NRC Publications Archive Archives des publications du CNRC

Investigation on fire detection technologies for road tunnels Lougheed, G.D.; Liu, Z.G.; Kashef, A.; Crampton, G.; Gottuk, D.; Almand, K.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/21274145

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://publications-cnrc.canada.ca/fra/voir/objet/?id=24c5a1bb-bd3c-4299-adde-3edf9333b5d9

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Tunnel Detection Project

ARC CARC

- · Tunnel fire detection project.
 - Initiated in 1999 at the request of Port Authority of New York and New Jersey and Boston Fire Department.
 - Phase I literature review was completed in 2003.
- · Phase II -Initiated in 2006.
 - Funded private and government sector organizations.
 - · Monitored by Technical Advisory Committee.

-

Project Objectives

NAC-CHAR

- Investigate performance of current fire detection technologies (detection capability and reliability).
- Provide information for developing technical specifications and installation requirements of detection systems for road tunnel applications.
- Provide technical data to standards and code writers for the development of guidelines for applications of fire detection technologies in road typical

-

Project Tasks

NAC-CNA

- NRC
 - Task 1 Identify technologies and develop test protocols.
 - . Task 2 Conduct fire tests in a laboratory tunnel facility.
 - · Task 3 Computer modeling.
 - Task 4 Conduct fire tests in tunnel in Montreal.
 - Task 7 Conduct fire tests in laboratory facility with longitudinal airflow.
- Hughes Associates
 - Task 5 Conduct environmental tests in Lincoln Tunnel.
 - Task 6 Conduct demonstration fire tests in Lincoln tunnel.

Current Tunnel Detection Technologies

NAC CNAC

- Linear heat detection systems and optical flame detectors the primary methods of detecting fires in tunnels.
- · Information on tunnel detection technologies limited.
 - · Few detection technologies investigated.
 - Performance realistic fire scenarios unknown.
 - · Information on reliability in tunnel environment is limited.
- Lack of application guidelines for detection systems.
 - · Lack of appropriate test protocols/standards for evaluation.
 - Lack of technical information in standards/codes for performance requirements and installation.

-

Technology	System No.	System Information
Linear heat	D-1L1	Fiber optic linear heat detection system
	D-2L2	Analogue (co-axial cable) linear heat detection system
Flame	D-3F1	Multi-IR flame detector
VID	D-4C1	Visual based flame/smoke detector
	D-5C2	Visual based flame/smoke detector
	D-6C3	Visual based flame detector
Spot heat	D-7H1	Frangible bulb heat detector
•	D-8H2	Rate-anticipation heat detector
Smoke	D-9S1	Air sampling system

Results Montreal Tests

NAC-CINIC

- Results generally consistent with the laboratory tunnel tests under the same test conditions.
- Linear heat detection systems detected small fires regardless fire location.
- · Airflow delayed response.
- Flame detector detected fires at its detection range (~30 m). Response time depended on airflow.

-

Results Montreal Tests

MC CARC

- VIDs detected small open pool fires within their detection range (~60 m).
- Detection time affected by airflow for fires underneath vehicle.
- VIDs detected fire behind vehicle 30 m from detectors.
- Two VIDs did not detect fire behind vehicle located 60 m from detectors.

-

CFD Simulations

ANG CIVIC

- Assist in the preparation of full-scale experiments conducted in the laboratory tunnel facility.
- Compare numerical predictions against the full-scale experimental data.
- Investigate the impact of tunnel ventilation conditions (longitudinal, semi-transverse and fully-transverse ventilation systems) on the development and distribution of the temperature and smoke.
- Study the impact of tunnel length on the development and distribution of temperature and smoke in the tunnel.

Summary Modeling

NAC-CNAC

- · Good agreement numerical simulations and experimental.
- · Semi-transverse supply ventilation system.
 - · Highest ceiling temperature and soot volume fraction.
 - Fastest rate of rise of ceiling temperature.
- · Full- and semi-transverse exhaust systems.
 - Similar hot layer temperatures and soot profiles .
 - Semi-transverse exhaust system slowest rate of rise of temperature.
- · Longitudinal system.
 - Lowest average ceiling temperature.
 - Require detectors downstream of the fire to detect the fire.
- Length of Tunnel.
 - Ceiling temperature and soot volume fraction profites for the two tunnel lengths were similar.

Lincoln Tunnel - South Tube

MOCKAC

- 2441 m (8006 ft) long.
- Roadway section is 6.6 m (21.5 ft) wide and 4.15 m (13 ft 7.5 in) high.
- · Eastbound traffic only (NJ to NY).
- All vehicle types.
- Average daily traffic volume ~44 thousand vehicles.
- Slow moving and stopped traffic frequently occur.
- Transverse ventilation.

-

Program Overview

NAO CHA

- Long-term monitoring of fire detection systems.
- Evaluation of 3 fire detection technologies.
 - · Video Image Detection (VID).
 - · Optical Flame Detection (OFD).
 - Smoke Aspiration Detection.
- 4 Detection systems installed and monitored.
- Fire Demonstration Tests.

ID	Technology	System Information	Hardware Location
D-3FI	OFD	Flame	Roadway
D-4C1	VID	Smoke and Flame	Tunnel Cameras with Unit in Administration Building
D-6C3	VID	Flame	Rosdway
D-9S1	ASD	Smoke	Exhaust plenum

- · Data collected over 10 month period.
- · Recording.
 - · Events (date and time).
 - · Weather conditions (sun/clouds/rain, T, RH).
 - · Ventilation.
 - · CO levels.
- · Traffic data.

Date (Francisco)

Results Environmental Tests

- VID Smoke and Flame (Used existing cameras in tunnel).
- Approximately 1 nuisance alarm per day per camera.
- . Flashing lights, weather conditions, sunlight at portal.
- VID Flame.
- No nuisance alarms.
- · Optical Flame Detector.
 - Installed without heating elements active moisture buildup.
 - Buildup of grime and dirt detectors facing traffic optical faults.
 - Less problems cameras facing with traffic 3 nuisance alarms/month on average.
- Smoke Detection System.
 - Two systems with sampling in ceiling vents 2 nuisance alarms.
 - . System with sampling line in main exhaust stack became dirty/blocked.

-

Fire Demonstrations

NAC-CNAC

- November 11, 2007
- · 5 fire events.
 - · Diesel pan fires in back of stripped-down van.
 - -1 MW to 2 MW.
 - Bum time -5 minutes.
 - · Rear of vehicle toward detectors.
 - Flame visible through window openings (area 0.44 m²).
- · 2 fires near NJ portal.
- · 3 fires near center of tunnel.

-

Fire Demonstrations Dis. From Dets. (m) Test ID Fire Location Results Near NJ Portal Demo 1 61 No detection Demo 2 Near NJ Portal 30 Only OFD alarmed Demo 3 Near Center No detection Near Center Only ASD alarmed Near Cener OFD and ASD alarmed

Summary Linear Heat Detectors

ARC CARC

- Good response to fires rate of temperature rise.
- Longitudinal airflow can delay response to most fire scenarios.
- Fibre-optic based system indicated location of fire but with longitudinal airflow location could be off by up to 10 m.
- · No environmental tests conducted.

-

Summary Flame Detector

MOCMC

- Initial tests with high sensitivity reduced to medium sensitivity for later tests.
- · Detect open fires within detection range.
- · Problems with scenarios with obstructed view.
- Longitudinal airflow could affect response flames tilted reducing view with obstacles.
- Problems in environmental tests.
 - Dirt and grime led to optical faults on detectors facing traffic
 - · Less problems with devices facing with traffic flow.

-

Summary VIDs

NAC CHA

- All systems able to detect small open fires within detection range (60 m).
- Combined smoke and flame detectors better response for concealed fires and less affected by longitudinal airflow.
- Response of flame based system affected for concealed fires and longitudinal airflow.
- Smoke/flame system installed in Lincoln tunnel had number of nuisance alarms.
- Flame system no nuisance alarms.

Summary Spot Heat Detectors

hac chac

- · Used only in laboratory tunnel tests.
- · Responded to fires 1,500 kW or larger.
- Response time could be delayed by longitudinal airflow – reduced temperature at ceiling.
- · Not included in environmental tests.

met (with

Summary Smoke Detection System

AC CHAC

- Able to detect all fires in laboratory tunnel tests except those using a propane burner.
- Longitudinal airflow affected response time.
 - Increased smoke production with some scenarios resulting in earlier response.
 - Response time to small fires increased as smoke diluted by airflow.
- Limited nuisance alarms in Lincoln tunnel.
 - Systems with sampling lines in ceiling vents practical.
 - System in main exhaust blocked in short time.

Acknowledgements

MC-CM

Thank you & Questions

- Authors would like to acknowledge the contributions of following organizations to the project:
 - Port Authority of New York and New Jersey, Ministry of Transportation of Quebec, Ministry of Transportation of Ontario, Ministry of Transportation of British Columbia; City of Edmonton; Carleton University;
 - Siernens Building Technologies; VisionsUSA; AxonX/Johnson Control, Tyco Fire Products; Sureland Industries Fire Safety; Micropack; United Technologies Research Corporation; Det-Tronics; J-power System/Sumitomo Electric; Honeywell;
 - A & G Consultants; PB Foundations;
 - · Members of Technical Panel

443107

- ---