT= list of conflict constraints
Sort CONFLICT with priority on the constraints
with multiple controllable variables
Let SATISFIED= list of satisfied constraints
Call MIN-CONFLICT (CONFLICT SATISFIED)

End program

Figure 3.2 Search algorithm using min-conflicts heuristic

The search algorithm uses min-conflicts heuristic

and combines with backtracking to search the solution

space systematically for the configuration problem.

Therefore, a solution can be found if existing. On the

other hand, the search space is limited to controllable

variables related violated constraints up to all controllable

variables, so that the search space is effective reduced

comparing to searching for all of the design parameters.

Therefore, the algorithm is appropriate for solving

complex engineer-to-order product configuration

problems.

4 A CASE STUDY AND EXPERIMENTAL

RESULTS

To illustrate how above CSP model and search

algorithm work with the complexity of engineer-to-order

configuration problems, we introduce a benchmark

problem—configuring elevator systems [12] for a case

study. To configure an elevator system, one must

assemble a collection of components that satisfies both

customer requirements and design constraints. The

configuration process begins with a list of customer

requirements, such as elevator car capacity and speed, and

building dimensions. The configurator then selects an

appropriate set of elevator components and assigns design

parameters to each component. In engineer-to-order

product configuration, not all components are compatible,

and certain combinations will not meet functional or

safety regulation. The configurator has to modify design

parameters until achieving a satisfactory configuration.

In order for the product configurator to find a valid

solution for the elevator design, it is necessary to generate

product definitions in the product component module and

the constraint-solving module. In a cable-operated

elevator system, there are 18 major components, such as

hoistway, car assembly, counterweight assembly,

suspension system, safety mechanisms, and cables.

Along with the major components, there are 241

associated design parameters. Of those design

parameters, there are 25 user-defined variables (such as

car capacity and car speed), 32 controllable variables

(such as platform model, and counterweight buffer

quantity), and 184 derived variables (such as

counterweight quantity, and hoist cable quantity). In

addition, associated with the derived variables, there are

assignment constraints, conditional constraints and user-

defined constraints to control how the derived variables

gain their values from controllable variables or user-

defined variables. This product definition information

should be generated in the product component module.

On the other hand, the constraint-solving module should

contain information for 50 range constraints and the

responding controllable variables. This information

establishes criteria for functional and safety regulations

and guide the configurator to find a valid solution.

We implemented a prototype system for the

proposed approach using Java and web-based

architecture. The system allows the customer to enter

requirements and displays the final configuration back to

the customer through the Web. Most of cases we have

tested returned configuration results between 20 to 50

seconds. The system was deployed on IBM WebShpere

Application Server with Windows 2000 operating system

on an Intel Pentium 4 CPU, 1.4GHz, and 512M RAM.

5 CONCLUSION

Customized products offer great potential to

manufacturers in global market competition and improved

customer satisfaction. The complexity of engineer-to-

order product created new demands for configuration

technology to cope with search efficiency. However,

today’s configuration systems only support build-to-order

product configuration and cannot meet increased

complexity of engineer-to-order product configuration. In

this paper, we present a framework for engineer-to-order

product configuration as an extension of CSP paradigm.

The extension supports n-ary constraints and variables

with both discrete and continuous domains. We

distinguish controllable variables and dependable

variables to reduce search space. The search algorithm is

based on repair strategy in which min-conflicts heuristic

is applied along with backtracking search. A web-based

prototype system was built to test the efficiency of the

proposed model and algorithm. The approach could be

applied to general engineer-to-order configuration

problems.

REFERENCES

[1] R. W. Bourke, “Product Configurators: Key Enablers

for Mass Customization,” MIDRANGE ERP,

<http://www.midrangeerp.com>, August 2000

[2] G. Paul and W. Beitz, Engineering Design: A

Systematic Approach, Springer-Verlag, London, 1999

[3] T. Soininen, “Configuration Workshop Notes,” the

17th International Joint Conference on Artificial

Intelligence, Seattle, WA, August 2001

[4] K. Orsvarn and T. Axling, “The Tacton View of

Configuration Tasks and Engines,” AAAI’99 Workshop

on Configuration, the 16th National Conference on

Artificial Intelligence, Orlando, FL, July 1999

[5] S. Mittal and F. Frayman, “Towards a Generic Model

of Configuration Tasks,” In Proc. Of the 11th IJCAI,

Detroit, MI, pp. 1395-1401, 1989

[6] S. Mittal and B. Falkenhainer, “Dynamic Constraint

Satisfaction Problems,” In Proceedings AAAI

Conference, pp. 25-32, 1990

[7] M. Stumptner and A. Haselbock, “A generative

constraint formalism for configuration problems,” 3rd

Congress Italian Assoc. for AI, Torino, Italy, Lecture

Notes in AI, Springer-Verlag. vol. 729, pp. 302-313, 1993

[8] G. Fleischanderl, G. Friedrich, A. Haselboeck, H.

Schreiner and M. Stumptner, “Configuring Large Systems

Using Generative Constraint Satisfaction,” IEEE

Intelligent Systems, vol. 13, pp. 59-68, July/August, 1998

[9] D. Sabin and E. C. Freuder, “Configurations as

Composite Constraint Satisfaction,” in Working Notes,

AAAI Fall Symposium on Configuration, Boston, pp. 28-

36, 1996

[10] E. Gelle, B. V. Faltings, D. E. Clement, and I. F. C.

Smith, “Constraint Satisfaction Methods for Applications

in Engineering,” Engineering with Computers, Springer-

Verlag, London Limited, vol. 16, pp. 81-85, 2000

 [11] S. Minton, M. D. Johnston, and P. Laird,

“Minimizing conflicts: a heuristic repair method for

constraint satisfaction and scheduling problems,”

Artificial Intelligence, vol. 58, pp. 161-206, 1992

[12] G.R. Yost, and T. R. Rothenfluh, “Configuring

Elevator Systems,” Int. J. Human-Computer Studies, vol.

44, pp. 521-568, 1996

