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Abstract

It is becoming widely accepted that neither

purely reactive nor purely deliberative control

techniques are capable of producing the range of

behaviors required of intelligent computational

agents in dynamic, unpredictable, multi-agent

worlds. This paper presents a new architecture for

controlling autonomous agents, building on pre-

vious work addressing reactive and deliberative

control methods. The proposed multi-layered

architecture allows a resource-bounded, goal-

directed agent to reason predictively about poten-

tial conflicts by constructing causal theories or

device models which explain other agents’

observed behaviors and hypothesize their inten-

tions and function; at the same time it enables the

agent to operate autonomously and to react

promptly to changes in its real-time environment.

A principal aim of this research is to under-

stand the role different behavioral capabilities

play in constraining an agent’s function under

varying environmental conditions. To this end, an

experimental testbed has been constructed com-

prising a simulated multi-agent world in which a

variety of agent configurations and behaviors

have been investigated. A number of experimen-

tal findings are reported.

1 Introduction

The computer-controlled operating environ-

ments at such facilities as automated factor-

* This research was conducted while the author

was a doctoral candidate at the Computer Laboratory,

University of Cambridge, Cambridge, UK.

ies, nuclear power plants, telecommunica-

tions installations, and information

processing centers are continually becoming

more complex. As this complexity grows, it

will be increasingly difficult to control such

environments with centralized management

and scheduling policies that are both robust

in the face of unexpected events and flexible

at dealing with operational and environmen-

tal changes that might occur over time. One

solution to this problem which has growing

appeal is to distribute, along such dimensions

as space and function, the control of such

operations to a number of intelligent, task-

achieving robotic or computational agents.

Most of today’s computational agents are

limited to performing a relatively small range

of well-defined, pre-programmed, or human-

assisted tasks. Operating in real world

domains means having to deal with unex-

pected events at several levels of granularity

— both in time and space, most likely in the

presence of other independent agents. In such

domains agents will typically perform a num-

ber of complex simultaneous tasks requiring

some degree of attention to be paid to envi-

ronmental change, temporal constraints,

computational resource bounds, and the

impact agents’ shorter term actions might

have on their own or other agents’ longer

term goals. Also, because agents are likely to

have incomplete knowledge about the world

and will compete for limited and shared

resources, it is inevitable that, over time,

some of their goals will conflict. Any attempt



2

to construct a complex, large-scale system in

which all envisaged conflicts are foreseen

and catered for in advance is likely to be too

expensive, too complex, or perhaps even

impossible to undertake given the effort and

uncertainty that would be involved in

accounting for all of one’s possible future

equipment, design, management, and opera-

tional changes.

Now, while intelligent agents must

undoubtedly remain reactive in order to sur-

vive, some amount of strategic or predictive

decision-making will also be required if

agents are to handle complex goals while

keeping their long-term options open. On the

other hand, agents cannot be expected to

model their surroundings in every detail as

there will simply be too many events to con-

sider, a large number of which will be of little

or no relevance anyway. Not surprisingly, it

is becoming widely accepted that neither

purely reactive [Bro86, AC87, Sch87] nor

purely deliberative [DM90, Sho90, VB90]

control techniques are capable of producing

the range of robust, flexible behaviors desired

of future intelligent agents. What is required,

in effect, is an architecture that can cope with

uncertainty, react to unforeseen incidents,

and recover dynamically from poor deci-

sions. All of this, of course, on top of

accomplishing whatever tasks it was origi-

nally assigned to do.

This paper is concerned with the design

and implementation of a novel integrated

agent control architecture, the TouringMa-

chine architecture [Fer91, Fer92a, Fer92b,

Fer92c], suitable for controlling and coordi-

nating the actions of autonomous rational

agents embedded in a partially-structured,

dynamic, multi-agent world. Upon carrying

out an analysis of the intended TouringMa-

chine task domain — that is, upon

characterizing those aspects of the intended

real-time road navigation domain that would

most significantly constrain the TouringMa-

chine agent design — and after due

consideration of the requirements for produc-

ing autonomous, effective, robust, and

flexible behaviors in such a domain, the

TouringMachine architecture has been

designed through integrating a number of

reactive and suitably designed deliberative

control functions.

2 TouringMachines

Implemented as a number of concurrently-

operating, latency-bounded, task-achieving

control layers, the resulting TouringMachine

architecture is able to produce a number of

reactive, goal-directed, reflective, and predic-

tive behaviors — as and when dictated by the

agent’s internal state and environmental con-

text. In particular, TouringMachines

comprise three such independently motivated

layers: a reactive layer R  for providing the

agent with fast, reactive capabilities for cop-

ing with events its higher layers have not

previously planned for or modelled (a typical

event, for example, would be the sudden

appearance of some hitherto unseen agent or

obstacle); a planning layer P for generating,

executing, and dynamically repairing hierar-

chical partial plans (which are used by the

agent, for example, when constructing navi-

gational routes to some target destination);

and a reflective-predictive or modelling layer

M for constructing functional device models

of world entities, including the agent itself,

which can be used as a platform for explain-

ing observed behaviors and making

predictions about possible future behaviors

(more on this below).

Each control layer is designed to model

the agent’s world at a different level of

abstraction and each is endowed with differ-

ent task-oriented capabilities. Also, because

each layer directly connects perception to

action and can independently decide if it

should or should not act in a given world

state, frequently one layer’s proposed actions

will conflict with those of another; in other

words, each layer is an approximate machine

and thus its abstracted world model is neces-

sarily incomplete. As a result, layers are

mediated by an enveloping control frame-



3

Figure 1: The TouringMachine Architecture.
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work (see Figure 1) so that the agent, as a

single whole, may behave appropriately in

each different world situation. As described

in more detail elsewhere [Fer92c], a Touring-

Machine’s control framework is implem-

ented as a combination of inter-layer mes-

sage-passing and context-activated control

rules which are applied repeatedly, in a syn-

chronous fashion, to the inputs and outputs of

each of the agent’s control layers. The overall

control framework thus embodies a schedul-

ing regime which, while striving to service

the agent’s high-level tasks (e.g. planning,

causal modelling, counterfactual reasoning)

is sensitive also to its low-level, high-priority

behaviors such as avoiding collisions with

other agents or obstacles.

3 Modelling Agent Function

Like most real-world domains, a TouringMa-

chine’s world is populated by multiple

autonomous entities and so will often involve

dynamic processes which are beyond the con-

trol of any one particular agent. For a planner

— and, more generally, for an agent — to be

useful in such domains, a number of special

skills are likely to be required. Among these

are the ability to monitor the execution of

one’s own actions, the ability to reason about

actions that are outside one’s own sphere of

control, the ability to deal with actions which

might (negatively) “interfere” with one

another or with one’s own goals, and the abil-

ity to form contingency plans to overcome

such interference. Georgeff [Geo90] argues

further that one will require an agent to be

capable of coordinating plans of action and of

reasoning about the mental state — the

beliefs, goals, and intentions — of other enti-

ties in the world; where knowledge of other

entities’ motivations is limited or where com-

munication among entities is in some way

restricted, an agent will often have to be able

to infer such mental state from its observa-

tions of entity behavior. Kirsh, in addition,

argues that for survival in real-world, human

style environments, agents will require the

ability to frame and test hypotheses about the

future and about other agents’ behaviors
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[Kir91].

The potential gain from incorporating

causal device or mental modelling capabili-

ties in an autonomous agent is that by making

successful predictions about entities’ activi-

ties the agent should be able to detect

potential goal conflicts earlier on. This would

then enable it to make changes to its own

goals or intentions in a more effective manner

than if it were to wait for these conflicts to

materialize. Goal conflicts can occur within

the agent itself (for example, the agent’s pro-

jected time of arrival at its destination

exceeds its original deadline or the agent’s

layer R effects an action which alters the

agent’s trajectory) or in relation to another

agent (for example, the agent’s trajectory

intersects that of another agent). Associated

with the different goal conflicts that are

known to the agent are a set of conflict-reso-

lution strategies which, once adopted,

typically result in the agent taking some

action or adopting some new intention.

The device models used by TouringMa-

chines are structured as time indexed 4-tuples

of the form 〈C, B, D, I〉 , where C is the

entity’s Configuration, namely (x,y)-location,

speed, acceleration, orientation, and signalled

communications; B is the set of Beliefs

ascribed to the entity; D is its ascribed list of

prioritized goals or Desires; and I is its

ascribed plan or Intention structure. Intention

ascription or recognition has been realized in

TouringMachines as a process of scientific

theory formation which employs an abduc-

tive reasoning methodology similar to that of

the Theorist default/diagnostic reasoning sys-

tem [PGA86]. In fact, the device models are

actually filled-in templates which the agent

obtains from an internal model library. While

all templates have the same basic 4-way

structure, they can be made to differ in such

aspects as the depth of information that can be

represented or reasoned about (for example, a

particular template’s B component might dic-

tate that modelled beliefs are to be treated as

defeasible), initial default values provided,

and computational resource cost. The last of

these will subsequently be taken into account

each time the agent makes an inference from

the chosen model.

Reasoning from a model of an entity

essentially involves looking for the “interac-

tion of observation and prediction” [DH88];

that is, for any discrepancies between the

agent’s actual behavior and that predicted by

its model or, in the case of a self-model,

between the agent’s actual behavior and that

desired by the agent. Model-based reasoning

in TouringMachines specifically comprises

two phases: explanation and prediction. Dur-

ing the explanation phase, the agent attempts

to generate plausible or inferred functional

explanations about any entity (object/agent)

behaviors which have recently been

observed. Explanations — a set of consistent

hypotheses about the entity’s intended state

which logically imply the observations made

of the entity —are then used in detecting dis-

crepancies between these entities’ current

behaviors and those which had been antici-

pated from previous encounters. If any such

discrepancies are detected, the agent will then

strive to infer, via intention ascription, plausi-

ble explanations for their occurrence.

 Once all model discrepancies have been

identified and their causes inferred, predic-

tions are formed by temporally projecting

those parameters that make up the modelled

entity’s configuration vector C in the context

of the current world situation and the entity’s

functional model (principally, its ascribed

intention). The space-time projections (in

effect, knowledge-level simulations) thus

created are used by the agent to detect any

potential interference or goal conflicts among

the modelled entities’ anticipated/desired

actions. Should any conflicts — intra- or

inter-agent — be identified, the agent will

then have to determine how such conflicts

might best be resolved, and also which enti-

ties will be responsible for carrying out these

resolutions. Determining such resolutions,

particularly where multiple goal conflicts are

involved, will require consideration of a

number of issues, including the priorities of
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the different goals affected, the space-time

urgency of each conflict, rights-of-way pro-

tocols in operation, as well as any

environmental and physical situational con-

straints (e.g. the presence of other entities) or

motivational forces (e.g. an agent’s own

internal goals) that may constrain the possi-

ble actions that the agent can take. In the

TouringMachine architecture such knowl-

edge is encapsulated in a library of domain-

dependent conflict resolution triples, each of

which relates a specific conflict state descrip-

tion with the particular agent goal under

threat as well as the recommended recovery

procedure or resolution that should be

adopted [Fer92c].

The device models employed here are in

fact functional models since their purpose is

to give the agent a global view of what other

observed entities are doing [HBJ91]. In par-

ticular, an agent uses models to abstract,

organize, and index the relevant aspects of

the behavioral knowledge it acquires about

other entities according to: (i) the (hypothe-

sized) intentions which the agent considers to

be “responsible” for the entities’ observed

behaviors; and (ii) the current context within

which these entities are operating. So, unlike

observed behaviors which can be interpreted

independently of the context within which

they were produced, the definition of device

model employed here emphasizes the con-

text-dependent nature of agent function by

taking into account the agent’s intended state

along with the background (beliefs, desires)

and environmental (physical and situational)

conditions under which the state can be

achieved.

4 Experiments with Touring-

Machines

The research presented here adopts a fairly

pragmatic approach toward understanding

how complex environments might constrain

the design of agents, and, conversely, how

different task constraints and behavioral

capabilities within agents might combine to

produce different agent functions. In order to

evaluate TouringMachines, a highly instru-

mented, parametrized, multi-agent

simulation testbed has been implemented in

conjunction with the TouringMachine con-

trol architecture. The testbed provides the

user with a 2-dimensional world — the Tour-

ingWorld — which is occupied by, among

other things, multiple TouringMachines,

obstacles, walls, paths, and assorted informa-

tion signs. World dynamics are realized by a

discrete event simulator which incorporates a

plausible world updater for enforcing “realis-

tic” notions of time and motion, and which

creates the illusion of concurrent world activ-

ity through appropriate action scheduling.

Other processes handled by the simulator

include a facility for tracing agent and envi-

ronmental parameters, a statistics gathering

package for agent performance analysis, a

mechanism enabling the testbed user to con-

trol the motion of a chosen agent, and several

text and graphics windows for displaying

output. By enabling the user to specify, visu-

alize, measure, and analyze any number of

user-customized agents in a variety of single-

and multi-agent settings, the testbed provides

a powerful platform for the empirical study of

autonomous agent function.

A number of experiments have been car-

ried out on TouringMachines which

illustrate, in particular, that the balance

between goal-orientedness (effectiveness)

and reactivity (robustness) in agents can be

affected by a number of factors including,

among other things, the level of detail

involved in the predictions agents make

about each other, the degree of sensitivity

they demonstrate toward unexpected events,

and the proportion of total agent resources

that are made available for constructing plans

or building mental models of other agents’

functions. Other experiments point toward a

trade off between the reliability and the effi-

ciency of the predictions an agent can make

about the future (this turns out to be an

instance of the well-known extended predic-

tion problem [SM90]). Yet other experiments
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have been carried out which suggest that pre-

dicting future world states through causal

modelling of agents’ mental states or func-

tion, can, in certain situations, prove useful

for promoting effective coordination between

agents with conflicting goals. To illustrate

some of the diverse opportunities for analysis

which are afforded by the TouringMachine

testbed, one particular experiment is now

described in some detail.

4.1    Monitoring the environment: sensi-

tivity versus efficiency

 In monitoring the state of another world

entity, and in particular, in determining

whether the information it maintains of an

entity's current physical configuration (its

location, speed, orientation, etc.) is as it

should be — that is, satisfies the expectations

which were computed when it last projected

the entity's functional model in space-time

— a TouringMachine makes use of various

tolerance bounds to decide whether any dis-

crepancies in fact exist. As with any

discrepancies detected in the agent's self

model, identification of a discrepancy in the

model of another entity typically requires fur-

ther investigation to determine its cause.

Often this reasoning process results in having

to re-explain the entity's current behavior by

ascribing it a new functional role —and in

particular, a new intention. For example, a

discrepancy between the modelled entity's

current and expected speeds might be indica-

tive of the entity's change of intention from,

say, drive-along-path to stop-at-

junction.

In Figure 2 (upper two frames) we can

see, at two different time points T = 12.5 sec-

onds and T = 15.5 seconds, several agents in

pursuit of their respective goals: agent1

(round), agent2 (chevron-shaped), and

agent3 (triangular, top-most). Further-

more, we can see the effect on agent1's

behavior — that is, on its ability to carry out

its pre-defined homeostatic goal avoid-

collisions — of modifying the value of

ModelSpeedBounds, an internal agent

parameter which, when modelling another

entity, is used to constrain the “allowable”

deviations between this entity's currently

observed speed and the speed it was predicted

to have had when the entity was last

observed. In this scenario, agent1 has to

contend with the numerous and unexpected

speed changes effected by agent2, a testbed

user-driven agent. With fairly tights bounds

(for example ModelSpeedBounds = +/-0.5

ms-1), agent1 detects any speed discrepan-

cies in agent2 which are greater than or

equal to 0.5 ms-1. Among such discrepancies

detected by agent1 are those which result

from agent2's deceleration just prior to its

coming to a halt at a junction at time T = 20.0

(Figure 2, lower left-hand frame). As a result,

and compared to the situation when agent1

is configured with ModelSpeedBounds = +/

-2.0 ms-1, and therefore, in this particular sce-

nario, unable to detect or respond to

agent2's actions at T = 20.0 (Figure 2,

lower right-hand frame), the configuration

with tighter speed bounds is more robust,

more able to detect “important” events (for

example, the agent in front coming to a halt)

and also more able to carry out timely and

effective intention changes (for example,

from drive-along-path to stop-

behind-agent).

This in itself, of course, does not suggest

that agents should always be configured with

tight speed bounds. Sensitivity or robustness

to environmental change can come at a price

in terms of increased resource consumption:

each time an agent detects a model discrep-

ancy it is forced by design to try to explain the

discrepancy through a (relatively expensive)

process of abductive intention ascription.

Often, however, small changes in the physi-

cal configuration of a modelled entity need

not be the result of the entity having changed

intentions. In the scenario of Figure 2, for

example, agent2's speed changes are due

entirely to actions effected by the testbed

user. Ignorant of this, however, agent1

configured with ModelSpeedBounds = +/-

0.5 ms-1 will continually attempt to re-explain
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Figure 2:  Varying  the value of an agent’s ModelSpeedBounds parameter can affect
the agent’s level of sensitivity to environmental change.
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agent2's changing behavior — despite the

fact that this reasoning process will always,

except in the case when agent2 stops at the

junction, return the same explanation of

drive-along-path. Also, although not

elaborated on in this paper, it is also impor-

tant to note that a TouringMachine may only

monitor the state of its own layer M goals

when there are exactly zero discrepancies to

attend to in its current set of modelled (exter-

nal) agents. A less environmentally sensitive

agent, therefore, might well end up with more

opportunities to monitor its own progress and

so, potentially, achieve its goals more

effectively.

5 Conclusions

Through the above and a number of other

coordination experiments addressing such

issues as the production of emergent behav-

ioral patterns, the TouringMachine

architecture has been shown to be feasible

and that, when suitably parametrized, can

endow rational autonomous agents with

appropriate levels of effective, robust, and

flexible control for successfully carrying out

multiple goals while simultaneously dealing

with a number of dynamic multi-agent

events.

Among other things, the TouringMachine

architecture can be seen as a practical frame-

work for modelling device function within

the context of real-time multi-agent environ-

ments. In particular, the functional modelling

approach adopted helps to abstract and orga-

nize reasoning about observed behavior by

enabling agents to focus only on those

aspects of modelling which are pertinent for

constructing approximate — but neverthe-

less useful — explanations and predictions

of activity in the environment.

The integration of a number of tradition-

ally expensive deliberative reasoning

mechanisms (for example, functional model-

ling and hierarchical planning) with reactive

or behavior-based mechanisms is a challenge

which has been addressed in the TouringMa-

chine architecture. Additional challenges

such as enabling effective agent operation

under real-time constraints and with bounded

computational resources have also been

addressed. The result is a novel architectural

design which can successfully produce a

range of useful behaviors required of sophis-

ticated autonomous agents embedded in

complex environments.

The research presented here is ongoing;

current work on the TouringMachine agent

architecture includes an effort to generalize

further the TouringWorld testbed, in

particular, by separating the definition of the

agent’s domain of operation (description of

the environment, initial goals to accomplish,

criteria for successful completion of goals)

from the specified configuration

(capabilities, internal parameters and

constraints) of the agent itself. Another

aspect of the current work is to identify and

incorporate new capabilities in order to

extend the functional repertoire of agents;

capabilities being considered at present

include, among others, inductive learning,

user modelling, and episodic memory

management. Relatedly, a new domain to

which TouringMachines are currently being

applied involves adaptive information

retrieval and filtering on the World Wide

Web.
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