NRC Publications Archive Archives des publications du CNRC

Impact of air leakage on hygrothermal and energy performance of buildings in North America. Part III: energy rating of insulated wall assemblies

Maref, W.; Saber, H. H.; Elmahdy, A. H.; Swinton, M. C.; Glazer, R.; Nicholls, M.

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=2ab0b251-ff54-4ed1-be99-ae881cf4dc1b https://publications-cnrc.canada.ca/fra/voir/objet/?id=2ab0b251-ff54-4ed1-be99-ae881cf4dc1b

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC - Institute for Research in Construction

PART III: Energy Rating of Insulated Wall Assemblies

Dr. Wahid Maref

Team Work: H.H. Saber, H. Elmahdy, M.C. Swinton, R. Glazer & M. Nicholls

Workshop on Air Barrier, 13th Canadian Conference on Building Science and Technology (CCBST), 10 May 2011, Winnipeg, MB

Outline

- Background
- Project objectives
- Scope
- Proposed energy rating procedure for insulated wall assemblies
- Results of recent research project
- Closing remarks

NRC-CNRC

Background

- Canadian Building Code Requirements:
 - Control of air, water, sound, etc.
- Canadian Construction Materials Center (CCMC) Air Barrier Guide 1996
- Move towards Energy Code
- Energy rating of building envelope components
- Focus on insulated wall assemblies

Functions and Regulations

- Some of the these functions are regulated by National or Provincial/Territorial Building Codes (e.g., structural, fire,... etc.)
- Currently, energy codes and some provincial building codes have requirements related to the thermal performance as related to conduction heat loss (e.g., U-factor or R-value) and air leakage performance of the envelope
- The new National Energy Code is expected soon

Codes and Standards Dilemma

It is difficult to incorporate the effect of air leakage through the envelope on the overall thermal performance of the wall system

Project Objective:

- To determine Wall Energy Rating (WER) of walls constructed according to field practices with spray polyurethane foam insulation, by combining measured heat losses due to conduction and air leakage.
- The work was extended to cover walls with different types of insulation

Overview of the WER Project

- Wall samples built to common construction practices
- Testing for thermal resistance and air leakage
- Material characterization
- Computer simulation
- Final results

This Talk

- Presents the results of six wall samples: two glass fiber walls (reference walls), and four SPF insulated walls with light density (open cell foam).
- Other walls were reported in a series of published papers
- A total of 16 walls were tested, modeled and documented so far.
- More publications:

English: http://www.nrc-cnrc.gc.ca/eng/ibp/irc/publications/index.html

French: http://www.nrc-cnrc.gc.ca/fra/idp/irc/publications/index.html

WER 1 and WER 5

- These 2 walls are intentionally <u>built not to the</u> requirements of Part 9 of the Canadian National Building Code (NBC) to introduce a <u>wide range of air leakage rates</u>.
- Part 9 NBC gives 2 options for air barrier continuity:
 - o Sealing the joint, or
 - Lapping the joint by not less than 100 mm and clamping between framing members and rigid panel
- NBC also requires sealing of windows, piping, ducting and electrical boxes to maintain the integrity of the air barrier (All penetration were not all sealed to meet the NBC requirements).

Wall Samples:

Six 2" x 6" spruce stud walls, 16" spacing (nominal)

- one sample without penetration, with poly-lapped air barrier (fibrous insulation wall sample WER-1)
- one sample similar to the one above but with penetration (WER-5)
- The spray foam is light density (open cell), four samples, different foams, w/out penetration (WER-AA to DD)

Wall samples:

Wall #	Insulation type	Description
WER-1	Fibrous insulation (poly- lapped air barrier)	Reference wall, without penetrations
WER-5	Same as above	Same as above, but with penetrations
WER-AA	Open cell foam	Blank wall, without penetrations
WER-BB	Open cell foam, same as above	With penetrations
WER-CC	Different brand of open cell foam	Without penetrations
WER-DD	Same as above	With penetrations

Penetrations Layout (CCMC Air Barrier Guide 07272)

Thermocouples location:

Heat flux transducer

grid

SPF wall showing penetrations

Blank wall with fibrous insulation and poly-lapped air barrier

Test Sequence

Guarded Hot Box GHB ASTM C1199 and R-value in GHB **ASTM E1423** Air leakage test ASTM E283 **CCMC** Air Barrier **Sample Conditioning** Systems Section 07272 WER-DD Air leakage test R-value in GHB **Air Leakage & Conditioning Test Apparatus**

NRC-CN

Pressure and gust wind cycles Sample conditioning

Air Leakage and Conditioning Test Apparatus

Guarded Hot Box Apparatus

Test Procedures

- Air leakage (ASTM E283)
- Wall thermal resistance (ASTM C1199 and ASTM E1423)
- Material characterization (ASTM C518-98) using heat flow meter
- Sample conditioning according to CCMC Technical Guide (Masterformat Section 07272, section 6.62, page 14)

Results

- Test results
 - Air leakage
 - Thermal resistance, R-value
 - Material characterization of foam(s)
- Simulation results
- Comparison of testing and simulation
- Development of WER

Foam characterization:

Wall Parameter	Symbol	WER-AA & BB	WER-CC & DD
Test Mean temperature	T _m (°C)	0.2	0.3
Material density	ρ (Kg/m ³)	12.0	7.8
Thermal conductivity, SI units	λ (W/(m.K))	0.0352	0.0388

Data for fibrous insulation is obtained from published database

Air leakage test results (WER-1)

Flectric outlet is NOT sealed

Electric outlet is sealed (WER-11a)

Air leakage test results: WER-AA and WER-BB

WER-AA

WER-BB

Air leakage test results: WER-CC and WER-DD

WER-CC WER-DD

R-value test results

Cold temperature	-20 °C		-35 °C			
		R-value of conditioned walls, m ² .K/W				
Wall #	m ² .K/W	°F.ft².hr/BTU	m².K/W	°F.ft².hr/BTU		
WER-1	3.25	18.45	3.44	19.53		
WER-5	2.78	15.79	2.84	16.13		
WER-AA	3.59	20.38	3.60	20.44		
WER-BB	3.30	18.74	3.24	18.39		
WER-CC	3.36	19.07	3.26	18.51		
WER-DD	3.00	17.03	3.02	17.14		

Computer Modelling

- Use hygIRC-C to predict the R-values for the all walls with no air leakage and compare its prediction with measured results
- Use hygIRC-C to predict the R-values at different leakage rates for all walls
- Provide a simple correlation to be used for determining the R-values at different leakage rates

Benchmarking of the Two Models

hygIRC 2-D model hygIRC-C 3-D model

OSB

Drywall

Temperature Profiles

Comparison between lab test and simulation results (R-value)

Introduction of R-value Ration B

$$\beta = \frac{R_L \text{ (R-value with air leakage)}}{R_o \text{ (R-value without air leakage)}}$$

This factor shows the impact of air leakage on the wall R-value

What is Wall Energy Rating (WER)?

- A tool for energy rating of wall assemblies that addresses the building physics and accounts for:
 - Heat loss due to thermal conduction through the system
 - Heat loss due to air leakage through the system
 - Interaction between the two modes of heat loss.
 Provides a means to assess the overall performance of the system

Determination of WER

- Need
 - R-value WITHOUT air leakage (GHB), m².K/W
 - \circ Air leakage rate, ξ , at $\Delta P = 75$ Pa, I/(s.m²)
- Determine wall "apparent" R-value with air leakage at different ΔP values
- Determine the apparent R-value ratio, β
- Calculate WER

Correlation of β with air leakage rate (6 walls):

LR @ 75 Pa, $\xi(L/(s.m^2))$

Calculation Procedure of Apparent RSI

$$\beta = \exp(a \, \xi^b) \longrightarrow RSI_L = \beta \, RSI_0$$

 RSI_0

$$WER=50-C(\frac{\Delta T}{RSI_L})$$

CSA A-440.2 Standard Approach

ER_{cal} Window Energy Rating

WER: A tool for wall energy rating

WER Wall Energy Rating

Always -ve

Always -ve

Effect of Air Leakage on WER – Case I

Effect of Air Leakage on WER – Case II

What is next?

- Develop energy rating tools for other building components
- Combine all the tools in a master protocol to determine the energy rating of the whole building envelope
- This will be a step towards energy labeling of buildings
- A new consortium will be meeting soon to discuss this new initiative

Issues for discussion in the future:

Insulated Concrete Forms (ICF's) and Structural Insulated Panels (SIP's):

SIP

Closing Remarks

- A new procedure is now available to determine the energy performance of insulated wall assembly, with and without penetration
- The procedure requires a minimum laboratory testing
- Computer simulation proven to be very useful and accurate in predicting the R-value of the wall, with and without air leakage

Closing Remarks (cont'd)

- It is necessary to include additional materials and construction practices to generate comprehensive correlation
- Efforts are underway to invite others to join this project
- Next step is to develop national (and international) standards for that purpose

Acknowledgement

- We would like to acknowledge the contribution of the project team and the partners in this project:
 - o BASF
 - o CUFCA
 - Demilec
 - Honeywell

Discussion

Thank you

Contact information: Wahid.Maref@nrc-cnrc.gc.ca

