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TUBE BANKS, SINGLE-PHASE HEAT TRANSFER IN.

Following from: Crossflow Heat Transfer; Tube banks, cross-flow

over

Tube banks are employed in a wide range of heat exchangers. 

The average heat flux, &q , is expressed as a linear function of the

mean temperature difference between the bulk of the fluid in the

tube bank and the wall, according to a rate equation,

&

&

q =
Q

A
= TMα∆ (1)

where &Q  is the rate of heat transfer, α  is an overall heat transfer

coefficient, and ∆TM  is some representative temperature difference

between the tube wall and the bulk of the fluid.  A is the total heat

transfer area, which for plain tubes is given by,

A = N DLπ (2)

where N is the number of tubes of outer diameter D, and length L. 

 The overall heat transfer coefficient, α  is non-dimensionalized in

terms of an average Nusselt Number, Nu, according to,

Nu
D

k
≡α

(3)

or alternatively as an average Stanton Number, St,

Stequiv
c up m

α
ρ

(4)

In tube banks, Nu is frequently correlated according to,

Nu= c Re Pr  
Pr

Pr

m n

p
w⋅ F

H

I

K
(5)

where Reynolds Number Re, is defined by,

Re =
u Dρ

η
max

(6)

umax is the bulk velocity in the minimum cross-section, ρ and η are

the fluid density and viscosity respectively. The Pr  is just,

Pr =
cpη

λ
(7)
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where cp is the specific heat, and λ is thermal conductivity.  The

rate of heat transfer may also be expressed in terms of an energy

balance, which for single-phase heat transfer may be written,

& &Q = C T - Tout ina f (8)

where Tin and Tout  are the bulk temperatures at the inlet and outlet

of the bank, and &C  is the thermal capacitance of the fluid, 

presumed constant over the range of interest.

& &C = M cp (9)

&M is the total mass flow rate through all of the passages in the tube

bank, and cp is averaged over the range of interest.

A local heat transfer coefficient may be defined in a similar fashion

to Eq. 1 The local Nu is a function of a number of parameters such

bank type and geometry, flow Re, pressure gradient, location within

bank etc. Figure 1 shows local Nu distributions in the interior of

tube banks.  It can be seen that the staggered-geometry Nu-

distribution is similar to the single cylinder case, with a maximum

occurring at φ = 0°. For the in-line case, Nu rises to a maximum at

the reattachment point around  45°.  It can also be seen that heat

transfer is somewhat higher for both inline and staggered tube

banks, than for single cylinders.  This is due to increased free-

stream turbulence (as a result of preceeding rows) and shear, due

to constriction of the flow passages. For most applications the

engineer is not concerned with the details of local heat transfer in

tube banks and the reader is referred to the reader is referred to _
(

Zukauskas and Ulinskas (1988) for further information on the

subject .

Experimental data and empirical correlations

Two major sources of data, on both fluid flow and heat transfer, are

the Delaware group in the USA, and the group in the Republic of

Lithuania. The work at the University of Delaware on overall heat

transfer in tube banks has formed the basis for heat exchangers
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calculations for many years while the recent book by 
(

Zukauskas et

al. (1988) is a comprehensive reference on heat transfer in tube

banks based on many years' research, containing extensive

information on local and overall heat transfer.  It appears that the

Delaware data was gathered at nominally constant wall

temperature, Tw, conditions and that of the Lithuanian group at

constant wall heat flux, &qw .  Numerous other data also exist, in

addition to these two main sources.

A number of empirical correlations may also be found: The

Engineering Science and Data Unit correlate Nu vs. Re according

to Eq. 5 (ESDU, 1978). Values of the coefficients c and m  are

given in Table I.  Re is based on umax.  The correlation of
(

Zukauskas and Ulinskas (1988) agrees well with experimental

data, but exhibits poor continuity across certain Re ranges. Several

other correlations may be found in the literature.  Agreement

among heat transfer correlations is, generally-speaking better than

for pressure drop correlations.  In most correlations, Nu is treated

as being primarily a function of Re and configuration;  ie. the pitch-

to-diameter ratios are often treated as being relatively unimportant

over a wide range.  Similarly the effect of thermal boundary

conditions (constant TW vs. constant &qw ), though often significant,

is usually simply ignored.

Tradition is to plot Nu or St in the form of log-log plots with both the

 Pr-dependence and the property-variation being removed by

defining,
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(11)

The heat-transfer factors  j, k, (un-primed) are Pr-independent.

Primed values j', k' indicate that the influence of property variations
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across the boundary layer has also been taken into consideration. 

The Delaware group chose  n = 1/3, ie.  j is the so-called Colburn

heat transfer factor.  ESDU (1973) and 
(

Zukauskas and Ulinskas

(1988) propose similar but slightly higher values n = 0.34 and 0.36,

respectively (over most of the range).   Figure 2 shows j and k as a

function of Re for Pr = 1.  It can be seen that heat transfer is a little

higher for staggered than in-line geometries at lower Re. 

The influence of fluid properties is accounted for in Eq. 5 by the

term (Prw/Pr)
p
, where Pr is evaluated at the mean bulk temperature,

and Prw at Tw.  The Delaware group use (ηw/η)
p
, the matter is

largely one of preference (but their value of p = 0.14 was based on

the Seider-Tate correlation for flow inside tubes).  ESDU (1973)

suggest p = 0.26 regardless of whether the fluid is being heated or

cooled.

The choice of reference temperature is a matter for concern;  since

in most situations, the engineer must use a mean value for thermal

design/analysis. For constant Tw, the appropriate temperature to

use in Eq. 1 is the log-mean temperature difference,

∆ ∆ ∆ ∆
∆
∆

M LM
out in

in

out

T  =  T   
T - T

T

T

≡
F

H
G

I

K
Jln

(12)

where, ∆Tin = Tin - Tw and  ∆Tout = Tout - Tw are the differences

between the fluid and wall temperatures at the inlet and outlet,

respectively. (See also Mean Temperature Difference) The

reference temperature, TM, for ennumerating property values

should be Tw + ∆TLM.  For constant &qw , the arithmetic-mean

temperature should be used,

For most applications it is immaterial whether properties, ρ, η, etc.

are evaluated at the log-mean or the arithmetic-mean  temperature,

and the latter is often employed for convenience.

M
out in

T  =  T  
T + T

2
≡ (13)



5

For large numbers of banks, and low values of the product Re.Pr 

the choice of TM is quite important.

Empirical correlations are obtained from data for idealised tube

banks.  In practice Nu is a function of a number of other

parameters: These are often accounted for by writing,

Nu =  k k N u1 2 ′ (14)

where Nu'  is the idealised-correlation-based Nusselt number, and

the k-coefficients account for deviations from this situation.  One

example, already mentioned, is the factor (Prw/Pr)
p
. Other factors

could include the effects of (a) finite numbers of rows, (b) angle of

attack, or other considerations. These are discussed below.

Finite number of rows

Idealised correlations, described above, are for deep tube banks,

where the number of rows, Nrow,  is large.  For each of the first few

rows in a tube bank, heat transfer may be substantially different

(usually less) than occurs deep in the bank.  3 shows the

correction factor  k1 as a function of Nrow.

Inclined Crossflow

In many situations, the flow is not one of pure crossflow, ie.

β < 90°.  Heat transfer is reduced from by a factor, k2. 3 shows

k2 vs. β.

Two commonly-employed methods of enhancing heat transfer in

tube banks are the use of rough surfaces and finned tubes. (See

Augmentation of Heat Transfer)

Rough tubes

Rough tubes are used to increase the ratio of heat transfer to drag

by increasing turbulence. The effects appear to be more

pronounced for staggered than in-line geometries. 
(

Zukauskas and
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Ulinskas, (1988)  propose the following prescription for staggered

geometries,

Nu= 0.5
a

b
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where k is the roughness height.

Finned tubes

External fins may be employed with gas-crossflow, in order to

increase the heat-transfer area (internal fins are also used

sometimes).  The book by Stasiuleviius and Skrinska (1988) is

devoted to the subject, as is a chapter in 
(

Zukauskas et al. (1988). 

When using finned tubes in a design, the engineer must use Nu 

correlations appropriate to finned-tubes, and properly account for

temperature variations throughout the fin.

Nu correlations for finned-tube banks

A number of general-purpose correlations for finned tube-banks

may be found; Gnielinski et al. in the Heat Exchanger Design

Handbook (1983), ESDU (1984, 1986),  Stasiuleviius and Skrinska

(1988),  and 
(

Zukauskas and Ulinskas (1988).  These typically

assume forms similar to Eq. 5, but with additional parameters to

account for the fin geometry.  The engineer should obtain Nu

correlations specific to the particular geometrical configuration

under consideration, whenever possible.

Fin conduction

When variation in temperature across the fins is significant, the

rate equation, Eq. 1, is re-written as,

&Q = E A Tf Mα∆ (16)

A is the total area for heat transfer, A = Af + Aw, where Af is the total

area of the fins and Aw that of the exposed tube-wall.   Ef is a
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surface effectiveness factor,

f
f f w

E =
A + A

A

η
(17)

and ηf is a fin-efficiency, ie. the ratio of the actual rate of heat

transfer through the fins to that which would occur if all fin material

were at constant Tw.

Figure 5 is a plot of ηf vs. non-dimensional height h*, at various

diameter ratios, Df'/D.  λf is the thermal conductivity of the fin, δ the

fin thickness and  the average heat transfer coefficient.  Primed

values, h' and D', indicate that they are adjusted for heat transfer

through the fin-tip, as indicated in Figure 5.  Charts of ηf vs. h*

have been devised for a variety of geometries; the article by

Gnielinski et al. in the Heat Exchanger Design Handbook (1983)

contains a selection. These should be used in preference to Figure

5, which was obtained from the one-dimensional fin equation

solution,

η =
h

h

*

*

tanh
(18)

where h' is calculated according to Schmidt  (Stasiuleviius and

Skrinska, 1988).

Bypass Effects

Bypass streams are relatively ineffective in transferring heat, and

are usually treated as adiabatic, ie. only the main flow stream is

used to compute heat transfer.  Since the temperature and hence

the viscosity differs from that in the main flow lanes, this must be

taken into consideration when computing the bypass and main

mass-flow rates.

Methods for calculating the thermal performance of tube

banks

How to compute the performance of a tube bank will depend to a

larger extent on which of the parameters, &Q , α , A, Tin, Tout,  etc. are
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prescribed or required, whether fluid properties are constant, and

the precision required. It is common to differentiate between

`rating' and `sizing' of heat exchangers.  This section is intended to

provide some guidelines for the reader, not a single general-

purpose procedure. Two cases will be considered in detail: (a)

Plain tubes at constant Tw and  (b)  non-isothermal plain or finned

tubes:

Plain tubes, constant Tw:

The log-mean temperature-difference (LMTD) approach is based

on the fundamental assumption that the heat flux is directly

proportional to the temperature difference between the bulk of the

fluid at some interior location and the wall , ie. the rate equation,

Equation 1, with ∆TM  prescribed according to Equation 12.

Unless all temperatures are known, a priori, a trial-and-error

method based on successive applications of the rate equation

combined with a heat balance is required. An alternative approach,

due to Nusselt, is to postulate the rate of heat transfer to be

proportional to the difference between the inlet and wall

temperatures,

& &Q =  EC T - Tw ina f (19)

The effectiveness, E, represents  the ratio of the actual to the

maximum possible heat transfer. For constant Tw ,

E =  1- e-
A

C

α
& (20)

where the quantity A Cα &  is known as the number of transfer units,

NTU.  The advantage of Tin as reference (if known) is that no

iteration is required provided fluid properties are constant and

upstream values can be used:  Even if these vary, the E-NTU-

method is often preferable, as TM affects the calculation of  via

property variations only.  A typical procedure, is as follows,

1. Given  Tin  guess a value for Tout (unless known).
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2. Calculate Re and Pr based on property values evaluated at the

arithmetic-mean bulk temperature, and Prw  at Tw.

3. Compute the value of Nu' for an ideal bank using Eq. 5 applying

corrections, k1, k2 etc. as discussed above, to obtain Nu  and

hence for the actual bank [Eq. 14].

4. Compute the overall rate of heat transfer,  , using one of two

methods:  Either calculate ∆TLM  Eq.12,  and use the rate equation

Eq. 1 to obtain , or calculate E from  using Eq. 20 and obtain  using

Eq. 19.

5. Compute the exit bulk temperature, Tout  from   , by means of a

heat balance, Eq. 8.

6. Re-iterate steps 2-6 based on the new value of Tout (unless

prescribed) until satisfactory convergence is obtained.

If changes in temperature are large, break the bank up into a

individual or groups of rows, and proceed in a sequential fashion

from the inlet to the exit.

Plain or finned tubes, general case

In many practical engineering applications, the tube-side fluid also

undergoes significant changes in temperature.  Under these

circumstances, Eq. 1 is no longer appropriate, and the rate of heat

transfer is,

&Q = UA TM∆ (21)

where U, the Overall heat Transfer Coefficient based on the

outer surface A (including fins) is given by,

1

U
=

1

E
+

R

E
+ R +

A

A

R

E
+

A

A

1

Ebankf bank

f

f

w

i tube

f

f i tubefα αa f a f

F

H
G

I

K
J

F

H
G

I

K
J (22)

where the subscript `bank' refers to the external bank-side

crossflow, and the subscript `tube' refers to the internal tube-side

longitudinal flow. The terms on the right-hand side of Eq. 22 may

be regarded as resistances to the flow of heat in the presence of a

temperature difference.  Ai is the total area for heat transfer on the
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inner tube surface, Ef bank and Ef tube are fin-surface-effectiveness

correction factors for externally and internally-finned tube surfaces

(equal to unity for plain tubes), and Rf bank and Rf tube are fouling

factors which may be estimated using the recommendations in the

Standards of the Tubular Exchanger Manufacturers Association

(TEMA, 1988). Rw is the tube-wall resistance which for plain tubes,

of length L, is given by,

w

w i

R =
1

2 L

D

Dπλ
ln (23)

where Di is the inner diameter, and λw is the wall thermal

conductivity. For finned tubes, Rw is configuration-dependent.

Commonly-employed heat exchanger design methods are (1) the

LMTD-based F-correction-factor method, (2) the P-NTU method

and  (3) the θ method.  For the F-correction method, ∆TLM,  is

defined by Eq. 12, but with  ∆Tin and  ∆Tout  the temperature

differences between the two working fluids at the inlet and outlet. 

Heat transfer is reduced by a factor F, which is a function of the

capacitance ratio, R,  and the thermal effectiveness, P, as defined

in Table II, which also gives with the modified rate equation used to

calculate  .  The P-NTU method, presumes the thermal

effectiveness, P, (similar to E) to be a function of R, as well as the

number of transfer units, NTU = AU/cold, of the cold fluid.  For the

third method, θ = θ(R, NTUcold) but a modified energy balance,

instead of a modified rate equation (see Table II) is used to

compute  .  Charts of F , P, and θ may be found in standard

references on heat exchangers, often in combined form (see

Taborek, Heat Exchanger Design Handbook, 1983).  Regardless of

which method is used, two Nu correlations are needed to calculate

U: One, as per Eq. 5, to calculate the bank-side crossflow heat

transfer coeffiecient, αbank , the other to calculate the internal tube-

side heat transfer coefficient, α tube
, (See Tubes Single Phase Heat

Transfer in). The temperatures at the solid-fluid interfaces, Tw bank
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and Tw tube, are obtained as a linear combination of TM bank and 

TM tube, using the ratio of the resistances in Eq. 22 as weighting

factors. Tw may be taken as being the temperature between the

fluid and the fouling resistance.  A typical calculation would then

proceed as follows.

1. Given Tin bank  and Tin tube , guess values for  Tout bank ,Tout tube, Tw bank

, Tw tube (unless known) .

2. Calculate Re and Pr  for tube-side and bank-side fluids at the

arithmetic-mean bulk temperatures, and values of Prw for the two

fluids based on  Tw bank  and Tw tube.

3. Compute Nubank and Nutube  using the appropriate correlations

applying corrections k1,  k2 as necessary, to obtain bank and tube. 

Calculate the overall heat transfer coefficient, U , Eq. 22

4. Compute the overall rate of heat transfer,   : Either calculate P

and R based on the guessed values and obtain F(P,R) or compute

 R and NTUc to obtain P(R,NTUc) or θ(R,NTUc) from a chart.

Calculate  from the formulae in Table II.

5. Compute Tout bank and  Tout tube from   , by means of  heat balances

applied to both tube-side and bank-side fluids Eq. 8.

Hence calculateTw bank  and  Tw tube  (a single value, Tw , will often

suffice).

6. Re-iterate steps 2-5 based on the new values of Tout bank, Tout tube

(if necessary) until satisfactory convergence is obtained.

The choice of whether to use the F-correction, P-NTU, or θ

methods will depend on the application and may result in

substantial simplifications to the general procedure detailed above.

 If all temperatures are known, the F-correction method can be

used with properties enumerated at TM. Conversely, if fluid property

variations are negligible and upstream values may be used, the P-

NTU and θ methods can be used advantageously.  If property

variations are significant, but small enough to be considered
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perturbations about  a mean, all the above lumped-parameter-type

schemes will necessarily be iterative. For large variations in TM, a

numerical scheme is preferred.

Numerical schemes

While traditional methods are meritorious, the majority of heat

exchangers are now designed using computer-software.  Many

approaches are possible; for example the E-NTU method may be

performed over a discrete number of cells corresponding to one or

more cylinders: An alternative procedure is to start from first

principles, and solve pairs of equations of the form,

bank bank tube bank

tube tube tube bank

C T =  U A(T - T )

C T = -U A(T - T )

&

&

∆ ∆
∆ ∆

(24)

on a cell-by-cell basis.  If an upwind-difference scheme is used,

∆

∆
bank bank bank

tube tube tube

T (i, j) = T (i, j) - T (i -1, j)

T (i, j) = T (i, j) - T (i, j -1)

a f

a f

(25)

and upstream values are used to ennumerate properties, no

iteration is required.  Better accuracy can be achieved with a

central-difference scheme,

∆

∆

bank bank bank

tube tube tube

T (i, j) =
1

2
T (i +1, j) - T (i -1, j)

T (i, j) =
1

2
T (i, j +1) - T (i, j -1)

a f

a f

(26)

Some iteration is now necessary, though by proceeding as

indicated in Figure 5, a simple Jacobi point-by-point method will

converge rapidly.   It is now possible to account for variations of U

due to changes in Tb on a cell-by-cell basis.  Tw may also be

obtained, at an intermediate calculation in each cell to enumerate

the dependance of U on Prw. Variations in other properties may be

dealt with on a cell-by-cell basis as necessary, depending on the

nature of the problem.

The rate equations defined Eq. 23 may be considered like a set of
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simple enthalpy-conservation equation (convection-source-term

equations).  It is possible to devise much more sophisticated two-

phase enthalpy equations, which account for bank-side mixing, 3D

phenomena etc., in addition to bulk convection  It is also possible

to generate  momentum equations  to account for flow-related

effects, bypassing, finite-number of rows, etc.  For complex flows,

the definition of U may be of limited use.  Numerical methods differ

from traditional methods in that there is no need to rely on the

premiss that heat transfer is governed by a rate equation. The

reader is referred to the articles by D.B. Spalding in the Heat

Exchanger Design Handbook (1983), and elsewhere.  The use of

spreadsheet programs, specialised heat-exchanger-design

programs and general-purpose computational fluid dynamics

software should be considered prior to writing source code. 

Simple lumped-parameter type schemes once formed the basis for

all practical heat exchanger design.  The situation is changing, and

the application of computer software, is not only increasing in use

and range of application, but is also enhancing our understanding

of the physics of flow within the passages of heat exchangers. 
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In-line

a ≥≥ 1.15, 1.2 ≤≤ b ≤≤ 4

Staggered

a ≥≥ 1.15, 1.2 ≤≤ b ≤≤ 4

Re Range c m c m

10- 3x10
2

0.742 0.431 1.309 0.360

3x10
2
- 2x10

5
0.211 0.651 0.273 0.635

2x10
5
- 2x10

6
0.116 0.700 0.124 0.700

Table I Coefficients used to calculate overall heat transfer in tube

banks using Eq. 5 with n = 0.34, p = 0.26. From ESDU International

plc, 1973.
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Dependent Variable Independent Variables Rate of Heat Transfer

F R =
T -T

T -T

 

P =
T -T

T -T

in hot out hot

out cold in cold

out cold in cold

 

 

Q = UAF TLM
& ∆

P R, NTU =
AU

C
cold

cold
&

& &Q = PC (T - T )cold in hot in cold

θ R, NTU  cold

&Q = UA (T - T )in hot in coldθ

Table II  Design methods commonly used to calculate thermal

performance in heat exchangers
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Figure 1 Variation of local heat transfer around 1) a single tube 2)

a tube in a staggered bank 3) a tube in an in-line banks. From
(

Zukauskas and Ulinskas (1988)

Figure 2 Average heat transfer for in-line and staggered tube

banks.  From ESDU (1973).
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Figure 3  Influence of number of rows on overall heat transfer in

tube banks. From 
(

Zukauskas and Ulinskas (1988).
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Figure 4 Influence of angle of inclination, β, on overall heat

transfer for inclined crossflow in tube banks. From ESDU (1973).
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Figure 5 Fin Efficiency

Figure 6 Discretized version of tube-bank heat exchanger


