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Abstract 

Constraint satisfaction problem (CSP) paradigm 

has proved highly successful for solving product 

configuration problems, particularly for build-to-order 

configuration in determining combination of different pre-

defined component types.  However, many real world 

customized products deal with engineer-to-order 

configuration, where product configuration is generated 

not only from combinations of different types of 

components, but also from varying different design 

parameters to satisfy pre-defined design constraints.  The 

challenge posted by engineer-to-order configuration stems 

from n-ary constraints with continuous variables.  

Consequently, incorporating n-ary constraints and 

continuous variables into constraint satisfaction paradigm 

typically involves expensive search.  Therefore, effective 

search strategies along with a modeling approach 

supporting the search strategies are the main issues in 

solving engineer-to-order configuration.  In this paper, we 

present an approach to engineer-to-order product 

configuration where configuration problems are 

represented as CSP with n-ary constraints and variables 

with both discrete and continuous domains.  We extended 

CSP by introducing two types of variables, where 

controllable variables can be independently assigned with 

values and dependable variables are derived based on 

those controllable variables.  By limiting it into a set of 

controllable variables, search space is considerably 

reduced, and therefore, search efficiency is significant 

improved.  The search algorithm is based on repair 

strategy in which min-conflicts heuristic is applied along 

with backtracking search.  A case study indicated that this 

approach could effectively solve engineer-to-order 

product configuration by reducing its search space. 

Keywords: engineer-to-order, product configuration, 

constraint satisfaction, search algorithms, repair-based 

heuristic  

1 INTRODUCTION 

Market trends that affect today’s competitive 

environment are changing dramatically.  Customers 

demand products with lower prices, higher quality and 

faster delivery, but they also want products customized to 

match their unique needs [1].  To meet these demands, 

manufacturers have to adapt their business model to mass 

customization that allows customers to select, order and 

receive customized products, often choosing from among 

hundreds of product features and options, at a low cost.  

Successful implementation of mass customization, 

however, requires significant information technology 

capabilities across broad application supports. One of the 

key enabling technologies in the implementation is 

product configurators.   

A product configurator is a software tool that 

captures customer’s requirements as input and generates 

product configuration exactly matching a customer’s 

specific needs, based on pre-defined design constraints.  

The application scope of the product configurator is 

regarded for routine design tasks, in which one keeps to 

known and established solution principles and adapts the 

concrete design to changed requirements [2].  Noticeably, 

there are two types of routine design tasks for 

accomplishing customized products: build-to-order (BTO) 

and engineer-to-order (ETO).  The build-to-order 

configuration typically uses a set of pre-defined 

component types while taking into account a set of well-

defined restrictions on how the component types can be 

combined [3].  The engineer-to-order configuration 

extends beyond build-to-order configuration, in which 

each component type is also associated with a pre-defined 

set of parameters, where each parameter has a predefined 

set of possible values [4].  The product configuration 

should satisfy the pre-defined design constraints among 

those design parameters as well.   

Modeling configuration problems as Constraint 

Satisfaction Problems (CSP) [5] as well as its extension 

Dynamic Constraint Satisfaction Problems (DCSP) [6], 

Generative Constraint Satisfaction Problems [7][8], and 

Composite Constraint Satisfaction Problems (CCSP) [9], 

has proved highly successful for build-to-order product 

configuration problems. In a CSP, component types and 

their ports are represented as discrete variables                      

with finite domains.  Constraints among components 

restrict the ways various components can be combined to 

form a valid configuration.  The configuration tasks are to 

assign values to all the variables without violating any 

constraints.  The benefits using CSP to solve 

configuration problems is due to its declarative 



representation structure, effective and flexible 

computability.  

Most of the configuration research using CSP 

paradigm has been concentrated on build-to-order product 

configuration.  However, engineer-to-order configuration 

problems have posted more challenges for CSP paradigm.  

In engineer-to-order configuration problems, constraints 

with n-ary variables are common, and constraint types 

among those variables are diverse and complex.  

Moreover, domains of the variables are usually 

continuous in a range.  Most of the previous work on CSP 

algorithms has assumed binary constraints and variables 

with an enumerable discrete domain.  Theoretically, a n-

ary constraint can be easily approximated by a binary 

constraint by projecting the n-ary constraint onto the pairs 

of variables it contains.  However, after continuous 

variables are converted into discrete variables with an 

interval, the domain of the variables usually becomes so 

large that the projection process itself is a very time 

consuming task.  Furthermore, search space for such a 

large domain of variables has been considerably 

expanded.  Therefore, conventional CSP search 

algorithms for binary constraints with discrete variables 

are not efficient enough for solving engineer-to-order 

product configuration problems.  An effective search 

strategy should focus on reducing search space. In 

addition, many variables involved in engineer-to-order 

configuration are interdependent; changes on one variable 

would propagate changes on many other variables too.  

Therefore, an approach to effective update variables to 

accommodate constraint evaluation is essential to improve 

the efficiency of search algorithms.   

To address the problems of solving engineering 

tasks represented as CSP, Gelle et al. [10] introduced a 

new type of local consistency for handling numeric and 

discrete variables to narrow down the search space 

effectively.  In this paper, engineer-to-order configuration 

problems are represented as CSP with n-ary constraints 

and variables with both discrete and continuous domains.  

To reduce search space, we extended CSP by introducing 

two types of variables, where controllable variables can 

be assigned a value and dependable variables are derived 

based on controllable variables.  Search space is only 

limited to controllable variables.  The search algorithm is 

based on repair strategy in which mini-conflict heuristic is 

applied along with backtracking search [11].  This 

approach first generates a complete, but inconsistent 

assignment and then repairs constraint violations until a 

consistent assignment is achieved.  In the next section, we 

introduce a framework as a CSP extension for engineer-

to-order product configuration.  We then introduce the 

search strategies for the framework in section 3.  A case 

study for configuring an elevator system is presented in 

section 4.   Section 5 is conclusions. 

2 MODELING ENGINEER-TO-ORDER 

PRODUCT CONFIGURATION AS AN 

EXTENSION TO CSP 

Before we define the engineer-to-order product 

configuration model, we would give a definition of 

typical constraint satisfaction problems. 

Definition 1. Constraint Satisfaction Problem: A 

Constraint Satisfaction Problem (CSP) is defined as a 

triplet <X, D, C>, where 

- X ={X1, X2, …, Xn} is a finite set of variables, 

- Each Xi can take its value from a finite domain Di, 

where Di={Di1∪…∪Din}, and 

- A set of constraints C restricting the combination of 

values that variables can take. 

A solution to a CSP is an assignment of a value from its 

domain to every variable from X, in such a way that every 

constraint from C is satisfied. 

There are some limitations in representing 

engineering product configuration into CSP.  First of all, 

variables in CSP are directly restricted by constraints.  

Hence, values can be directly selected for a variable to 

satisfy constraints.  In engineering configuration 

problems, however, many design parameters, as variables 

cannot take an independent value, because they are also 

associated with other design parameters.  Therefore, 

evaluating constraints involves the assignment of the 

associated design parameters.  Secondly, the domain of 

variables in CSP is usually enumerable and discrete.  

However, most of the design parameters in engineering 

configuration problems are modeled as continuous 

domains.  Continuous domains can be converted to 

discrete domains with an interval, but in terms of 

expanded search space, it would take a long time to 

search to find a satisfied solution.  Hence, an effective 

model is essential for engineering configuration problems 

in order to achieve effective search performance.    

By analyzing engineering configuration problems, 

we have recognized that many variables cannot take 

independent values because of their inherited constraints.  

If we let the search algorithm skip these variables, it will 

reduce huge search space.  Based on this idea, we 

proposed a framework as an extension to CSP for 

representing engineering configuration problems.  In the 

framework, the variables are first classified as 

controllable variables, dependable variables, and user-

defined variables (Figure 2.1).  The controllable variables 

can be independently assigned a value in their domains to 

satisfy constraints.  The dependable variables are derived 

from one or more controllable variables, other dependable 

variables, and user-defined variables.  The user-defined 

variables take input from user requirements as a value.  

Secondly, The constraints are classified as assignment 



constraints, conditional constraints, range constraints, and 

user requirement constraints.  The assignment constraints 

and conditional constraints are used to determine the 

value of dependable variables.  The assignment 

constraints derive a dependable variable using formula.  

The conditional constraints are usually represented as “if 

– then” structure to derive a dependable variable.  The 

range constraints specify the satisfaction criteria for 

variables, especially, dependable variables.  If a 

dependable variable does not satisfy a range constraint, 

the corresponding controllable variables have to be 

modified, so that the resulting value of the dependable 

variable will satisfy the range constraint.  The user 

requirement constraints are a set of unary constraints to 

restrict the user to assign a value from its domain to the 

user-defined variables.  These variables are usually fixed 

once the user assigns one, but some of them could also be 

modified if no solution is found.  Finally, the variables are 

clustered according to the component they belong to.  By 

clustering variables into individual components, most 

variables can be solved independently within a 

component to avoid interaction and coupling among 

components. 

 UV1 CV1 CV2 CV3 

RC1 RC2 RC3 RC4

CCi

DVi

Controllable variable 

Dependable variable 

Assignment/conditional 

constraint 

Range constraint 

User-defined variable 

 

Figure 2.1 Variables and Constraints in Product 

Configuration Problems 

In the following description, we will give 

definitions for engineer-to-order configuration as an 

extension of CSP.  In terms of engineer-to-order products, 

a product configuration is defined by a set of components 

(CP) along with their associated design parameters and a 

set of constraints over those design parameters.  The goal 

of the product configuration is to find a set of values for 

each design parameter that satisfy each constraint.  The 

set of values for design parameters is referred to a valid 

configuration.   

Definition 2. Engineer-to-order configuration EC is 

defined as a set <CP, DP, D, C>, where  

- CP = {CP1, …, CPn} is a finite set of components,  

- DPCPi = {DPCPi1, …, DPCPin} is a finite set of design 

parameters belong to each component CPi, 

- Each DPCPij can take its value from a finite domain 

DCPi, where D= {DCPi1∪ …∪ DCPin}, 

- A set of constraints C restricting the combination of 

values the design parameters can take. 

A solution to an engineer-to-order configuration EC is an 

assignment of a value from its domain to every design 

parameter from DP, in such a way that every constraint 

from C is satisfied. 

Definition 3.  Design parameter (DP): DP is a set of 

variables that fall in one of three categories: controllable 

variable (CV), and dependable variable (DV), and user-

defined variable (UV).  DP = {CV∪DV∪UV}.  The 

domain of DP can be discrete or continuous.  In case of 

continuous domain, it is usually converted to discrete 

domain with an interval.  In either cases, D is a finite 

domain D={V1, …, Vn}.   In configuration process, CV 

can be assigned any value within its domain as (CVi = V), 

where CVi ∈ CV, V is an element of the domain of CVi.  

DVi may be derived from CV= {CVi, …, CVj}, UV= 

{UVi, …, UVj}, or other DV = {DV1, …, DVi-1, DVi+1, 

…} based on its assignment constraints and/or conditional 

constraints.  UV is usually assigned a value from the user 

from its domain.  UVi = V, where V∈D.   

The major difference between the framework for 

engineering configuration problems and typical constraint 

satisfaction problems is the ability to distinguish variables 

as controlled variables, dependable variables, and user-

defined variables, so that the search space can be limited 

to the controlled variables and search efficiency can be 

improved.   

3 REPAIR-BASED SEARCH STRATEGIES  

Having defined engineer-to-order product 

configuration as an extension to CSP, we used repair 

based search strategy for solving the engineering product 

configuration.  This approach first generates a complete, 

but inconsistence assignment for each variable, and then 

repairs violation constraints based on min-conflicts 

heuristic to achieve a valid solution.  The approach is 

implemented through a product component module and a 

constraint-solving module.   

The main function of the product component 

module is to update dependable variables for constraint 

evaluation. The design parameters, including controllable 

variables, dependable variables, and user-defined 

variables, are organized under their corresponding 

components.  Given controllable variables and user-



defined variables, the module specifies how to derive 

dependable variables using assignment constraints and 

conditional constraints.  Most of dependable variables are 

self-contained in their corresponding components, but a 

few of them also depend on variables from other 

components.  In these cases, an observer pattern is applied 

for updating the dependable variables once new 

information becomes available.  Assuming the sequence 

for deriving the dependable variables is from CP1, CP2, 

to CP3, the values for DV1 and DV2 are not correct 

without a current value for DV3 (Figure 3.1).  The 

dependable variables DV1 and DV2 register themselves 

to DV3, and DV1 registers itself to DV2.  Whenever a 

value for DV3 is modified, DV3 notifies DV1 and DV2 to 

update their values.  DV1 and DV2 respond differently to 

the notification.  Since DV2 depends only one external 

variable, it updates itself immediately.  DV3 depends not 

only DV1 but also DV2.  Therefore, it cannot update itself 

until it receives a notification from DV2.   
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Figure 3.1 Process for updating dependable variables 

The constraint-solving module constructs a 

configuration problem with a set of range constraints.  

Within each range constraint, the condition of constraint 

satisfaction is specified with a dependable variable.  In 

addition, controllable variables required for fixing the 

constraint as well as their domains are also specified for 

each range constraint.  A range constraint can usually be 

fixed by one or multiple controllable variables.  The 

priority of the set of range constraints is assigned to the 

constraints with multiple controllable variables.  

In solving a configuration problem, we start with 

an initial solution by deriving dependable variables based 

on user input and controllable variable assignment.  Then 

each range constraint is evaluated and a list of violated 

constraints is found.  The iterative process then starts by 

assigning a value for controllable variable in constraint-

solving module, deriving related dependable variables in 

product component module, evaluating the dependable 

variable against a range constraint in constraint-solving 

module, until each constraint is satisfied at the same time. 

The search algorithm is described in details in Figure 3.2. 

 

 
Procedure MIN-CONFLICT (CONFLICT SATISFIED) 
 If CONFLICT is empty, then solution found, stop 
 Let CON= a constraint in CONFLICT 
 Remove CON from CONFLICT 
 Put CON to SATISFIED 
 Let VARS= list of controllable variables in CON 
 For each VAR in VARS, until solution found 
  Let VALUES= list of possible values in VAR 
  For each VALUE in VALUES 
   Update dependable variables 

If VALUE and the dependable variables do not 
conflict with any constraint in SATISFIED 

   Then assign VALUE to VAR 
   Call MIN-CONFLICT (CONFLICT SATISFIED) 
   End if 
  End for 
 End for 
End procedure 
 
Begin program 
 Let CONSTRAINTS= list of range constraints 
 Assign user-defined variables from user input 
Initiate controllable variables with the first 
value in their domains 

 Update dependable variables 
Evaluate the assignment of variables against 
CONSTRAINTS 
Let CONFLICT= list of conflict constraints 
Sort CONFLICT with priority on the constraints 
with multiple controllable variables 
Let SATISFIED= list of satisfied constraints 
Call MIN-CONFLICT (CONFLICT SATISFIED) 

End program 
 

Figure 3.2 Search algorithm using min-conflicts heuristic 

The search algorithm uses min-conflicts heuristic 

and combines with backtracking to search the solution 

space systematically for the configuration problem.  

Therefore, a solution can be found if existing.  On the 

other hand, the search space is limited to controllable 

variables related violated constraints up to all controllable 

variables, so that the search space is effective reduced 

comparing to searching for all of the design parameters.  

Therefore, the algorithm is appropriate for solving 

complex engineer-to-order product configuration 

problems. 

4 A CASE STUDY AND EXPERIMENTAL 

RESULTS 

To illustrate how above CSP model and search 

algorithm work with the complexity of engineer-to-order 

configuration problems, we introduce a benchmark 

problem—configuring elevator systems [12] for a case 

study.  To configure an elevator system, one must 

assemble a collection of components that satisfies both 

customer requirements and design constraints.  The 

configuration process begins with a list of customer 

requirements, such as elevator car capacity and speed, and 

building dimensions.  The configurator then selects an 

appropriate set of elevator components and assigns design 

parameters to each component.  In engineer-to-order 

product configuration, not all components are compatible, 

and certain combinations will not meet functional or 



safety regulation.  The configurator has to modify design 

parameters until achieving a satisfactory configuration.   

In order for the product configurator to find a valid 

solution for the elevator design, it is necessary to generate 

product definitions in the product component module and 

the constraint-solving module.   In a cable-operated 

elevator system, there are 18 major components, such as 

hoistway, car assembly, counterweight assembly, 

suspension system, safety mechanisms, and cables.  

Along with the major components, there are 241 

associated design parameters.  Of those design 

parameters, there are 25 user-defined variables (such as 

car capacity and car speed), 32 controllable variables 

(such as platform model, and counterweight buffer 

quantity), and 184 derived variables (such as 

counterweight quantity, and hoist cable quantity).   In 

addition, associated with the derived variables, there are 

assignment constraints, conditional constraints and user-

defined constraints to control how the derived variables 

gain their values from controllable variables or user-

defined variables.  This product definition information 

should be generated in the product component module.  

On the other hand, the constraint-solving module should 

contain information for 50 range constraints and the 

responding controllable variables.  This information 

establishes criteria for functional and safety regulations 

and guide the configurator to find a valid solution.   

We implemented a prototype system for the 

proposed approach using Java and web-based 

architecture.  The system allows the customer to enter 

requirements and displays the final configuration back to 

the customer through the Web. Most of cases we have 

tested returned configuration results between 20 to 50 

seconds.  The system was deployed on IBM WebShpere 

Application Server with Windows 2000 operating system 

on an Intel Pentium 4 CPU, 1.4GHz, and 512M RAM. 

5 CONCLUSION 

Customized products offer great potential to 

manufacturers in global market competition and improved 

customer satisfaction.  The complexity of engineer-to-

order product created new demands for configuration 

technology to cope with search efficiency.  However, 

today’s configuration systems only support build-to-order 

product configuration and cannot meet increased 

complexity of engineer-to-order product configuration.  In 

this paper, we present a framework for engineer-to-order 

product configuration as an extension of CSP paradigm.  

The extension supports n-ary constraints and variables 

with both discrete and continuous domains.  We 

distinguish controllable variables and dependable 

variables to reduce search space.  The search algorithm is 

based on repair strategy in which min-conflicts heuristic 

is applied along with backtracking search.  A web-based 

prototype system was built to test the efficiency of the 

proposed model and algorithm.  The approach could be 

applied to general engineer-to-order configuration 

problems. 
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