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NUMERICAL MODELS IN AQUACULTURAL
ENGINEERING : TWO EXAMPLES
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* Institute for Ocean Technology, National Research
Council, Arctic Ave.,St.John’s, NL, Canada, A1B 3T5
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Abstract: Dynamic models are described for two applications in aquacultural
engineering : mussel longline systems and fish nets. The mussel longline is modeled
using lumped masses and tension-only springs. The mussel culture and attached
buoys are modeled as cylinders attached to the main line. The fish net is modeled
as an inter-connected system of lumped masses and tension-only springs. Surface
waves are described by Stokes’ second order wave theory. The hydrodynamic loads
are applied via a Morison’s equation approach using the instantaneous relative
velocities and accelerations between the fluid field and the structural system. The
equations of motion are formulated for the coupled dynamics of the masses in each

system.

Keywords: Mussel longline, fish net, numerical model, aquacultural engineering

1. INTRODUCTION

The shortages in wild fish stocks due to over-
fishing has created an urgent need for aquaculture
which has become a versatile industry encom-
passing a wide range of methods. Although fish
farming is usually carried out in coastal areas,
the aquaculture industry is considering the move
to more exposed areas with cleaner and deeper
waters which is beneficial for the health of the
product. The more severe environmental condi-
tions in such open areas requires the evaluation
of the forces and motions experienced by the
aquaculture installations in order to provide safe
designs and reduce the likelihood of structural
failure. In this paper we provide brief descriptions
of numerical modeling of two typical structures
:(a) a mussel longline and (b) a fish net

2. MUSSEL LONGLINE SYSTEM

With the collaboration of the environmental con-
sulting firm Biorex Inc. (Quebec, Canada), the
authors have undertaken a significant extension
of their previous work on the numerical modeling
of aquaculture longline configurations which are
based on arrangements found in operating shell-
fish farms located in the Gulf of St. Lawrence
in Canada. In our previous work, the main line
was modeled using a lumped parameter repre-
sentation of cable dynamics with the effects of
all attachments (buoys, mussel culture, concrete
weights) modeled as applied loads. The present
study involves the coupled dynamics of the main
line and the attached buoys and mussel culture.
The dynamics of the concrete blocks is not mod-
eled and their effect on the main line is applied
via a line stiffness. The simulations can be used to
determine the configuration of a longline system
in current and waves and to assess the loads ap-
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main line segments as well as the attachment lines
for buoys, mussel cultures and concrete weights
are modeled as springs. A spring stiffness k is
evaluated as k = % , where A is the line ma-
terial cross-sectional area, E is its modulus of
elasticity and /£ is the unstretched length. A spring

damping coefficient ¢ is estimated as ¢ ¢ x
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Fig. 2. Sub-system Sy,

pearing at the anchoring points, thus evaluating
the adequacy of the anchors and identifying the
potential for anchor slippage (or dragging). It
is expedient to use Kane’s equations (Kane and
Levinson,1985) for formulating the equations of
motion for this multibody system. We present the
results of some simulations predicting the loads
in and shapes assumed by the longlines under
various loading scenarios. We assume that the
hydrodynamic loads are due primarily to added-
mass effects and drag. In this regard, we allow
for loading due to an arbitrary fluid velocity and
acceleration field which is assumed to be undis-
turbed by the system. This allows for the inclusion
of wave and current effects via the use of the Mori-
son et al. approach (Chakrabarti,1987). A series
of experimental trials was conducted by Biorex
Inc. and the Institute for Ocean Technology to
directly measure the drag of key components of
the shellfish longline structures.

A diagram of a typical mussel longline system is
given in Fig. 1 The origin of inertial coordinates
is an arbitrary point O and the inertial frame is
denoted by N with unit vectors ]_)\71, ﬁg, ﬁg. The
longline is anchored at points Ag and A,1; and
is composed of an assembly of the sub-systems
Sk (k=1,...,n) illustrated in Fig. 2 Subsystem
S} consists of node A; on the main line with
an attached buoy By (sphere or cylinder) and

2v/k x segment mass , where ¢ is the damping
ratio which lies between 0 and 1. Since there
are no attachments on the anchor lines, the stiff-
ness and damping of the attachment lines for
buoys and mussel cultures are set to zero in sub-
systems S7,55,5,_1 and S,. Corner buoys B3
and B,,_o are attached to nodes As and A,_s
respectively and since there are no mussel cul-
tures at these nodes, the stiffness and damping
of the mussel culture attachment lines are set at
zero in sub-systems S3 and S, _5. An arbitrary
orientation of a rigid body B can be specified
by employing space-three 1-2-3 orientation angles
0; (i =1,2,3) defined as follows (Kane,Likins and
I;evinson,1983). Beginning with body-fixed axes

S
b, aligned with N; (1 = 1,2,3) we rotate B
. - = =
successively about N1, No, N3 by angles 91;> 05,03
respectively. The body-fixed unit vectors b; are
—
then related to the inertial unit vectors N; by

— —
N, b1
— —
Ny | =[YCP] | b, 1)
— —
N3 ba

where the orthogonal transformation matrix [N C”]
is called the space-three 1-2-3 rotation matrix and
is given by (Kane,Likins and Levinson, 1983)

C2C3 S182C3 — S3C1 C152C3 + 8381
€283 §15283 + €3C1 €15283 — €351
—S2 51C2 C1C2

(2)

with s; = sinf;, ¢; = cosb; (i =1,2,3) . In this

way, the orientation of the rigid bodies By and

Y} is specified by using body-fixed axes with unit
—

[Mc?) =

vectors by, and ¥, respectively (i = 1,2,3)
at the centres of mass. Sub-system Sy has 15
generalised coordinates defined as follows :

e Node Ay, : inertial coordinates ¢/} (i = 1,2,3)

e Buoy By, : orientation angles ¢% = 05 (i =
1,2,3) and body-frame coordinates of centre
of mass qﬁ&k (i=1,2,3)

e Mussel Culture Y} : orientation angles qi’,; =
6Y. (i =1,2,3) and body-frame coordinates
of centre of mass ¢, 5, (i =1,2,3)

The orientation angles are the space-three 1-2-
3 angles of rigid body orientation (Kane,Likins
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and Levinson, 1983). There are 15 corresponding
generalised speeds defined as

e Node Ay : inertial velocity components u{}€
T Ak ﬁi (i=1,2,3), where v is the
velocity of Ay

e Buoy By : body-frame angular velocity com-

ponents uf = wBr - (i = 1,2,3), and

body-frame velocity comporients of the cen-

b (1=1,2,3),
where @ P* is the angular velocity and v P+
is the velocity of the centre of mass of By

e Mussel Culture Yy : body-frame angular ve-

B _ By .
tre of mass u;’ 5, = v

locity components u), = WY - ¥ (i
1,2,3), and body-frame velocity components
of the centre of mass u) 5, = VY -

Y (i=1,2,3), where W* is the angular
velocity and v Y* is the velocity of the centre
of mass of Y.

The generalised coordinates qfkand generalised
speeds uf}of sub-system S, are then labelled as
follows :

qisk. :q{% ; u% :uf}c . (1=1,2,3)
q3+ik = ik 5 Us+ik = ugﬂs (i=1,...,6) (3)
Qorik = ik 5 UYorik = U (1=1,...,6)

2.1 Forces on node Ay

The system is subjected to gravity and fluid
forces. The fluid field is described by either a
current velocity field or a wave velocity and ac-
celeration field (in directions N; and Na) using
standard formulae for a Stokes second order wave.
The generalised inertia force on node Ay, is

Erde =gt (—mp @) (4)

where @ “* is the acceleration, ' 4* is the partial
velocity and m? is the mass of node Ay. The net

non-inertial force F"t/4xon node Ay, is the sum
of the forces due to gravity, buoyancy, fluid drag,
line tensions and structural damping as described
below. The generalised active force is then

FAe = Fret/Ac  9A (p=1,....15) (5)
If the volume of node Ay, is Vi, the net force on
node Aj due to gravity and buoyancy is

FOB/A = (o, Vi —mid) g Ny (6)
where g is the acceleration due to gravity.

There are four line segments attached to node Ay
as shown in Fig. 2. The segments are identified
by superscripts L, R, B and Y and we allow for
line tension but not compression. For example,
if the unstretched length of segment Ay 1Ay is
. —_— . —
(L the unit vector along Ay Ag_1 is ¢ £, and the
instantaneous length is Z 4Lk,, the tensile force on

node Ay is calculated as kLZL ¢ L where kE is
the line stiffness and Z5Lk is the line extension
computed as

A~ )+ Zue— ]} B=1,0m)

(7)
Similarly, the structural damping force in segment
Ap_1A), on node Ay, is cﬁZGLk?é where ¢l is the
line damping coefficient and ZGLk is the velocity of
Aj_jrelative to Ay computed as

L _
Z5k7

w

ZGLk = Z (uf}kq - uf}@) tf}g sign (Zst) (8)

i=1
(k=1,...,n)

where tf}c is the ¢ th component of ?é Using
similar notation for the other segments, we write
the tegsile force F7/4% and structural damping
force FSP/Aron node Ay, as

— —
FT/ A =k zL T + kfZE TR

— —
+kPZE B kY ZE Y (9)

SD/Ay __ .LrL L R7R "R
F /k_ckzﬁktk+ckz6ktk

+BZBEB £ Y ZEEY (10)

We note that the above computations for seg-
ments B and Y involve the coordinates and veloc-
ities of the corresponding buoy and mussel sock.

The_f)orce on node Ay due to fluid drag is denoted
by FP/4 and is due primarily to the drag force
on half of segments Ay A;_1 and AxAgy1, denoted
by FPL/A% and FDR/Ax respectively. If o1 is
the fluid velocity at node Ay, the velocity of the
fluid relative to Ay is 72‘61 = ?{ — T4 which
has components tangential and normal to segment
A Ay _1 given respectively by

VRel/tL

_ —Rel 7L . —»Rel/n" _
A = Vg 'tk‘? (s =

—Rel —>Rel/th
k Vg — Vg

(11)
We compute the drag force on half of segment

AkAk-—l as

—Rel/tr

— 1 L
FDL/Ak _ prATCDT ) v 72{81/)&

+ipfANCDN )?}jel/nL 7?81/"&2)
where Cpr and Cpy are tangential and normal
drag coefficients, and Ar = 7d Zk, Ay =d ZE&,
are the associated areas. The drag force FDR/Ax
is computed in a similar fashion and the drag on
node Ay is then

?D/Ak _ F)DL/Ak + ?DR/Ak (13)

If node A on the main line is connected to a
concrete block on the seabed, the unit vector from
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the instantaneous position of the node to the orig-
inal postion of the block is denoted by t gonc The
line tension directed along this vector is denoted
by T);;enc and calculated in the same way as
the tension _i)n other lines. Its vertical component
(direction N3) is denoted by T °*"* and its hor-
izontal component (resultant of components in
directions N; and N ) is denoted by THcone,
1 2 Y Lk
From elementary statics, the concrete block will
slip when

TN 4 p T = p Weone  (14)

where p, is the seabed friction coefficient and
Weone is the submerged weight of the concrete
block. After slip, we assume that the block slides
freely and the tension in the concrete attachment
line is directed vertically downwards from node
Aj. Structural damping in the concrete attach-
ment lines is calculated in the same way as in other
lines. The net force (tension and damping) on Ay,

=2
due to the concrete block is denoted by F /4%,

2.2 Forces on Mussel Socks and Buoys

We will describe the computation for a mussel
sock. The procedure for the buoys is similar. The
generalised inertia force (non- hydrodynamic) on

NH/Y, GY
mussel sock Y3, is F /Y wYe. T YK + 8.

(—-mi @ T ) where THYx i the inertia couple on

Y
Yy, WYr is the partial angular velocity, v 7G is
the partial velocity of the mass centre, TOr s
the acceleration of the mass centreand, m{ is its
mass. This can be evaluated in the form
.S

F:NH/Yk = _Vr}lgurk'i_¢7¥k (’I“ =1,..., 15) (15)
The inertial iorce on Y) due to added mass is
denoted by HA/Ys and written in the Y;, frame
as (Brennen,1982; Landau and Lifshitz,1959)

{HA} = ~[A]{a"} (16)
where [A] is the added—mass matrix in the Yj
frame and {a¥} is the body acceleration vector
in the Y), frame. The generalised inertia force due

*A/Yk ﬁA/Yk .—>G:

to added-mass is v * and can

be evaluated in the form

.8

FrAYe = — Wi, + 4, (17)

(r=1,...,15; k=1,...,n)
The generalised inertia force on Yj is the sum
of the non-hydrodynamic and added-mass com-
ponents, i.e.

FyYe = FpNHIYe 4 pra/Y (18)

(r=1,...,15; k=1,...,n)

The generalised active force on Y} due to gravity

GB/Yy _ —GY

and buoyancy is Fy D (prk.Y —

my, )gN3 .

To account for seabed touchdown, we note that
the bottom point Q{ of mussel sock Y}, is specified
by the distance f]z/ from this point to the centre
of mass, and the body axis ¥ 3x. The height of the
mussel sock above the seabed is then

hy = Ceﬁ,quc + Cgfz,kqg; + Cgf?,,k(qgs/k + 7)) (19)

where CY, 4. 18 the ¢ — j element of the matrix 2
associated with body Yj. At seabed touchdown,

e
the normal reaction force is RkY N3 where
1
Ry = ke (|hy | = hy) (20)

and kg is the seabed stiffness (resistance to pen-

etration). We note that R} is zero when h} > 0.

The generalised active force due to touchdown is
TP~ RY Ny v

The tension in the mussel sock attachment line
depends on the extension in the line and the
damping depends on the relative velocity between
the attachment point P} and node Aj on the
main line. Using notation similar to that used for
the main line, the generalised active force on Y}
due to tension and structural damping is then

FISP = (R 2 - 2 TY -7 ()

The velocity of the fluid relative to sock Y}, is
—
=Y UET. @)

where Ul is the difference between the fluid
velocity and the velocity of the centre of mass of
Y%, both expressed in the Y}, frame. The tangential
drag force acts in the direction ¥ 3. The normal
drag force acts in the direction of the unit vector
normal to ¥ '3; in the plane defined by ﬁ%d and
Y 3. The tangential and normal drag coefficients
are denoted by Cpr and Cpy with associated
areas Ap (mx diameter x length) and Ay (length
x diameter). The drag force on mussel sock Y}, can
then be written in the form

3
FD/YIC _ Z az‘;g)ik: (23)
i=1
The generalised active force is Fr D/Ye _ FD/Y, .
e

The forces ﬁyk on mussel sock Y}, due to the fluid

inertia is denoted by H/Y+ and is written in the
form (Brennen,1982; Landau and Lifshitz,1959)

{H'} = (o Vil I+ [A) {a"} (29

where [A] is the added-mass matrix in the Y}
frame, V;Y is the volume of Yy, [I] is the 3 x 3
identity matrix, and{a"} is the fluid acceleration
vector in the Yj frame. The generalised active
= ﬁl /Ye . ??Z

force due to fluid inertia is Ff/ i
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2.8 Equations of Motion

The generalised inertia and active forces for sub-
system Sy (Fig. 2) are assembled as

EYS = Fr% 4 FrBe 4 prYe
FS = FA + FBr 4 pYx
(r=1,...,15; k=1,...,n)

(25)

where superscripts A, B and Y refer to the
main line, buoy and mussel sock respectively and
superscript S refers to sub-system Sj. In order to
solve for the accelerations, the generalised inertia
forces are written in the form

P = — My + b5 (26)

T

(r=1,...,15; k=1,...,n)

The equations of motion are assembled for the
entire system ( superscript sys)and are written
as (Kane and Levinson,1985)

EXvs 4 FY° =0 (r=1,...,15n) (27)
which is re-arranged in the form

- SYS 1 SYs sYs
Uy = W(F,,y +b7y ) (7": 1,,157’L)
7 (28)
We define the 30n x 1 vector {z} as

@ = ({4 ) (29)

and the coupled set of ordinary differential equa-

tions to be solved is written as x} ={f(t,{x}}.
The components of the vector function f are given
by the quantities q}sys and equation (28). The
equations are solved by the MATLAB Runge-

Kutta routine ode45 with appropriate initial con-
ditions.

3. TEST PROBLEM

We consider the simple system, illustrated in
Fig. 3, consisting of two nodes on the mainline
each carrying a buoy and mussel sock. Each
of segments OA, AB, BC has stiffness k and
unstretched length Ly. The submerged weight of
each mussel sock is Wy and of each mainline node
is Wy4. The buoyancy of each buoy is Fp acting
upwards.

3.1 Static Equilibrium (no waves or current)

The net upward force on each node is therefore
F = Fp — (W4 + Wy). At static equilibrium we

Fig. 3. Test Problem (n = 2)

can show that the angle ¢ between OA or BC and
the horizontal satisfies the relation

3F d— Ly .
%Ly —( I )tanqﬁ—smqﬁ (30)

and the tension T in segments OA, BC is T =
F
sing¢*

3.2 Mussel Sock Orientation in Current

A R z
Rx L» X

P Mussel sock modelled as
cylinder of length b and
<—/ /
diameter a
b
_— /
v = current speed

W =submerged weight

Fig. 4. Cylinder Suspended in Steady Current

The mussel sock is modelled as a cylinder of length
b, diameter a, submerged weight W, suspended
from point O in a uniform current of speed v
as shown in Fig. 4. At equilibrium, the sock is
inclined at an angle 6 to the vertical as shown. The
normal drag coefficient (i.e. for flow normal to the
length) is denoted by Cpx. The associated area is
AN = ab. The tangential drag coefficient (i.e. for
flow parallel to the length) is denoted by Cprp.
The associated area is Ay = mab. We assume
that the cylinder ends are tapered and hence the
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end areas (ma?/4) do not offer flow resistance.
The fluid density is py. Define the dimensionless
parameter « by

2w
= 31
@ pfabC’DNU2 (31)
Then the angle 0 is given by
_ N
0 = sin~? {a+—2a+} (32)

The horizontal and vertical components (R, R,)
of the supporting force at O are given by

% = —é (B sin® 0 + cos® 9) (33)
R, Lonoo 29
W 1+ < (Bsin® 0 cos § — cos” Osin ) (34)
where o
nCpr
= 35
5= 00 (3

We first determine « from (31) and then find 6
from (32). Then R, and R, are found from (33)
and (34).

3.8 Simulation Results (Test problem)

A simulation was conducted for the following
parameters (which are not intended to represent
a real system). The mainline has unstretched
length 10 m, diameter 20 mm, mass per unit
length 0.25 kg/m, modulus of elasticity 1M Pa.
The distance between the anchors is d = 11 m.
Each buoy Bj; and mussel sock Y; is a solid
cylinder of length 1 m, diameter 0.2 m. The
density of By is 100 kg/m? and the density of
Yy is 1500 kg/m3. The normal and tangential
drag coefficients are Cpy = 1.2, Cpyr = 0.1.
The stiffness of each mainline segment is found
as k = 94.2478 N/m and the net upward force
on each node in static equilibrium is found as
F = 141.0404 N. From the simulation results at
steady state with no waves or current we find that
the distance ¢ (Fig.3) is 3.2435 m and the mainline
is at a height of 4.1141 m above the seabed. This
gives ¢ = 0.9032 rad. The tension T iscomputed
from the line stiffness and line extension as T =
179.5942 m. To check, we solve equation (30)
numerically to find that ¢ = 0.9032 rad and
we find T = si§¢ = 179.5979 N. For the case
of a 1 m/s steady current in the z direction
the simulation results at steady state give the
longitudinal unit vector ¥'s of each mussel sock
as (0.5686, 0, —0.8226). To check, we use (32)
to find 6 = 34.6516° from which we compute the
longitudinal unit vector as (sinf, 0, —cosf) =
(0.5686, 0, —0.8226).

3.4 Typical Results

The design of a typical longline used by mussel
farmers in Cascapedia Bay, Quebec is described
below based on information they provided to
Biorex Inc. and the data collected by Biorex on
their culture gears. A diagram of the system is
illustrated in Fig. 1. The longline has distance
201 m between the anchors. The line has diameter
0.019 m, weight per unit length (in air) with-
out biofouling 0.19 kg/m, modulus of elasticity
1 GPa. The longline is modeled by n = 113 nodes,
labelled Ak, (k=1,...,n). There are 2 nodes on
each anchor line and 109 nodes on the main line.
Buoys, labelled By, and mussel socks, labelled Y%,
are attached to the main line nodes Ag to Aigs.
Concrete blocks (weight in air of 145 kg each, den-
sity 2380 kg/m?) are attached to the main line at
points Ag, A12, Aig, ..., A1ps. The location of the
concrete blocks is specified as vertically below the
initial mainline node positions. The mussel socks
are modeled as cylinders and the weight in air of
each mussel sock is 140 kg. The mussel weight
conversion factor f = 5.4 is used to calculate the
specific gravity and mussel sock volume. Each
cylinder Y has length 4 m and diameter 0.424 m,
representing two loops of sock. The buoys on the
central part of the main line (buoys Bg to Bigs)
are all spherical. Most of these buoys have weight
in air 3.9 kg, diameter 0.4 m , drag coefficient 0.7
and specified buoyancy 34.5 kg. The exceptions
are as follows. Buoys at nodes 9,15,21,...,105
have weight in air 1.7 kg, diameter 0.3 m, drag
coeflicient 0.7 and buoyancy 14.8 kg. Two spher-
ical buoys (combined weight in air 7.8 kg and
buoyancy 69 kg) are attached at each node where
a concrete block is located. The corner buoys at
nodes 3 and 111 are actually 3 buoys (each) but for
the simulation are modeled as single buoys B3 and
By11. Owing to biofouling, the corner buoys Bs
and Bj11 have weight in air of 83.1 kg, diameter
1.2 m ,drag coefficient 3.9 and buoyancy 87.7 kg.
The weight in water of line segments is calculated
using the weight conversion factor for biofouled
segments and weight of displaced water for clean
segments. A segment is identified as clean if the
value entered for the biofouled weight per unit
length is equal to the clean weight per unit length.
The biofouled portions are from the anchors to
node 6 on the left node 108 on the right, these
sections having diameter 0.154 m and weight in air
12 kg/m. To account for biofouling of the concrete
attachment lines, the weight in air of the mussel
socks at each concrete block location is increased
by 35 kg. A seabed friction coefficient p, = 0.3 is
assumed to specify a slip criterion for the blocks
in current.

The profile of the system with a 0.21 m/s current
in the y direction is shown in Fig. 5 (450 sec.
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3D profile at equilibrium : Main Line and Bottom of Mussel Masses

Current : 0. 21 m/s iny direction

Main Line

)

2 axis (m,

Bottom of Mussel Masses—>>}

y axis (m)

X axis (m)

Fig. 5. Equilibrium profile under y-direction cur-
rent

simulation). The tensions at the anchors are (z,y
and z components)

6.4
3.4
2.5

—6.4
3.4
2.5

x 102 N

ﬂcft anchor (36)

x 102 N

(37)

Tright anchor

The central part of the main line is deviated 32 m
in the y direction. The lower end of the lowest
socks (Ys and Yipg) is 6.8 m above the seabed.
Mussel sock Y7o makes an angle of 13.2° with the
downward vertical. This result can be verified by
using the formula (32).

A simulation was also performed with a wave of
height 3 m , period 8.5 sec, and wavelength 99.6 m
propagating at angle 67.5° with the positive x
direction. The instantaneous profile at 100 sec is
shown in Fig.6 The tensions at the anchors are
shown in Fig.7

4. MODEL OF FISH NET

The net is modeled by longitudinal lines L%
(e =1,...,v)and transverse lines J* (k= 1,...,
with a spherical knot at the intersection points
(nodes) A*® at each intersection, as shown in
Fig.(8). The mass of the line segments is lumped
in halves at the nodes and the elasticity of
the lines is modeled by linear springs. The net
is attached to supporting points (which may
be moving) A%, Arthe (q=1,...,v) and
ARD - Akv+L (=1, .. n).The Cartesian coor-
dinates of the supporting points may be speci-
fied functions of time ¢. We denote the Carte-

n)

3D profile at 100 sec : Main Line and Bottom of Mussel Masses

Wave propagating at 67.5 deg. to x axis

2 Wave height = 3 m, wave period = 8.5 sec, wavelength =99.6-m

2 axis (m)

100

y axis (m) x axis (m)

Fig. 6. Instantaneous profile at 100 sec under wave

loading
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Fig. 7. Wave induced tensions at anchors

sian coordinates of the lumped mass A*® by

o | \ 8
| R
mﬁJWWVwWWWW

* (k=1,...n; a=1,...v; i=1,2,3) and de-
fine the generalised coordinates as ¢, (r =1,...,3nv)
where

() = G3n(a—1)+3(k—1)+i
(k=1,...n; a=1,...v; i=1,2,3) (38)

The generalised speeds are defined as wu, =
q, (r=1,...3nv). The forces on the line seg-
ments (structural and hydrodynamic) are applied
in the same way as described for the mussel
longline model above and the equatins of motion
assembled by equating the sum of generalised
inertia and active forces to zero. We define the
6nv dimensional vector {z} as in equation 29) and
the equations of motion written as before in the

form {x} = {f(t,{z}}. The solution is obtained
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Longitudinal Line L’

Transverse Line J*

Fie. 8. Net Model

20 x 20 net profile
Current : 2 /s in x direction

Wabve height =2-m, wavelength = 3 m, water depth = 7 m, traveliing in  direction

Fig. 9. Net profile

numerically. Fig.(9) is example of the instanta-
neous profile of a 20 x 20 net (i.e. 20 longitudinal
and 20 transverse lines) in a 2 m/s x direction
current and a wave of height 2 m, wavelength
3 m propagating in the x direction. The tension
in each segment of the net is computed from the
line stiffness and the nodal displacements.

5. CONCLUSIONS

Numerical models of the three dimensional dy-
namics of a submerged mussel longline system and
a fish net have been presented. The method is
based on Kane’s formalism which is well known
to provide an efficient way of formulating the
equations of motion of multibody systems. The
numerical model of the mussel longline is currently
being used by Biorex Inc. to predict the dynamics
of longline systems in Quebec, Canada. We expect
that the results will be useful for checking and
optimizing shellfish aquaculture designs prior to
installation and for modifying existing designs to
safeguard against failure. The net model is cur-

rently being evaluated by experimental tests at
the Institute for Ocean Technology.
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