i+l

NRC Publications Archive
Archives des publications du CNRC

Using the Harmony Operating System: Release 3
Gentleman, W.M.; MacKay, Stephen; Stewart, Darlene; Wein, M.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=237fde1a-3ad3-4abd-a1a4-a8e924063ab(

https://publications-cnrc.canada.ca/fra/voir/objet/?id=237fde1a-3ad3-4abd-a1a4-a8e924063ab0

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C dl*l
Council Canada recherches Canada ana, a,

8) (ERA->17), LS PP FEB. 1489,

I*I National Research Conseil national ERA-377
Council Canada de recherches Canada
Division of Division de

Electrical Engineering génie électrique

@

Using the Harmony Operating
System: Release 3.0

W.M. Gentleman, S.A. MacKay, D.A. Stewart, and M. Wein
February 1989

i+l

Canada NRCC No. 30081

Copyright 1989 by
National Research Councit of Canada

Permission is granted to quote short
excerpts and to reproduce figures and tables
from this report, provided that the source of
such material is fully acknowledged.

Additional copies are available free of charge
from:

Editorial Office, Room 301

Division of Electrical Engineering
National Research Council of Canada
Ottawa, Ontario, Canada

K1A OR6 '

This report supersedes NRC/DEE report
ERB-966, NRCC No. 27469, with the same
title

Copyright 1989 par
Conseil national de recherches du Canada

Il est permis de citer de courts extraits et de
reproduire des figures ou tableaux du
présent rapport, a condition d'en identifier
clairement la source.

Des exemplaires supplémentaires peuvent
étre obtenus gratuitement a I'adresse
suivante :

Bureau des publications, Piéce 301
Division de génie électrique

Conseil national de recherches du Canada
Ottawa (Ontario) Canada

K1A OR6

Le present rapport remplace le rapport' ERB-
966, NRC/DEE, NRCC No. 27469, qui porte
le méme titre.

USING THE HARMONY OPERATING SYSTEM
Release 3.0

W.M. Gentleman, S.A. MacKay, D.A. Stewart, and M. Wein

ERA-377

NRCC No. 30081

February 1989

TABLE OF CONTENTS

Page

ABSTRACT/RESUMEY
WHAT IS HARMONY? WHATISITNOT? 1
WHATISREALTIME? v v v v e e e e e e e e 2
TASKS s e e s e e e 3
COMMUNICATIONS AND SYNCHRONIZATION 6
STORAGECLASSES o v e e i e e e e e e 8
STREAM INPUT/OUTPUT « . v v v v v i v v v e 10
IMPLEMENTATION OF OTHER INPUT/OUTPUTMODELS 12
SERVERS AND CONNECTIONS 16
USER'SVIEWOFAPROGRAM 21
DEVELOPMENTENVIRONMENT 22
Support Toolso 22
debug Lo 23
listing 23
examine L e e 23
bound L e e 23
fixaddr L e e 24
fixexe e e e e e e 24
fixmsr e e e e e e 24
makemsr L s e e e 24
listtree L . e e e . 24
mmake e 24
PERFORMANCE -. o e 25
ACKNOWLEDGEMENT o v v v v o e e . 26
REFERENCES o o e e 26
APPENDIX A. A SAMPLE MULTITASKPROGRAM 29

APPENDIX B. A SAMPLE MULTITASK MULTIPROCESSOR PROGRAM . 33
APPENDIX C. DECLARATIONS AND SYSTEM FUNCTION CALLS . . . 35
APPENDIX D. USING SUPPLIED SERVERS 45
APPENDIX E. SOFTWARE ENGINEERING CONSIDERATIONS:

SOURCE MANAGEMENT AND THE ORGANIZATION

OF THE HARMONY SOURCETREE 61
APPENDIX F. DEVELOPMENT SYSTEM USEDATNRC 65

iii

ABSTRACT

Harmony is a multitasking, multiprocessing operating system for realtime control (such as is required
in sensor-based robotics). It can also be used to implement “smart peripherals” to be used with itself or
with some other operating system, and it provides a simple and inexpensive vehicle for experimenting with
parallel computation. It is a portable system in that with moderate effort it can be realized on any computer
of appropriate architecture. Our realizations run on several multiprocessor systems (VME and Multibus)
based on the Motorola 680x0 family of processors. There is also a version for the Atari 520 or 1040 ST
(MC68000) evaluation machine. Realizations exist also for other systems and for the Digital Equipment
Corporation VAX. Written in C, Harmony is portable also across several development systems, of which
three are supported directly. The one used in our Laboratory is based on the Macintosh personal computer
and is described here. This report presents an overview of the operating system, the rationale for the
design and the abstractions used in creating applications that can be targeted to either a single processor or
a multiprocessor. The report also discusses the principal mechanisms used for task management and for
intertask communication. Appendices in this report include examples of both uniprocessor and
multiprocessor programs and listing of user callable functions.

RESUME

Harmony est un systéme d'exploitation multitdche et multitraitement pour la commande en temps réel
(notamment pour la comande de robots dotés de capteurs). On peut également s’en servir pour la gestion,
sous Harmony ou un autre systéme d’exploitation, de périphériques intelligents. Il constitue un outil
simple et peu coliteux pour faire des expériences en traitement paralléle. C’est un systéme transférable en
ce sens qu’on peut I'implanter assez facilement sur n’importe quelle machine possédent I’architecture
appropriée. Les versions que nous avons realisées tournent sur plusieurs systémes multiprocesseur (VME
et Multibus) architecturés autour de la famille de processeurs Motorola 680x0. Il existe également une
version pour les machines Atari 520 ou 1040 ST (MC68000). Il existe également des versions pour
d’autres systémes et pour le VAX de Digital Equipment Corporation. Rédigé en C, Harmony peut étre
utilisé avec plusieurs systémes de développement, dont trois sont supportés directement. Celui dont nous
nous servons a notre laboratoire est basé sur I’ordinateur personnel Macintosh et est decrit ici. Le présent
rapport présente une vue d’ensemble du systéme d’exploitation, des motifs qui ont présidé a sa conception
ainsi que des principes sur lesquels repose la création de programmes d’application orientés
monoprocesseur ou multiprocesseur. Le rapport étudie également les principaux mécanismes utilisés pour
la gestion des tdches et pour les communications avec ces derniéres. On trouvera en annexe des examples
de programmes monoprocesseur et multiprocesseur ainsi qu'une liste des fonctions qui peuvent étre
appelées par I'utilisateur.

USING THE HARMONY OPERATING SYSTEM

Release 3.0
W.M. Gentleman, S.A. MacKay, D.A. Stewart, and M. Wein

WHAT IS HARMONY? WHAT IS IT NOT?

Harmony! is a multitasking, multiprocessing operating system for realtime control. (Each of
these terms will be examined later.) It is a portable system, in that with moderate effort it can be realized
on any computer of appropriate architecture. Our realizations run on several system types based on the
Motorola 680x0 family of processors. There are two versions for a multiprocessor based on the VMEDbus,
one using the DY-4 DVME-134 (MC68020) single board computer (SBC) and the other using the Io Inc.
V68/32 (MC68020) SBC. There is also a version for the Atari 520 or 1040 ST (MC68000) evaluation
machine, as well as for the earlier Chorus multiprocessor, an MC68000-based Multibus multiprocessor
using the Omnibyte OB68K1A SBC. Realizations exist also for other 680x0 family systems and for the
Digital Equipment Corporation VAX. The operating system is written in C (plus a small amount of
assembly language) and user programs at present must also be written in C or Fortran, although the system
is designed to support eventually other languages such as Pascal. Care has been taken to avoid dialect or
library dependence on any specific C compiler —currently, the compilers being used are Consulair Mac C,
Apple MPW C 2.0, and A/UX C (a port by Unisoft of the PCC compiler) hosted on the Macintosh, and
the Whitesmiths’ C compiler hosted on the VAX/VMS.

Although C is used as the programming language, programs written to run in Harmony look, and are
thought of, very differently from conventional C programs that are written to run in Unix2 or some other
conventional operating system. This difference goes beyond the question of what functions are available in
the standard libraries and will be discussed at length later.

Harmony is an open system. This is a description that can be used at many levels. In the case of
Harmony, this description is intended to imply that it is easy to use the system on many different
configurations of hardware, and in particular to support peripherals not thought of when Harmony itself
was originally designed. It is straightforward to integrate a new device into both the physical level of
connection and the higher levels of software abstraction.

One major aspect is that Harmony is not designed to support a program development environment,
and in particular it is not a multiuser timesharing system. Harmony devotes the entire resources of the
machine to running a single multitask application program, and is bound in with that program at link time
(unless a system in ROM is used). Program development is done on some host computer, running its own
operating system, and test executions are performed by downloading executable images into target
processors. (Production programs instead might well be in ROM and be started by power up or reset.) In
particular, Harmony programs cannot assume that they have been started by a command interpreter like the
Unix shell and that they have command line arguments and redirected I/O. Indeed, they may not have
terminal I/O at all.

I Mark reserved for the exclusive use of Her Majesty the Queen in right of Canada by Canadian Patents and
Development Ltd./Société canadienne des brevets et d'exploitation Liée.

2 Unix is a trademark of AT&T.

WHAT IS REALTIME?

The first of the terms used in the initial sentence to be examined is the term realtime. Realtime
programming has two independent aspects. First, programs must interact with the real world, and second,
time itself may be a critical resource.

What makes interacting with the real world different from other kinds of programming is primarily
that relevant events in the real world can happen independently of, and asynchronously with, the state of
computation of the program. Conventional programming assumes a master/slave relationship between the
computer and the rest of the world — things only happen when requested by the computer and are then
guaranteed to happen, typically synchronously with the computation. This relationship does not hold for
programs that interact with the real world. Events in the real world are often spontaneous, as seen by a
program, and anticipated events often do not happen. Often the program cannot be aware of all of the
relationships between events occurring in the real world. Indeed, the situations that can arise in the real
world are often so varied that it is unrealistic to attempt to anticipate them all, and thus programs must cope
with unexpected events.

Unless we are willing to limit programs to tracking a single sequence of events and to busywait for
each event in the sequence to happen, we need a mechanism for expressing asynchronism in the program,
so that the asynchronism in the program can model the asynchronism in the real world and be
synchronized with it. This mechanism must be understandable, well defined, and efficient, so programs
can be designed using it and can be reasoned about so that their behaviour will be known. The mechanism
that Harmony provides is tasks (also called processes in some other systems). It will be described below.

A secondary aspect of interacting with the real world is that exotic peripherals are often required to
sense or affect things of interest. Not only do these exotic peripherals require special command interfaces,
because they do not fit the traditional I/O model, but they often require complex algorithms in order to be
used, because they are flakey: sensors do not reliably return correct values, actuators do not reliably
accomplish the desired effect. Error recovery is thus also intrinsic to interacting with the real world. Both
error recovery and coping with unanticipated events are considerably simplified if resources can be
allocated and deallocated dynamically. Such resources include tasks themselves, where instantiations must
be created and destroyed dynamically, as well as blocks of memory of various sizes, which on demand are
allocated to and freed by tasks, and connections between tasks and peripherals, which on demand are
opened and closed by tasks.

Working with time itself as a critical resource is different from other programming in several ways. In
conventional programming, time is irrelevant except perhaps in terms of overall efficiency considerations,
or for recording and metering. Time can become a critical resource if, for instance, an external event
requires a control signal in response within a guaranteed time, or if an external event produces volatile data
which must be accepted soon enough to avoid the data being lost, or if periodic activity must be performed
at regular intervals with little jitter, or if performance requirements indicate need for explicit parallelism
between computation and external activities or between different computations, or if parallelism is intrinsic
to the computation (as when stepping motors in orthogonal directions must operate simultaneously to
produce a diagonal movement). Of course time is only a critical resource when the constraints are
sufficiently stringent, given the available computational power, that conformance must be planned for and
will not happen by accident.

Sometimes, when time is a critical resource, time is of the essence and actually defines or redefines
the computation. For example, in the above case involving periodic activity, if new sensor data are not
available in time for the next cycle of computation, previous data must be extrapolated. Situations dealing
with motion, and predicting trajectories, are often like this. More commonly, when time is a critical

resource, the requirements translate into scheduling control. There is the choice of which computation to
do first, when several are possible. When some computation becomes possible, there is the question of
which current computations should be run to completion before starting this new one and which
computations should instead be preempted. There can also be the necessity of ensuring the proper
sequencing of otherwise independent computations. In Harmony, these things are achieved by dividing the
program into tasks and using the rules for communication and synchronization between tasks, and the
rules, including priority, which govern the scheduling of tasks on each processor. (These rules will be
detailed below.)

One common characteristic when time is a critical resource is that no unanticipated delays in
performing a computation are acceptable, that time performance must be guaranteed. This implies that only
algorithms with execution time that can be bounded can be used. This stipulation apparently conflicts with
the requirement (from interacting with the real world) that resources be dynamically allocated. The
resolution of this dilemma is to preallocate those resources that will be required at critical times, doing the
dynamic allocation at times that are not critical. For example, execution stacks are preallocated out of
contiguous memory, rather than having stack frames allocated on demand from a heap, so that the cost of
calling a function is bounded. Demand paging obviously is unacceptable in these circumstances.

Sensor-based robotics is an example of realtime computing that clearly illustrates both the real world
aspect and the time critical aspect. In many robotic applications, there are a variety of objects in the robot’s
workspace. The robot must be aware of their positions, either to avoid them, or to make appropriate
contact with them. Unless these objects are precisely located by mechanical fixturing, their exact locations,
perhaps their shapes, and even their existence must be determined by sensors. Vision is one possible
sensor, sensing the reactive forces on the robot’s wrist is another, tactile and proximity sensing are yet
others. The sensor measurements must be related to some abstract model of the environment for this data
to be useful in planning robot motions. Note that this involves significant computation, using sophisticated
algorithms. Some failure modes, and some reasons for unanticipated events, are physically obvious:
lighting may be inadequate to visually resolve objects or objects may occlude each other, force exerted by
the robot may cause objects to move or even break, proximity sensors may receive echoes from objects
other than the one of primary interest. Having robots interact with objects in motion, even with another
robot, is particularly challenging. The trajectory of the objects must be predicted and must be continually
updated as new sensor data become available. The time at which things are computed becomes important,
it may be necessary to predict how long various computations will take, and computations may have to be
scheduled so that values will get computed soon enough. Not only does it become necessary to know how
long it takes for sensors to obtain data, and for the computer to analyze the data, and for the robot and
other effectors to perform operations, but time becomes of the essence in a program, such as having to
specify when a robot arm should be at some point, and what speed it should have in what direction, in
order to intercept some object, match the object’s motion, and connect with it.

TASKS

At several points in the foregoing discussion, the concept of tasks has been alluded to, and it is now
appropriate to define it. Tasks are a concept not used in conventional programming, not even in ordinary C
programs in Unix, but they are the heart of programming in Harmony. A program in Harmony is made up
of one or more, but typically many, tasks. A task is best thought of as like a subroutine, except that an
instantiation of it must be explicitly created, and once it has been created, it executes independently of, and
in parallel with, the task that created it. (Actually, tasks that are completely independent of each other are
not of very much use, so a mechanism must be provided for tasks to communicate and synchronize with
each other. The mechanism that Harmony provides is message passing, which will be described shortly.)
Each task itself executes sequentially and synchronously, like a conventional program — the asynchronism
and parallelism are strictly between tasks.

Executing in parallel is, of course, only actually possible when the computer is a multiprocessor, and
the tasks are executed by different processors. There are two classical reasons for using multiprocessors: to
increase total computing capacity, and to have redundancy to provide reliability in case of hardware failure.
In realtime systems, there is a third reason: to guarantee responsiveness, by ensuring that a processor will
be available to service an event soon enough. Harmony thus, as stated at the beginning, supports
multiprocessing. When a task is created, the processor on which it will execute is specified, and this need
not be the same as the processor on which the task requesting the creation is executing. A task competes for
scheduling only with other tasks that run on the same processor. Note that the Harmony model of tasks tied
to specific processors is different from the model used in some other systems, where any processor can
execute any task. The Harmony model recognizes that processors may have local resources, such as
memory or peripheral IC’s, that can only be accessed by tasks executing on that processor, or that are much
more efficient if so accessed. It also facilitates different processors executing different instruction sets. The
hardware assumptions Harmony makes are discussed elsewhere [1].

Some simple multiprocessing systems allow only a single task to execute on each processor. This has
the advantage of simplicity and makes context switching overhead negligible. However, it has significant
disadvantages. The number of tasks can no longer represent the natural asynchronism of the computation
but is constrained by the number of processors in the configuration, and failed processors must be allowed
for. Moreover, processors, though cheap, are not free, and utilization may be poor when it is known that
certain tasks will execute at disjoint times. Accessibility of peripherals can force several tasks to be
executed by the same processor. Certain operating system services, required by each processor, are most
conveniently implemented by separate tasks executing on that processor. Consequently, Harmony
supports multiple tasks on each processor.

Since multiple tasks can be created to run on any given processor, Harmony must provide multitasking
to share the processor amongst these tasks. The approach taken in timesharing systems to provide the
analogous capability for multiprogramming is through timeslicing and round-robin scheduling. However,
this approach would be inappropriate for realtime, given the requirements for control of scheduling as men-
tioned above. There are several scheduling schemes possible, such as deadline scheduling or clocked
scheduling. The scheme in Harmony uses priority-based preemptive scheduling. Each processor supports a
separate priority scheduling system. Each task has a fixed priority level. There is a separate FIFO ready
queue for each priority level, and all tasks of that priority level which are not blocked are in that queue
(blocking actions will be described later). The first task on the highest priority nonempty queue is the active
task, i.e., the one which is executing. It continues to execute until it blocks or is preempted by a higher
priority task becoming ready. That is, Harmony tasks run natural break and support preemption. Priority,
as used in realtime systems, does not refer to importance, but rather to urgency. The ideal effect of
priority is that the scheduling behaviour of a task can be understood by understanding only those tasks at
the same or higher priority levels — the existence of lower priority tasks, much less their behaviour, can be
ignored. In particular, if there is only one task at the highest priority, strict bounds can be placed on
scheduling delays and jitter. Another important effect of priority is that nonblocking actions of high priority
tasks can be viewed as atomic by lower priority tasks.

A task is thus the unit of sequential and synchronous execution. A task is also the unit of resource
ownership. All resources, such as memory blocks, peripherals, or I/O connections, are owned and
managed by some task.

For a task to be created, there must be a corresponding task template, which specifies the essential
parameters of the task. (Multiple instantiations of the task defined by a given template can exist at the same
time.) A task template is the following structure:

struct TASK_TEMPLATE

{

k

uint_32 GLOBAL_INDEX;
task (*ROOT)();
uint_32 STACKSIZE;
uint_32 PRIORITY;

The type uint_32 is compiler-specific — see Appendix C. The fields in this structure are as follows:

GLOBAL_INDEX

ROOT

STACKSIZE

PRIORITY

is an integer identifying this template. It must be unique over all templates on all
processors for this program. The range of these indices is 1 through
_N_task_templates, a ROM external configuration parameter for which 200 is usually
a satisfactory value. It is wise to use only larger values for GLOBAL_INDEX, say
over 50, and also to use symbolic constants instead of literal integers. The indices 1,
2, and 3 are reserved: 1 is the first user task (i.e., it calls the procedure main()), 2 is
the directory task (i.e., it provides task IDs corresponding to symbolic names), and
3 is the gossip task (i.e., it provides a general reporting and logging mechanism for
other tasks). The system itself creates on processor 0 one instance of each of these
three tasks.

is the function of type task that is the code which the task will execute. (This
function can, of course, call others.) It is a normal parameterless function with no
return value. (A typedef defines task as void.) If the function ever returns, the task is
destroyed; however, the parent is not notified. More than one task template might
have the same root function.

Each task has its own stack, which is preallocated when the task is created.
Unfortunately, most compilers do not generate code to check for stack overflow. A
program development tool, the stack bounder, helps with the choice of this value.

Task priority is specified by an integer; larger is lower priority. When Harmony is
ported to a given target, these priorities are arranged to be consistent with whatever
hardware priorities the target implements. For instance, on the Dy-4 DVME-134
multiprocessor, values 0 through 4 correspond to the Motorola MC68020 hardware
interrupt levels 5 through 1. All lower priority levels correspond to subdivision of
hardware priority 0. The number of priority levels is not fixed, but having too many
levels gains little and adds overhead.

The executable image for each processor is compiled and linked separately in Harmony. For each
processor, that image is defined, in part, by the declaration of a vector of task templates, _Template_|list,
that determines what tasks can be created on this processor. The vector is terminated by a null task
template, i.e., one in which all fields are zero. Tasks are created by calls to the _Create primitive,
specifying a template index:

id = _Create(global_index);3

The _Create primitive returns a value id, which is a task ID used to identify this particular instantiation
in future, e.g., for message passing, task destruction, etc. The value of id can be treated as simply a unique

3 The form given in the text shows the usage of functions. Precise definition of type and of arguments appears in

Appendix C.

6

collection of bits, which the programmer need not decode. Actually, it is an encoding identifying the
processor and task. As a consequence, there is a limit of 4096 tasks that can be created on any one
processor and a limit of maximum 1024 processors. The limits are high enough that one is not likely to
reach them.

Two functions are provided to obtain other IDs that are often wanted: the ID of the task itself and the
ID of the task that created this one:

id = _My_id();
id = _Father_id();

As described above, a task is destroyed if its root function returns. It can also destroy itself by calling
the _Suicide primitive:

_Suicide();
More generally, any task can be destroyed by calling the _Destroy primitive:
_Destroy(id);

Destruction implies that the task is stopped, its id made invalid, and that its resources are returned to
the system. Its connections (which will be discussed later) will be closed. Destruction of a task also
implies destruction of all the descendants of the task, i.c., those tasks it created, those they created, etc.
This is important in order to avoid the existence of orphans, tasks that hold resources but are useless
because no other task knows of their existence. The _Destroy primitive is synchronous, which means that
all this will be completed before the primitive returns, so the resources are immediately available for reuse.

COMMUNICATIONS AND SYNCHRONIZATION

Although the main purpose of using tasks is to allow them to proceed with their own computations
independently and in parallel, each running at its own speed, in most practical programs the tasks need to
communicate and synchronize with each other occasionally. In particular, if more than one task accesses
the same location in storage, and if the value at that location can change, then there is a possibility of a
critical race where the result of the program depends on when which task reads and when which task
writes the value. Various systems have provided different mechanisms for dealing with the
synchronization problem [2 - 4], including semaphores, monitors, conditional critical regions,
rendezvous, and several kinds of message passing. Harmony addresses the problem by a paradigm for
structuring multitask programs, using four primitives that provide message passing. A message, in
Harmony, is a variable length contiguous block of storage, the first four bytes of which are a 32-bit
unsigned integer specifying the length. Typically the type of the message is actually a struct or union, but
the primitives declare the type for their arguments as char *, requiring a cast. The primitives are
implemented as functions:

id = _Send(rgst, rply, id);
id = _Receive(rqst, id);

id = _Try_receive(rgst, id);
id = _Reply(rply, id);

The semantics of these primitives are as follows: A task wanting to send a message to another task
sets up that message in space pointed to by the rgst argument, sets up space pointed to by the rply argument
into which to receive a message in reply, and then calls the _Send primitive specifying in the id argument

the ID of the desired correspondent task. A task wanting to receive a message must set up space pointed to
by the rgst argument into which the contents of the sender’s rgst message can be copied, and then calls
either the _Receive or the _Try_receive primitive, specifying in the id argument either the ID of a particular
correspondent task (receive specific) or 0, the latter indicating that a message will be accepted from any
task (in fact FIFO). When the _Receive or _Try_receive primitive returns, the value id retumned by the
function is the ID of the correspondent task, and the sender’s message will have been copied into the
receiver’s message. After the receiving task has finished processing the sender’s request, it sets up, in
space pointed to by the rply argument, the message to be replied back to the sender, and calls the _Reply
primitive with the id argument specifying the sender. Specifying the sender is necessary because it is not
required that a sender be replied to before receiving another message, nor that messages be replied to in the
order they were received, in the inverse order to which they were received, or any other fixed order. A
reply can only be made to a task from which a message has been received and to which a reply has not yet
been made, however. The message being replied to the sender is copied from the receiver’s space to the
space provided by the sender before the _Send primitive returns. (Detailed definitions of the Harmony
fundamental structures used to define the arguments are given in Appendix C).

A particularly important aspect of the semantics of these primitives is their blocking behaviour, for
this is how tasks synchronize with each other. The sender blocks from when the _Send primitive is called,
not just until the corresponding _Receive or _Try_receive primitive is called by the receiver but until the
receiver calls the corresponding _Reply primitive. A receiver calling the _Receive primitive blocks if the id
argument is 0 and no task has already called the _Send primitive to send a message to this receiver, or if
the id specifies a particular task and that task has not yet called the _Send primitive to send a message to
this receiver. The receiver calling the _Receive primitive unblocks when the message for which it is
waiting becomes available. By contrast, the _Try_receive primitive is nonblocking and fails immediately,
returning 0, if the desired message is not available when the receiver calls the primitive. The _Reply
primitive is a nonblocking operation for the receiver (because the sender is known to be already blocked)
and it also unblocks the sender, allowing it to run again. Of course if the sender and receiver happen to run
on the same processor, the normal scheduling rules will dictate which actually runs first. Nothing else in
the foregoing discussion is affected by whether the communicating tasks happen to be on the same
processor or different processors.

Because tasks can be destroyed, it is possible that the primitives can fail. This is the reason why
_Send and _Reply are also implemented as functions: all four primitives return the ID of the correspondent
task if they succeed, and 0 if they fail. Another point to note is that the length of the message indicated in
the space copied from and copied to may disagree. Only the shorter length is actually copied, but because
the length copied from the source is the first thing copied into the destination space (overwriting the length
originally there), it is possible to find out if the message was truncated, and how much space would be
required to get it all.

There is a certain symmetry between _Send and _Reply in that both transfer data to another task. By
turning around the usual role of these primitives, a nonblocking communication is possible between one
task and another which has prearmed for the communication by sending to indicate it is ready to receive a
message. That is, suppose task A has some data to transfer to task B. Normally, one would think of A
sending a message to B. If this is done, A will block until B replies. If, however, it is important that A not
block, the communication could be reversed and B could instead send to A and block. When A is ready
with the data, it can transfer the data to B in a reply, with which A will not block but will continue to
execute, and B will also resume execution in parallel. When B finishes processing the data, it can send to
A again, returning any results and preparing to repeat the cycle.

The paradigm {2] is that, in general, tasks do not use resources directly; for example, several tasks will
not all access a location in memory that can change. Instead, each such resource is owned by a single task,

8

and operations on the resource are performed by that task on behalf of other tasks that have sent messages
requesting these operations. The task given the responsibility for some resource is referred to as a server,
since it is seen by other tasks as providing a service — the tasks using this service are referred to as
clients. Mutual exclusion follows directly from the fact that the server is a single task, with a single thread
of execution, and messages are received one at a time. Sometimes, parallelism can be exploited with respect
to the resource the server controls. This is done by the server having worker tasks that employ the reverse
communication described earlier — each worker task sends to the server whenever it has completed the last
item of work it was given, and consequently is available to be given (by a reply) another item of work to
do.

Occasionally, it is appropriate for closely cooperating tasks to share memory because the protocol by
which they cooperate ensures this is safe and because the overheads of passing the data back and forth by
message passing would be excessive. (Large constant tables are a classic example of where sharing is
necessary and safe.) Harmony supports this, in that addresses mean the same to all tasks on the same
processor, so pointers can be passed in messages and used by recipient tasks. When Harmony is
implemented in a flat address space shared memory multiprocessor, this extends to pointers used by all
tasks, whether on the same processor or not. However in a thinwire implementation, where processors
communicate via reliable links but cannot directly access each other’s memory, a pointer is only useful
within a single processor. Because processor images are linked separately, externals are shared among
tasks on the same processor, but only among tasks on that processor. In general, sharing memory requires
great care and understanding, however, and should be avoided where possible. The tasks supplied with
Harmony do not use shared memory, except for accessing _Dev_data_table [5] and in the debugger. In a
few cases it has been necessary to provide a readable copy of a write-only device register that unfortunately
must be shared by otherwise independent tasks.

The semantics of the call to _Send used by a client task to a server are identical to a procedure call,
and so are familiar and comfortable to all programmers. Indeed, this semantics has become known in the
literature as the remote procedure call. Because _Send and _Recsive can block, there is some possibility of
deadlock, but in practice it does not happen when the client/server paradigm is used because almost the
only way to get a deadlock would be to have a cycle of tasks sending to each other. With a hierarchy of
services implemented using lower level services, that never happens.

STORAGE CLASSES

A program in C running under Harmony has access to five storage classes: external, static, automatic,
register, and dynamically allocated.

The first two can be useful, but have complicated aspects. Because the executable image for each
processor is linked separately, externals or statics referenced by tasks on one processor are different from
those referenced by tasks on another, even though the name in the source code is the same. On the other
hand, all tasks on the same processor will access the same instance of a named external or static — which,
unless the external or static is initialized and not subsequently assigned to, can lead to critical races. It is
also worth noting that ROMability is often an objective of realtime systems, and that an external or static
that is initialized by compile-time initialization is not ROMable if it is subsequently assigned to.

The situation is much simpler for variables of the automatic storage class. They are allocated on the
stack of the task, dynamically as the task executes. There is a different instance at each function call, never
mind for each task. The stack for the task itself is dynamically allocated when the task is created and
recovered when the task is destroyed. Because local memory typically has faster access, the stack for a
task is allocated from memory local to the processor on which the task will run.

9

Some of the hardest bugs to find involve stack overflow, where the stack required at some point in the
nesting list is bigger than what was allocated for the task. Unfortunately, there is rarely adequate hardware
checking for this when there are multiple stacks in the same address space, and most compilers do not
generate code for a runtime software check on function entry. Harmony provides two aids to alleviate this
unsatisfactory situation. The first is a function that can be called to determine if the stack for this task is
already overflowed:

boolean = _Stackoverflow();

The other is a program development tool, bound, that determines the required stack size when the call
graph for a task is simple (an acyclic digraph of known functions) and interactively aids the user in
choosing an appropriate stack size when there is recursion or indirect function calls.

The register storage class of course has no problems for tasks.
A contiguous block of storage can be dynamically allocated by calling the primitive:
ptr = _Getvec(size);
where size is the number of bytes in the desired block, and the value returned is typed as pointer to char, so
typically must be cast to the required type. The value 0 is returned if the allocation failed. Memory is

allocated from a pool local to the processor executing the primitive. The memory obtained is not initialized
to any particular value.

When a block of storage is no longer required, it can be returned to the storage pool by calling the

primitive:
: _Freevec(ptr);
When a task is destroyed, all of its allocated blocks are automatically returned to the storage pool.

Occasionally it is desirable to allocate an overly generous block of storage, then return the excess to
the storage pool once the true requirements are known. Reducing the block to size and returning the excess
is achieved by calling the primitive:

_Trimvec(ptr, size);

The size of a dynamically allocated block is available from the primitive:

size = _Sizeof(ptr);

A first fit storage allocation strategy is used for _Getvec because, although it does not provide the
fastest allocation, the probability of denials is reduced since the graded distribution of idle blocks that
develops over time preserves larger blocks. The classical problem with first fit is that each search for a
suitable idle block examines whatever permanently allocated blocks are at the beginning of the pool as well
as the blocks that are too small. Storage allocation for blocks size or larger may be faster if from time to

time the starting point for the space search is reset by calling the primitive:

_Tune_Getvec(size);

10

STREAM INPUT/OUTPUT

The model of stream I/O is a powerful and uniform abstraction that is useful for doing input/output to
a wide range of devices, from serial lines to terminals to tapes to disk files. A stream is an infinite sequence
of bytes in which a current position is defined, and on which the operations of getting the next byte,
putting the next byte, and changing the current position may be performed. Any higher level structure must
be inferred from the value of the current byte, the context of the current byte, or the current byte position.
For example, numbers are formed as sequences of bytes separated by delimiters; variable length lines of
text are readily supported by separating the lines by a new-line symbol and transparent communications
line control is achieved by ASCII control characters together with escapes inserted into the text to be
transmitted.

Because the stream I/O model states that there is a first byte and each byte has a successor, Harmony
does not use the concept of an end-of-file. Instead, a mechanism is introduced to indicate the end of useful
information, whereby all successors to the last useful byte are NULL. Two functions are introduced to
support this concept. The first function is _Only_nulls_left(), which returns TRUE to indicate end of useful
information, and the second function is _Nullify(), which, on output, clears all successor bytes. The stream
I/O model is based on a paradigm of a disk file. Therefore it is natural for a stream to be opened for read,
write or read/write. A discussion of differences between the Harmony model of input/output and that of
Unix can be found in Application Note n004 [5]. See also the discussion of the underlying I/O model on
p.15.

Harmony supports connection-oriented stream 1/0. (All types and manifest constants referenced
below are declared in the standard header, sys.h, which should be included in any compilation of a
Harmony program — see Appendix C.) A stream is made accessible by being opened by a task:

ucb = _Open(diractive, userid);

where directive is a string that symbolically defines the stream of interest and will be discussed more fully
later, and userid is an unsigned integer value that is an application-defined identification which servers may
use to enforce access control. The value returned, ucb, points to a dynamically allocated struct called a
user connection block that defines the server and connection number associated with this stream and
points to the ucb_xtra, a second dynamically allocated struct that contains the buffer and supporting
pointers. The user of stream I/O need not be aware of these details. The value 0 is returned if the open
failed. There is no fixed limit as to how many streams may be open. In general, the same byte stream may
be opened more than once (although some servers may disallow this), each with its own current position.
This is typically done when several tasks use the same stream.

A streamn which no longer needs to be accessible should be closed:
_Close(ucb);

Destruction of a task automatically closes all its open streams. It should be noted that closing a stream does
not imply flushing any buffers (see below) and this must be done explicitly.

For each task, at most one of the opened streams is selected for input at any time, and all input comes
from this stream until the selection is changed by:

prev_ucb = _Selectinput(ucb);

where the function returns the user connection block, prev_ucb, identifying the previously active stream.

11

Similarly, for each task at most one of the opened streams is selected for output, and all output goes to
that stream until the selection is changed by:

prev_ucb = _Selectoutput(ucb };

In this way, input bytes can be obtained from the selected input stream without the cost and
inconvenience of specifying the stream each time:

byte = _Get();

and similarly output bytes can be put to the selected output stream without the cost and inconvenience of
specifying the stream each time:

byte = _Put(byte);

The byte output is returned as the value of _Put because of the convenience this often provides in program
control structure.

There are also stream /O primitives in terms of records, which offer significant notational advantage
when entire records are to be moved. These functions refer to the currently selected stream and are:

error = _Get_record (record, size);
error = _Put_record (record, size);

where the record is a pointer to char and size is the number of bytes. The bytes in the stream will be in the
same order as they are in memory.

Although the abstraction of stream I/O is attractive, it would be impractically expensive if it were not
actually buffered so that _Get, _Put, _Get_record and _Put_record usually just reference a local buffer
instead of actually doing I/O or even sending requests to a server. This buffering is transparent on input
(although finding whether a byte is available for input is impossible without taking the risk of blocking)
but not on output. The output buffer will be sent to the server to be output when it is full, but situations
often arise where the buffer should be forced out without waiting to be full. This is done by:

_Flush();

(It is unfortunate that the phrase flush the buffer has two conflicting interpretations — instead of the one
used here, there is a different one sometimes used in other systems to imply that the buffer contents should
be discarded.)

The buffered input makes possible a function which is very convenient when breaking input tokens at
delimiters, or when reading input that may be of several different forms. This is the action of putting the
last byte read back into the input stream, so it will be read again by the next _Get. This action works only
for the most recently read byte on the current input stream, although that can be any input stream:

_Unget();
For a more general mechanism, it is meaningful for some streams, such as sequential disk files, to

change the current position to an arbitrary position in the stream, either indexed absolutely from the origin
of the stream, or relative to the current position:

12

_Seek(ucb, position, relative);

Here position is an int_32, and relative is nonzero if the indexing is relative to the current position. This
function can be used for streams that are opened as read or read/write. The function cannot be used for
streams that are opened as write only, mainly as a consequence of, and interaction with, buffering.

On top of this basis, a few higher level functions are provided for convenience. Numbers are read free
format, with the C convention where 0xNNN represents hexadecimal, ONNN octal, and NNN with non-zero
leading digit represents decimal, by:

number = _Get_number()7#
Numbers can be printed in decimal by:
_Put_decimal(number);
or in hexadecimal by:
_Put_hex(number);
and strings can be printed by:
_Put_string(string);
The above can all be combined by:
_Printi(format, item1, item2, ...);

which prints the variable number of items according to the format string. As in Unix, the characters in the
format string are directly output, except that %% is printed as %, %c prints the corresponding item as a
character, %i or %d prints the corresponding item as a decimal integer, %h or %x prints the corresponding
item as a hexadecimal integer, and %s interprets the corresponding item as a pointer to a string and prints
that string. Full format control as in Unix is not supported. In particular, there is currently no floating point
conversion.

IMPLEMENTATION OF OTHER INPUT/OUTPUT MODELS

Not all I/O devices fit the stream I/O abstraction. Moreover, for some I/O devices, even though the
abstraction can be forced to fit by embedding control in the stream of bytes, there are realtime applications
that cannot afford to pay the performance penalty of such a uniform implementation. Consequently, it is
necessary for Harmony to allow the user to design and implement his own I/O abstractions, and for tasks
in a user program to have the ability directly to perform I/O operations and to handle interrupts. Even when
the stream 1/O abstraction is used, these facilities may be needed because, Harmony being an open system,
the user may have unique devices for which he must therefore supply the tasks supporting the streams. In
any case, the user will have to specify for any particular program which of the available servers are
needed, because configuration of a control computer for realtime applications varies so widely.

To allow the user program to do /O directly, with maximum performance, Harmony ignores the
supervisor versus user state distinction present in most hardware, and runs the whole program in

4 The names of the stream I/O functions arc those in Release 3.0 of Harmony. Programs using Release 2.0 format can use
an appropriate header file to alias the old name to the new one.

13

supervisor state. For memory mapped /O, such as used with the Motorola MC68000, the task owning an
I/O device can issue the I/O instructions directly in C — other processors, which have special 1/0
instructions, would require assembly language subroutines. The actual I/O commands depend, of course,
on the device, and might involve either programmed I/O or DMA. Synchronizing the task with the I/O
device can be done busywait by reading status registers, either pre-busywait by checking that the device is
ready before issuing an [/O command, or post-busywait after an /O command is initiated by checking for
the device to have completed before going on. There are situations where busywait synchronization is the
preferred solution, because the busy state is guaranteed to clear in less time than would be required for a
context switch to another task. However, in general it is unsatisfactory for three reasons: because in
uselessly consuming processor cycles it prevents other tasks of the same or lower priority from running,
because it is difficult to do with more than one device (especially input devices), and because it can readily
lead to deadlocks. Generally, better practice is for the task to initiate an I/O command to the device, to
synchronize by blocking while waiting for an interrupt to signal completion of the command, then to
retrieve any results. (A pre-wait version, similar to pre-busywait, is occasionally appropriate instead.)

Harmony provides a primitive for awaiting an interrupt:
_Await_interrupt(interrupt_id, rply_msg);

The semantics of this primitive are something like those of the _Receive primitive. The task executing the
primitive blocks until the interrupt identified by interrupt_id occurs. The rply_msg argument of the primitive
is provided because experience has shown that many peripheral devices have volatile data which must be
recorded at the instant the interrupt is first detected, for the data will be lost by the time that the waiting task
can be activated. It is important to note that defining this primitive for most efficient implementation
requires that at most one task can be waiting for a given interrupt, that a task can be waiting for only one
interrupt, and, of course, that the waiting task must run on the processor physically connected to that
particular interrupt.

Usually the task controlling a device will issue the I/O command, then call _Await_interrupt, and after
the interrupt occurs and the primitive returns will access device registers to retrieve the results. It is
important to notice that issuing the I/O command might cause the interrupt to happen immediately, before
the task can call _Await_interrupt. Harmony treats interrupts as spurious when there is a protocol error, in
that an interrupt occurs before there is a task waiting for it, as well as when noise or configuration errors
result in interrupts occurring for which no handler has been provided. To ensure that this is not a problem,
the task that will call _Await_interrupt for a particular interrupt must run at the Harmony priority
corresponding to the hardware level at which that interrupt will occur because then the priority scheduling
rules ensure that the hardware will mask the interrupt until this task is blocked and the priority falls.
Another common task structure is that one task calls _Await_interrupt to catch the interrupt when it happens,
but a different task issues the I/O command whose completion will cause the interrupt. This is used, for
instance, where several disk spindles are under a common controller. To resolve the critical section with
respect to controller registers, the same task issues all seek, read, and write commands, but because seeks,
reads, and writes on the different spindles can overlap, a separate notifier task is used for each spindle to
catch the command completion interrupt. The task that issues the commands must reply to the notifier so
that the latter can call _Await_interrupt before the interrupt happens, which as in the earlier case implies that
the task calling _Await_interrupt must run at the Harmony priority corresponding to the hardware level at
which the interrupt will occur. In this case, however, one must also ensure that the reply to the notifier is
executed before the interrupt can happen, which requires either that the task that issues the I/O command
must also run at the priority of the notifier, or that the reply be made before the I/O command is issued.
(There have been some computers where the design of controller hardware actually forced tasks issuing the
I/O command and awaiting the interrupt to run at different hardware priorities.)

14

It would be nice only to have to go down to this level of abstraction, but because Harmony is an open
system, indeed just because it is a configurable system, it is often necessary to descend further and
implement the actual interrupt handler. Although doing so is not required, Harmony realizations typically
use a two-level interrupt handling scheme. The first-level interrupt handler is invoked by the actual
hardware interrupt, saves the registers on the stack of the interrupted task, and transfers to the proper
second-level interrupt handler for the particular processor interrupted. Having a separate first level is
useful, for instance, if the hardware does not provide distinct interrupt vectors for each processor, and the
first-level interrupt handler must do that. (In this case the last step of state saving, saving the stack pointer
in the task descriptor of the interrupted task, must be performed by the second-level interrupt handler.) It is
also useful if various members of a processor family have different registers that need to be saved, but a
device, and hence the second-level interrupt handler, might be used with any of these processors.

The second-level interrupt handler must first identify the interrupt source. Although this may be
available immediately as a consequence of vectoring, or may be available in some register, quite often it is
not. Interrupts that the task level of abstraction would like to treat as distinct are often multiplexed for
hardware reasons. For example, many UART (universal asynchronous receiver transmitter) chip designs
only generate a single type of interrupt, even though software structures usually want different tasks to
wait for input, output, and modem control events. Demultiplexing typically involves reading status
registers, although if many devices have been connected to the same interrupt vector it may involve
polling. Once the interrupt source has been identified, the second-level interrupt handler must find whether
there was a task waiting for that interrupt. The interrupt id used at the task level of abstraction is actually
the byte offset in the vector _Int_table at which a pointer to the task descriptor of the waiting task, if any, is
stored. (The interrupt id is also the byte offset into the vector _Dev_data_table at which is stored a pointer
to any data that must be shared between the second-level interrupt handler and the waiting task, such as
readable copies of write-only device registers. See also Application Note n008 [5].) If the interrupt was
spurious, that is, if the entry of _int_table was 0, the source of the spurious interrupt is recorded in the
external _Spurdev and the external _Spurcount is incremented. Volatile data associated with the interrupt
must next be saved in the rply_msg provided by the waiting task, and then the interrupt must be cleared. If
the interrupt was not spurious, the waiting task is now put on its ready queue and dispatched, else the
interrupted task is reactivated.

The second-level interrupt handler is typically code written in assembly language, and because the
stack of the interrupted task cannot be used and the task to dispatch has not yet been determined, no stack
is available. Interrupts are disabled throughout the second-level interrupt handler. Note that when the
waiting task is put on its ready queue, advantage can be taken of the fact that it will be the only task on its
queue: had there been another, the priority of the active task would have been at least that high, and the
interrupt would not have been taken because it would have been masked by priority hardware.

Sometimes the above task level abstraction is not fast enough for the the arrival rate of the physical
interrupts, and handling one interrupt might cause succeeding events to be missed. The problem might be
that context switching itself is too slow, or it might be that too much immediate processing is required, or it
might be that passing the processed data to another process by message passing is too slow. Often the real
problem is that there is a clash in levels of abstraction: the task level of abstraction really wants to deal with
high level events which occur at a rate that could be handled, but the hardware is causing physical
interrupts for low level subevents which occur at a much higher rate — the problem could be finessed if
the hardware device operated at the higher level. A classic example is the DDCMP communications
protocol, which really is defined in terms of packets, but which is implemented with byte at a time
interrupts through a standard UART. To solve such a problem in Harmony, we implement such a higher
level device outside of the Harmony abstraction, and use the concept of fake interrupts to activate the
waiting tasks at the task level of abstraction. Implementing outside the Harmony abstraction could mean
with a separate processor, or it could mean in software on the same processor, but with an interrupt at a
hardware priority even above the Harmony disable. Obviously software outside the Harmony abstraction

15

cannot make use of Harmony services, and preempting even disabled Harmony code sacrifices some of the
strong things that can be proved about normal Harmony programs. In the DDCMP example, moving the
packet between the UART and a buffer, including header and trailer processing and byte stuffing or
stripping for transparency, can be done by a software automaton, running perhaps at unmaskable interrupt
level. This ensures that the byte level handling will happen if the processor is at all fast enough to handle
the communications line at that speed, and the task level interaction with this automaton is all in terms of
packets, providing a buffer containing a packet to transmit or a buffer in which to receive a packet, and
awaiting an interrupt to indicate completion of processing of the packet. Of course there is no such real
interrupt, but the interrupt can be faked by jamming the waiting task directly on its ready queue, and
forcing a redispatch by causing an interprocessor interrupt (which will be serviced immediately or, if the -
processor is disabled, as soon as it becomes enabled, or, if _Td_service is already in progress, when it
completes). Jamming a task directly on its ready queue, regardless of what Harmony is doing, is safe if
that task is the only task that can run at that priority, provided that the tail pointer of the ready queue is
updated before the head pointer — the ready queue must have been empty, the only operation Harmony
could have been doing with this ready queue is examining the head pointer to determine whether there is a
task to dispatch, and so atomicity of writing the head pointer ensures it is safe.

The machinery described in this section is sufficient to provide direct control over any physical
device. It should be recognized, however, that the task structure of Harmony facilitates creating smart
peripherals where software implemented as a controlling task provides an interface closer to the level of
device actually desired, instead of what the raw hardware provides. Not only do the messages serviced by
this controlling task define a higher level device to client tasks, but if the controlling task runs on a
different processor from that of the client, the latter sees the computational load reduced as well. Eventual
migration of the smart peripheral task into specialized hardware is also made more convenient if that
hardware uses the same interface. An example using a conventional computer peripheral would be a file
store device implemented by a task controlling an ordinary disk, where the task also did space allocation,
catalog management, etc., so that the operations on the smart device were to create and destroy linear
address spaces, grow or shrink them as necessary, and read or write them — independent of physical
block location, let alone cylinder boundaries, bad tracks, etc. An even higher level would be a file system
device implemented by a task using the file store device, where this task provided a hierarchical file
system with access control, concurrency control, etc. Another example, this time from robotics, would be
a vision system device implemented by a task controlling a TV camera and framegrabber, where the task
responded to client tasks by indicating objects seen, together with their types, locations, and orientations.

Normally, a client task wanting to do I/O does it by exchanging messages with the server task which
supports that I/O model for the desired device. The types of messages and the protocol of how they are
used are what really define an I/O model. As discussed in the next section, an I/O server task must report
for service to the directory task and must be prepared to receive open and close messages. What other
messages it handles depend on the I/O model supported and on the device controlled. A simplified version
of stream I/O, for instance, could be implemented by handling a read message to provide another buffer of
input, a write message to output another buffer, a flush message to ensure that any buffers associated with
the connection are flushed, as well as the open and close messages. The actual version of stream I/O
provided with Harmony does not work this way, however, as the seek operation to move the current
position in the stream has serious ramifications. Instead, the read and write requests are combined into a
single advance window message, the model being that the stream should be thought of as the beginning
part under control of the I/O server, concatenated with the window into the stream (the buffer) held by the
client, concatenated with the ending part under control of the I/O server. When the user task is finished
manipulating the current window (buffer), an advance window message is sent to the I/O server, returning
the current window if it was modified, and requesting the next window if the connection is open for read.

16

Many server tasks may support the same I/O model. The server task may be the task directly
controlling the hardware device or, as discussed above, a task implementing some higher level abstraction.
The client task uses a symbolic name to establish, at run time, a connection with the appropriate server.
This provides device independence within the class of servers supporting that I/O model.

SERVERS AND CONNECTIONS

Harmony is a connection oriented system. What this means is that tasks that communicate frequently
maintain state about each other, in particular about the effect of earlier communication. Connections are
often discouraged in distributed systems, partly because they are assumed to be expensive, and partly
because of the difficulty in coping with the inconsistencies that can affect this state when messages are lost
or damaged. However, connections in Harmony are inexpensive, and under either the shared memory or
thinwire model of computation, damaged or lost messages are precluded. Most importantly, the effect of
action requests in realtime systems is often to cause state changes in the real world (for example, the robot
moves from its rest position, or the tracking radar locks on the selected target), and the program needs to
reflect this real world state. A more detailed discussion of servers can be found in Application Note n002
[5] and in [2].

The function _Open was introduced in the discussion of stream I/O, in order to associate streams with
servers supporting them. More generally, _Open is the mechanism for establishing a connection between a
client task and a server. As stated earlier, _Open has two parameters, an open directive and a userid, as
shown below:

ucb = _Open(directive, userid);

where directive is a string that symbolically defines the connection of interest and userid is an unsigned
integer value that is an application-defined identification which can be used to enforce access control. The
value returned, ucb, points to a dynamically allocated struct called a user connection block that defines the
server and connection number associated with this connection and points to the ucb_xtra, a second
dynamically allocated struct that contains the buffer and supporting pointers. The user of a connection need
not be aware of these details. The value 0 is returned if the open failed. There is no fixed limit as to how
many connections may be open. In general, the same connection may be opened more than once, each with
its own current position. This is typically done when several tasks use the same stream or service.

A connection which no longer needs to be accessible should be closed:
_Close(ucb);

Destruction of a task automatically closes all its open connections. It should be noted that closing a
connection does not imply flushing any buffers (see below) and this must be done explicitly.

The open directive is not just a symbolic name for the server, but is more like a command line in other
operating systems: it is a string beginning with a pathname of possibly several components and containing
options for the connection to be established. The first component of the pathname, which can be at most 30
characters and includes a terminating ':', is the symbolic name for the server. Add:tional components,
which are separated by '/, are interpreted by the particular server, for example a file system server might
treat them as subdirectory names and the file name, or an automatic calling unit server might treat them as
parts of a telephone number. Options are position independent and are of three kinds: on toggles, off
toggles, and value parameters. An on toggle is a '+' followed by a keyword, an off toggle is a'-' followed
by a keyword, and a value parameter is a keyword and a value separated by an '=". A keyword is a
sequence of characters delimited for on toggles or off toggles by white space and for value parameters by

17

the '=". The value for value parameters is a sequence of characters delimited by white space. If a value
containing white space is desired, the sequence of characters must be enclosed by quotation marks. (Note
that if the open directive is a literal string, quotation marks enclosing a value inside the directive must be
escaped.) The interpretation of on toggles and off toggles is left to the server, but the intended semantics
are that a toggle has two values, on and off, and that there is possibly a default value which explicit
appearance of the toggle overrides. The interpretation of value parameters is also left to the server, but the
sequence of characters which form the value is made available as a string which the server may evaluate as
the ASCII representation of a number, or may interpret as a symbolic name that can be looked up in an
evaluate table to find a corresponding numeric value, or may parse further, or may simply use as text.
Parsing open directives is supported by the library functions which encourage the use of position
independent syntax:

svector = _Components(str);
svector = _On_toggles(str);
svector = _Off_toggles(str);
pvector = _Value_parameters(str);
number = _Evaluate(table, str);
check = _Valid_number(str);
_Freeparse(parse);

The function _Components() parses a string into pathname components. The delimiters are ;' and /.
The '’ delimiter is part of the component; the '/ delimiter is not part of the component. The pathname is
terminated by white space (i.e., blank, tab, or newline) or by the null byte. The structure returned is a
vector of strings but is allocated as a single block.

The function _On_toggles() parses a string to collect the on toggles. Characters before the first white
space (blank, tab, or newline) are ignored. The structure returned is a vector of keyword strings but is
allocated as a single block. Similarly, the function _Off_toggles() parses a string to collect the off toggles.

The function _Value_parameters() parses a string to collect the value parameters. Characters before the
first white space (blank, tab, or newline) are ignored. A value parameter is a keyword following white
space, followed by a '=' character, followed by a value string. A keyword is a string of characters
terminated by the '=' character. A value string is a string of characters terminated by white space or a null
byte. The structure returned is a vector of VALUE_PARAMETER structs, but is allocated as a single block.

The function _Valid_number() checks to see whether the string str holds a valid ASCII representation
of an integer number.)

The function _Evaluate() searches a table for a given string. If it is found, the value associated with
the string is returned. If the string is not found or a table not supplied, but the string is a valid ASCII
representation of an integer number, the string is evaluated as such and the appropriate value returned. If
none of the above is true, then 0 is returned. Ambiguity whether a returned value of O is a legitimate
number is removed by the prior use of the _Valid_number() function. White space is presumed to have been
removed previously.

The function _Freeparse() is provided to protect users from trying to free the strings of a parse
individually, because these strings are allocated in a single block with the pointers to them.

The userid argument to _Open is provided because some servers, for example a database server, may
want to enforce access controls on whether they will establish a requested connection. Having the user ID
be available directly to the application program, with the consequent risk of forgery, may seem unusual

18

compared to the practice in multiuser timesharing systems, but when protection is needed in realtime
applications it is usually protection with respect to human operators interacting with an application
program, not protection against the application program itself. Currently, requesting and validating the
identity of an operator and encoding this as a user ID is completely left to the application program; no
supporting functions are supplied. Most servers do not check the user ID, consequently a value 0 is often
used for this argument.

Calling _Open causes two messages containing the open directive to be sent. The first is to the
directory task. The directory task matches the first component of the pathname against the list of symbolic
names of registered servers, and returns the corresponding server task ID if a match is found, otherwise
returning 0. If a server was found, the second message is sent, this time to the server. The server sets up
the connection or can deny it, based on the rest of the pathname, on the user ID, on what connections the
server has already made, etc. The server then replies with a record containing a number identifying the
connection, and the ID of task the client should communicate with for this connection (normally the server
itself, but possibly an agent task instead), as well as the size of ucb_xtra block which this connection
requires. (The ucb_xtra block is used, for instance, for buffers this connection requires on the client end.)
Notice that by monitoring the success of this reply, the server can detect if the client task has been
destroyed while the connection was being established, and thus can avoid leaving resources tied up in a
connection which will not be used because the client no longer exists. Once a connection is established,
messages from the client to the server must identify the connection, for a server may simultaneously be
supporting multiple connections, even to the same client task — the file system task might open several
files for the same client task, for instance.

A connection is closed by the client task sending a CLOSE_REQUEST message to the server; this will
be done automatically for any connections still open when a client task is destroyed. This is the third major
aspect to connections (the other two being runtime symbolic binding and textual initialization options). In
‘many situations, it is important for one task to know when another task dies, in order to perform wrap-up,
release resources, spawn replacement tasks, etc. This can be done without the connection mechanism, but
only by creating vulture tasks that do a receive specific on the task to be monitored without ever being sent
to by it, relying on the fact that the message passing primitives fail when the correspondent dies. The
connection mechanism is much cheaper and more explicit.

The directory task initially has no built-in knowledge of which servers are available, so any server
must send a REPORT_FOR_SERVICE message to the directory task reporting the symbolic name by which
it is known. A mechanism is provided to allow servers to register under a secondary name, in addition to
the primary name.

The reporting is conveniently accomplished by calling:
success = _Report_for_service(name, msg_type);

where name is a string indicating the symbolic name by which the server will be known and msg_type is
one of REPORT_SECONDARY_NAME or REPORT_FOR_SERVICE. Any secondary names must be
reported before the report for service. It is possible for a different task to register at a later time under the
same name, thus temporarily or permanently taking on the responsibility of providing the services
identified by that name.

To facilitate a server keeping track of those connections it has open with clients, routines are provided
to allocate a connection table, allocate an entry in a connection table, lookup a connection table entry, and
free a connection table entry:

19

table = _Alloc_connection_table(init_num_entries,
grow_num_entries, max_num_entries,
data_blk_size);

scb = _Get_connection(table, client, new_connection,
con_data_blk);
scb = _Lookup_connection(table, client, connection);

connection = _Free_connection(table, connection);

where init_num_entries is the number of entries initially (the table is grown later as needed),
grow_num_entries is the amount by which the table is to be grown each time it grows, max_num_entries is
the maximum size beyond which the table will not be grown (except that a 0 value indicates no limit),
data_blk_size is the size needed for the server connection block for this server, table is a pointer to the
allocated structure, client is the ID of the task with which the connection is being made, new_connection is
a pointer to where the new connection number should be returned, con_data_blk, if supplied, is a pointer to
the connection data block, scb is a pointer to the server connection block, connection is the number of the
connection to be looked up or freed, and _Free_connection returns its connection argument as its function
value or 0 if it fails.

The application program is responsible for creating whatever servers it will require. This is best done
at the start of the function main(), in the first user task. Care must be taken to allow for the critical race
where the server must report for service to the directory task before the first client task can open a
connection with it. This is conveniently done using the _Server_create function:

id = _Server_create(global_index, init_list);

which creates an instantiation of the task template specified by the global_index, if init_list is nonzero
supplies the initialization records on init_list, one at a time, as reply messages to the newly created server
task as it requests them, and returns the ID of the server task after the task has sent a message confirming
that reporting is complete. _Server_create returns 0 upon failure to create and initialize the server.

The scatter/gather aspect of init_list is very important in designing generic servers. A server is generic
when several similar servers can be combined as instantiations of the same one by supplying the
differences through initialization records. For instance, instead of having a different server for each
terminal on a system, each with device addresses and characteristics hard coded into the functions the
servers execute, the use of a generic server not only saves code space but also greatly assists a maintenance
programmer reading the device assumptions a program makes and changing them. For reading and
managing such configurations, a static description in a compile time initialized record structure is greatly
preferable to attempting to combine all the device characteristics in a single record, or to building the
configuration record at run time. Configuration record structures maintained in files and accessed as
needed at run time also benefit from exploiting scatter/gather for modularity. The formats of the records in
init_list are server dependent, but each must begin with the following struct:

struct INIT_REC
{
struct STD_RQST STANDARD;
struct INIT_REC *IR_NEXT,;

b

20

where STD_RQST contains two unsigned fields: an unsigned 32-bit MSG_SIZE and an unsigned 16-bit
MSG_TYPE, MSG_TYPE in this case being used to distinguish the various types of initialization records for
a particular server. A server requiring initialization records should continue to request subsequent records
until IR_NEXT is 0. If a server is going to register also under a secondary name, the name should normally
be declared with the same initialization record type for all servers, i.e., a struct ALTNAME_INIT_REC is
declared in sys.h and servers providing secondary names should use it.

The design and use of servers is a sufficiently important topic that although servers have been referred
" to extensively in the foregoing discussion, it is worth collecting together some of the issues. The first thing
to recognize is that a server is analogous to a library subroutine. Whereas a private subroutine that is called
from only a few well-known places can rely on undocumented aspects of the context in which it is called, a
library subroutine must have clean, well-defined interfaces so that it will be useful to call from code not
even thought of at the time the library subroutine was written. Like a library subroutine, the server task
must provide a generally useful service, and the need for clean, well-defined interfaces applies to servers
as well, What distinguishes a server from a library subroutine is that the server often must maintain state
across service transactions, perhaps just across transactions for the same client, or perhaps even across
clients. This state is inconvenient to represent in data carried by the clients, but can be conveniently
represented in data local to the server task.

Because the server may maintain state for several clients at any time, it must have a way to distinguish
them. Connection IDs which the server can issue to clients solve this and also allow a client to have more
than one open connection to the same server. Because the client will not, in general, have created the
server, it cannot be expected to have inherited the task ID of the server from somewhere, and so must
identify the server by symbolic name. Because Harmony tasks are identified by system-produced task IDs
(there are no well-known names in networking jargon), an explicit lookup of the symbolic name is
required. This facilitates context-dependent or time-dependent binding of symbolic name to task ID. Given
that the mechanism Harmony provides for such binding is connections,. a server must support
OPEN_REQUEST and CLOSE_REQUEST messages, must register with the directory task, and must
provide connection numbers. Servers often have some parameters that must be set before normal client
transactions can be handled, so the toggles and value parameters in the open directive can be used to ensure
these parameters are set before use. A server often needs to know if a client dies, perhaps wihile the service
transaction is in service or perhaps between service transactions, so the system-supplied
CLOSE_REQUEST messages on connections are important. To reduce the overhead of having a
send-receive-reply on every service request, a server may require the client to provide a buffer in the
client’s space to provide some caching. This buffer would be in the UCB_XTRA, whose use is dependent
on the particular server and on any library functions used by the client to interact with that server. It should
be noted that because a server accepts one request at a time, it serializes access t0 any shared resource
which it controls and thus can solve critical races and mutual exclusion problems. It need not process only
one request at a time, that is, it need not complete processing one request before accepting another. For
simple nonsharable but serially reusable resources, having the server perform operations on the resource
on behalf of the client may be adequate. For complex sharable resources, such as an application data
structure, the server may allow concurrent access by workers or by the clients themselves, while enforcing
consistency conditions such as atomic updates, two phase commit, or access only to disjoint substructures.

Several examples of servers are included in Harmony, including a calendar clock server, a server to
provide explicit scheduling, servers to support interactive terminals and to act as virtual terminals to remote
computers with multiwindow capability, a TCP/IP Ethemnet server, a file device server and file system
server and a null server.

21

USER’S VIEW OF A PROGRAM

Recapitulating and extending what was said above, a user sees a program as a set of processor
images, one for each processor in the hardware configuration. A processor image is obtained by linking
three fundamental user supplied externals with whatever user supplied externals and functions are brought
in, directly or indirectly, by the references in the three fundamental externals, as well as with the Harmony
kernel and support libraries. (In a ROM system, of course, the Harmony kemnel and support libraries
linked to are simply ROM entry points.) The preferred method of program development is thus that all user
code and data, other than the three fundamental externals for each processor, are maintained in relocatable
object code libraries.

The three fundamental externals for a processor image are:
unsigned _Pnumber
which must be initialized with a value specifying which processor this image is for;
struct TASK_TEMPLATE _Template_list(] |

which must be initialized as a vector of all task templates for tasks that can be created on this processor;
and

struct INT_PAIR _Interrupt_list[]

which must be initialized as a vector of all interrupt handlers required for this processor (excluding the
interprocessor interrupt, which is always included). The two vectors must be terminated by a null
TASK_TEMPLATE and a null INT_PAIR, respectively, i.e., in which all fields are 0. The INT_PAIR entries
are the following struct:

struct INT_PAIR
{
uint_32 INT_PHYSICAL_ID;
void (*INT_HANDLER)();
b

where the field INT_PHYSICAL_ID is an unsigned 32-bit integer that identifies the physical interrupt in
whatever way is appropriate to that machine (interrupt priority level, bus vector, interrupt vector address,
etc.) and INT_HANDLER is the second-level interrupt handler code to be executed when that interrupt is
taken.

On processor 0, three special task templates must be included in _Template_list. A task template with
GLOBAL_INDEX of 1 must be provided as the first user task, which the system starts and for which the root
function is normally the user function main(). This is the start of the user’s program. A task template with
GLOBAL_INDEX of 2 must also be provided as the directory task, for which the root function would
normally be _Directory, but which might conceivably have other than the default priority of 5. Finally, a task
template with GLOBAL_INDEX of 3 must also be provided as the gossip task, for which the root function
would normally be _Gossip, but which might conceivably have other than the usual priority of 5.

In choosing how to structure the source code, it is wise to remember that all compilation source
should have an include file compiler.h to define compiler dialect differences and also a file sys.h, in order to
have necessary structure and manifest constant declarations. It is also good practice to include a file giving

22

all template index assignments to be used throughout the whole program. Remember to include the
templates for all servers that will be used, as well as for the worker tasks they create. When choosing
identifiers, note that Harmony uses the convention that all Harmony-defined objects, both internal and
visible, start with an underscore in order that accidental name conflicts can be avoided and system use can
be recognized. Another convention is that structure tags, field names, and manifest constants are all
defined by upper case only names, and that externals and functions have names for which the first
alphabetic is upper case and there is at least one lower case alphabetic.

Linker parameters are different for processor images for different processors, which is most
conveniently handled by working with libraries, making linking an explicit step in program building, and
using a specific command file for linking processor images for each processor. The usual arrangement is to
have RAM starting on an arbitrary megabyte boundary on each processor, with each processor owning a
range of addresses in the linear space. The processor image is linked with that as base. The first routine
loaded into the image is forced to be _Pre_Setup which must be at a known address because control
transfers there to start execution. This routine loads four addresses in the application program that the
linker determines and the kemnel needs to know (the locations of the three fundamental externals and the
first location available for the storage pool) into registers and then transfers to _Setup. The latter, which
can be anywhere including in ROM, sets up the C environment, then calls the Harmony kernel to build and
initialize Harmony. Processor 0 initializes its Harmony kernel first, then opens the multiprocessor gates so
the other processors can initialize their Harmony kernels. (A gate is a location used for synchronization.)
In a downloading situation, on reset all processors other than processor 0 close their multiprocessor gate,
then enter a busywait loop waiting for their multiprocessor gate to open, and processor 0 executes
whatever code is necessary to accept a download of code first for the other processors, and then for itself.
The end of downloading causes it to execute _Pre_Setup and initialize itself. Processor 0 must then open
the multiprocessor gates for the other processors, then poll the gates to determine when all the other
processors have completed initialization before it can start the first user task. The other processors initialize
when their gates open.

DEVELOPMENT ENVIRONMENT

There are several environments for the development of Harmony and of applications intended to run
under Harmony. The system in use in our laboratory is a network of Apple Macintosh personal computers.
Appendix F describes, for the Macintosh environment, a recommended configuration of hardware and
software, suitable as a development environment. Several tools described below are needed specifically for
development on the Macintosh. Application Notes n007 and n013 [5] give a more detailed discussion of
using the development system.

Development elsewhere is being carried out on Sun workstations or on time-shared VAX'’s under
Unix. Development has also been carried out on a VAX/VMS using a Whitesmiths’ C Compiler and it is
still possible to use this environment, but it is not recommended, due to obsolescence of the compiler. As
distributed, Release 3.0 of Harmony includes versions for the Macintosh development system under the
Mac operating system, for A/UX (Unix) on the Macintosh, and for Whitesmiths’ C on VAX/VMS.

Support Tools

Harmony currently provides the following support tools: debug, listing, examine, bound, fixaddr,
fixexe, fixmsr, makemsr, listtree, and mmake. Only the first runs under Harmony itself. All the others run in
the development environment. The versions that run on the Macintosh do not yet have a “Mac-like” user
interface. Some tools are specific to the development system being used. For example, examine and bound
are intimately involved with the exact form of a stored executable image and with the generated code from

23

the chosen compiler. All the tools are written in a portable manner with well-identified dependencies on the
development system and on the target system. Porting to a environment requires rewriting these dependent
routines.

The tools fixaddr and listtree are aimed specifically at the development environment on the Macintosh.
The tools fixmsr and mmake are used in Unix development systems. Several tools, including fixexe, are
needed to augment or correct the capability to generate downloadable records under Whitesmiths’ C. The
last tool mmake provides a bridge between the source management being used in Harmony (see Appendix
E and Application Note n005 [5]) and the Unix tool make.

debug

The question of how to debug a multitask program is still very much unanswered and may even
require hardware support. For now, this very simple debugger is all that is available for Harmony.
Breakpoints can be planted at run time or can be compiled into the source as calls to the function
_Breakpoint. Values to be inspected must be identified by absolute address, and values are only available in
decimal or hexadecimal. On the other hand, the debugger can print certain known system data structures,
such as task descriptors, and works with interrupts enabled and with breakpoints on code in processors
other than the one with the terminal. The debugger also supports use bits, a debugging technique for
recording whether an event occurred that is sufficiently efficient to be left in a production program.
Considerable evolution of the debugger can still be expected. The current version requires a stream I/O
server “DEFAULT:” to be available. A more detailed description can be found in Application Note n001 [5]
and in [6].

listing

The style of programming encouraged by Harmony consists of many small functions, each stored in a
separate file, and of many header files, each defining structs and macros associated with a different
abstraction. Compilations are done by compiling inclusion files that reference the appropriate source. A
readable listing needs to be arranged as a book, with cover, table of contents and numbered pages with
headings. This tool, given an inclusion file,"produces this listing.

examine

It is sometimes necessary to examine a fully bound executable image, to determine overall
characteristics such as the size of the text or data segments, to look up external symbols, to disassemble
instructions or display initialized data, or even to patch erroneous values. This tool, given a .exe file
produced by Whitesmiths’ linker or by fixaddr, or a .out file produced by the Unix linker, does this.

bound

Bounding the stack required for a given task involves discovering the call graph of procedures called
from the root function, or called by procedures called from the root function, etc. The stackframe size
required for each of these procedures must be determined. All possible nesting lists can then be simulated
to determine the maximum stack size required. Two things force this to be an interactive, rather than a
wholly automatic, process. First, sometimes there are indirect procedure calls, i.e., calls to procedures that
are formal arguments of the calling procedure or that are values returned by calls to other procedures or that
are values of procedure-type variables. These cannot be known without running the program, so the
possible procedures must be supplied interactively. Second, the call graph may involve a cycle, implying
possible recursion, and while the stack requirement per cycle can be made available, the number of levels
of recursion to support must be supplied interactively. This tool, given a .exe file or a .out file, allows the
user to determine stack sizes for several root functions in that file.

24
fixaddr

This tool is used to convert from the format of the Macintosh executable image to the conventional
Unix a.out form. On the Macintosh there is a software-based memory management scheme which assumes
that the executable image is composed of segments and that all addressing within a segment is in a
position-independent form (which is desirable for Harmony). Addressing between segments uses, by
convention, register AS as a base. Before the image can be downloaded the addressing is made absolute
and the form is converted to the Unix a.out form. The tool fixaddr accomplishes this conversion.

fixexe

The tool fixexe converts a Whitesmiths' executable file from fixed-record-size-1 format to fixed-
record-size-512 format. Not all programs and /O routines can handle fixed-record-size-1 format. This may
be due to a VMS bug. In particular, the Unity C I/O library cannot correctly read fixed-record-size-1 files.

fixmsr

The fixmsr tool corrects Motorola S-Record files generated by the A/UX hex command. Fixmsr inserts
the null address field into SO, S1, S8, and S9 records (which is left out by hex) and corrects the length and
checksum fields. Output is to the standard output stream.

makemsr

Most vendor-supplied BOOT ROM’s require that the code to be downloaded be in the form of S-
records. The tool makemsr produces an S-record file for a Harmony program. It is used on those systems
that do not provide support for generating S-records. The tool converts the binary .out image into character
encoded form (S-records) supported by Motorola. The form avoids forbidden bit combinations that could
collide with communication software, but is verbose, hence makes downloading slow. An alternate
method for downloading is to use the XMODEM protocol, if it is supported by the BOOT ROM. The
XMODEM protocol does not require a separate translation step and requires fewer bytes to download a
given image.)

listtree

The listtree tool for the Macintosh development environment produces a list of all the files and folders
in a specified subtree. The resultant document is useful for managing or verifying large source trees or for
executing a command on every file in a subtree.

mmake

The mmake tool provides a bridge between the Harmony style source management and the more
traditional approach using make. This tool uses an A/UX linkage editor script file (.link file) as a starting
point and generates a Unix style make file. Mmake determines the source files upon which the target is
dependent by following the target’s link file, the inclusion files and shell scripts that created the object
files. A makefile is then generated for the target, containing the complete dependency list. The resulting
makefile has the suffix “.mk”.

PERFORMANCE

It is difficult to make quantitative statements about performance for a portable system, because
measured values depend upon tuning of the kernel code, which compiler is chosen, the microprocessor
instruction set, the clock speed, the memory used, other aspects of the processor board design, etc.
Nevertheless, qualitative statements about performance are important, to make sensible design tradeoffs in
application programs. The measurements described here were made on a system with kernel code written
for clarity rather than tuned to the target. The timing results were obtained by running the timing program,
which is distributed with Harmony. There are versions of timing for all the main targets supported in
Release 3.0.

The values shown below are for the Io Inc. V68/32 system, using a MC68020 processor running at
16 MHz with no wait states. The timing program and Harmony were compiled using the Consulair C
compiler. (All versions of the kernel developed with the Consulair tools have the function _Convert_to_td
recoded in assembly language.) The values are approximate and represent the lower.bound, because the
only tasks active were those associated with the timing program. Also, differences in byte alignment
introduce some variability in the results.

_Create a task 1200 ps
send-receive-reply (short msg) 460 ps
_Copy_msg of 200 bytes 380 pus
_Open "NULL_SERVER: +r BUFFSIZE=20" 4300 ps
_Close 700 ps

The timings for stream I/O are have been measured (microseconds per byte) and fit the following relations:

_ 600

Get =20 + bufsize

_Get_Record = 8 + 629 + 7. us
bufsize recsize
600

_Put = 22 + m us

_Put_Record = 8 + 579 + 12. ps
bufsize recsize

An important characteristic is response time to an interrupt, i.e., delay from the moment of interrupt
until the _Await_interrupt of the waiting task returns. This delay is measured as 39 ps. An indication of how
good this really is, can be seen in the following comparison. The fastest assembly language interrupt
handler, which does nothing more than to save the state of the interrupted task and to sort out which
processor’s interrupt vector to use, takes about 50% of that time.

The second important characteristic is the send—-receive-reply cycle time. When both tasks are running
in the same, otherwise idle, processor, the cost given in the table above is 460 ps. When the two tasks are
running in different, otherwise idle, processors, the value is lower, because of parallelism in execution of the
primitives on the two processors.

An important aspect of the message passing implementation is that it is distributed. Only the processor
or processors that the communicating tasks are running on participate in the protocol: there is no central
switching processor involved. The actual bus cycles used on the shared bus are so few that contention for
these will not be a bottleneck. Message passing between tasks on the same processor is treated uniformly
with message passing between tasks on different processors and not by special code.

26

The measured times given above are quite commensurate with the best task context switching times
achieved by other systems on similar hardware, even uniprocessor systems. It is possible and, in fact
desirable, to adapt Harmony to a specific family of single board computers and to rewrite several key kernel
routines in assembly language so as to achieve significant improvement over the portable version described
here. For example, Dy-4 Systems Inc. has done so for its family of boards. They have also implemented a
version with restricted functionality, where tasks are not destroyed once they are created. This version has
even better performance at the cost of reduced functionality. The intent of the NRC Release 3.0 is to have a
portable evolving operating system, that lays the groundwork for local optimization, but does not include it.

In some situations, however, the resulting performance is not adequate. This problem has been
recognized as being mainly due to inadequate hardware support for operating system primitives. One
solution often proposed is to provide an operating system coprocessor for each processor or to provide
microcode support for the primitives. Analysis of the Harmony kernel has identified that even with a
coprocessor, an important remaining limitation is the bandwidth for memory accesses across the bus to the
kernel data structures [7]. One proposed solution is to provide an operating system coprocessor with high
speed static memory for maintaining kernel data structures. It turns out that a planned version of thinwire
Harmony, in which processors do not have global shared memory, lends itself to implementation of a
coprocessor with high speed local memory because kernel data structures are no longer accessed across the
bus.

ACKNOWLEDGEMENT

Harmony, of course, is built upon concepts proven in earlier operating systems and languages, as
well as new ideas evolved for it. Particular mention should be made of Thoth {2, 3], where this particular
process abstraction originated, and BCPL, where the I/O abstraction originated and whose global vector
was the inspiration for the global template list. (The I/O abstraction is also commonly associated with
Unix, which copied it from BCPL).

REFERENCES

(1] W.M. Gentleman. “If only the hardware... (A software designer’s lament).” Proceedings of the
IEEE International Workshop on Computer Systems Organization, New Orleans, LA. March 29-31,
1983. pp. 88-95.

[2] W.M. Gentleman. “Message passing between sequential processes: the reply primitive and the
administrator concept.” Software Pract. Exper. 11(5): 435-466; 1981.

(3] D.R. Cheriton, M.A. Malcolm, L.S. Melen, and G.R. Sager. “Thoth, a portable real-time operating
system.” Commun. ACM, 22(2): 105~115; 1979.

(4] 1.D. Ichbiah, J.G.P. Bamnes, J.C. Heliard, B. Krieg-Brueckner, O. Roubine, and B.A. Wichmann.
“Rationale for the Design of the Ada programming language.” SIGPLAN Notices, 14, 6. Part B,
June 1979. :

[S] D.A. Stewart and S.A. MacKay (eds.), “Harmony Application Notes (Release 3.0),” NRC/ERA-
378, National Research Council of Canada, Ottawa, Ont., February 1989.

27

(6] W.M. Gentleman and D.A. Stewart, “Debugging Multitask Programs,” Proceedings of the
Conference of the Army Research Workshop on Parallel Processing and Medium Scale
Multiprocessors, January 6-8, 1986, Stanford, CA.

(7] D.A Green, “An investigation into the design of hardware accelerator for Harmony real-time operating
system,” NRC/ERB-981, National Research Council of Canada, Ottawa, Ont., March 1986.

29

APPENDIX A. A SAMPLE MULTITASK PROGRAM

The following program is a simple multitask program which illustrates many of the ideas and
primitives discussed in this manual. In this Appendix, the program is run on only processor 0. The
function main() is the root function of the first user task. It creates a server for a terminal attached to a serial
port and opens a connection for input and output. It then creates a child task and goes into a loop, sending
to the child task and printing the response and accompanying text to the selected terminal.

This program also illustrates the source management strategy discussed in Appendix E. The example
is from /harmony/example/srtest/ in the distribution tree, and the pair of inclusion files shown are for the
version of the program to run on a DY-4 DVME-134 board with the 68020 processor. The program is to
be compiled on a Macintosh under the Mac operating system, using the Consulair Mac C compiler.
Consequently, all the pathnames are written in the Macintosh syntax.

There are two inclusion files: one for externals and one for code. First, each inclusion file is compiled
and then the objects of the two are linked together with appropriate version of the system libraries. Detailed
steps necessary to build the library are decribed in Application Note 007 [5]. Following the inclusion files
are the relevant included files.

Master:harmony:example:srtest:inc:dy134cmac:single:externs0.c

#include "Master:harmony:sys:src:compiler:macc:compiler.h”

#include "Master:harmony:sys:src:sys.h”

#include "Master:harmony:sys:src:servers:tty:ttyinit.h”

#include "Master:harmony:sys:src:devices:mc68901:dvime134:m683901int.h"
#include "Master:harmony:example:srtest:srctemplates.h”

#include "Master:harmony:example:srtest:src:dvme134:single:srtest0.c”
#include "Master:harmony:example:srtest:src:dvme134:ttyinit.c”

Master:harmony:example:srtest:inc:dy134cmac:single:code0.c

#include "Master:harmony:sys:src:compiler:macc:compiler.h”
#include "Master:harmony:sys:src:sys.h”

#include "Master:harmony:sys:src:servers:tty:ttyinit.h"

#include "Master:harmony:example:srtest:srctemplates.h”
#include "Master:harmony:example:srtest:src:child.c”

#include "Master:harmony:example:srtest:src:main.c”

#include "Master:harmony:example:srtest:src:default:createand.c”

Master:harmony:example:srtest:src:templates.h

/‘
* Global indices for task templates:
* Note that indices 1-3 are reserved:
* main 1
* _Directory 2
* _Gossip 3
'/
#define ™ 4
#define TTO 5
#define TTY 6
#define CHILD 10

30

Master:harmony:example:srtest:src:dvme134:single:srtest0.c

extern task main();

extern task _Directory();
extern task _Gossip();

extern task Child();

extern task _Tty server();
extern task _SPi_mc68901();
extern task _SPo_mc68901();
extern void _Mc68901_int();

uint_32 _Pnumber = O;

struct TASK_TEMPLATE _Template_list[] =

{
{ MAIN, main, 1000,
{ DIRECTORY, _Directory, 1000,
{ GOSSIP, _Gossip, 2000,
{ CHILD, Child, 1000,
{ TTY, _Tty_server, 2000,
{ ™™, _SPi_mc68901, 1000,
{ TTO, _SPo_mc68901, 800,
{ o, 0 0,

L

struct INT_PAIR_Interrupt_list[] =

{
{ 5, _Mc68901_int L
{ o 0 }

k

Master:harmony:sys:src:servers:tty:ttyinit.h

/t

*

Tty initialization messages

typedef struct TTYI_PORT_INIT_REC

struct INIT_REC
char

uint_32
uint_32
uint_32

char
uint_16

2

#define TTYIT_ALTNAME_INIT
#define TTYIT_PORT_INIT

TTY!_HDR;
TTYI_NAME[32);
TT_DEV_GRP;
TT_GRP_MEMBER;
TTI_DEV_CODE,
TTL_INDEX,
TTO_DEV_CODE,
TTO_INDEX,
TTETC_DEV_CODE,
TTETC_INDEX;
*TTY_ADDR;
TTY_BAUD_RATE;

1
2

- e -

OO0 OoOuUIM O N~
et et At At o S s e

/* server name */

" device group this port is a member of */
/* member number in device group */
/* input logical interrupt */

/* input task template */

* output logical interrupt */

* output task template */

* etc logical interrupt */

I etc task template */

/* VO address of tty port */

/* baud rate, ignored for ports *

/" without soft baud select */

Master:harmony:example:srtest:src:dvme134:ttyinit.c

The following are typical initialization values. This port also has the secondary name DEFAULT. The first
declaration is needed to satisfy compiler forward reference.

extern struct ALTNAME_INIT_REC Default_init;

struct TTYI_PORT_INIT_REC Tto_init =

{
sizeof(struct TTYI_PORT_INIT_REC),

TTYIT_PORT_INIT,
|_CAST(struct INIT_REC *)&Default_init,
“TEXT_TERMINAL®",

o '

o)

RECV_0,

™,

XMIT_0,

TTO,

ETC_0,

0,

|_CAST(char *)MC68901_ADDR,
9600

h
struct ALTNAME_INIT_REC Default_init

sizeof(struct ALTNAME_INIT_REC),
TTYIT_ALTNAME_INIT,

0,

"DEFAULT:",

k

I MSG_SIZE */

I MSG_TYPE */

I" next initialization record */

I tty server name */

/" no device group */

* therefore no group member number */
* tti device code */

" tti template index */

/* tto device code */

/* tto template index */

" ttetc device code not used */

I ttetc template index not used */
r* /O address of tty port */

I baud rate */

" MSG_SIZE */

" MSG_TYPE */

/* no more initialization records */
/* ty server name */

Master:harmony:example:srtest:src:default:createand.c

void Create_and_open_tty()

{

}

extern struct TTYI_PORT_INIT_REC TtO_init;

_Server_create(TTY, (struct INIT_REC “)&Tt0_init);
_Selectinput(_Open("TEXT_TERMINAL: +",0));
_Selectoutput(_Open("TEXT_TERMINAL: +w", 0));

Master:harmony:example:srtest:src:main.c

task main()
extern void Create_and_open_tty();
uint_32 n, limit;
uint_32 child;

struct STD_RQST request;
struct STD_RPLY reply;

Create_and_open_tty();
_Put_string("Parent creates child.\n");
_Flush();
if(! (child = _Create(CHILD)))
{

_Put_string("*** Creation of CHILD failed.\n");

31

32

_Flush();
}

for(;;)
{

for(n =0; n < limit; ++n)

request. MSG_SIZE = sizeof(request);

reply. MSG_SIZE = sizeof(reply);

if(! _Send((char *)&request, (char *)&reply, child))
_Put_string(™** Send to child failed.\n");

else
_Printf("Child replied %i.\n", reply.RESULT);

_Put_string("How many more message exchanges do you want? ");
_Flush();
limit = _Get_number();
while(_Get() I=n");
}

Master:harmony:example:srtest:src:child.c

task Child()
{

uint_32 counter, requestor;
struct STD_RQST request;
struct STD_RPLY reply;

counter = 0;
for(;;)
{

request. MSG_SIZE = sizeof(request);
requestor = _Receive((char *)&request, 0);

reply. MSG_SIZE = sizeof(reply);

reply.RESULT = counter++;
_Reply((char “)&reply, requestor);

k

33

APPENDIX B. A SAMPLE MULTITASK MULTIPROCESSOR
PROGRAM

This program is the same as the program of Appendix A, but the child task has been moved to run on
processor 1. Note that the only difference in the program is that the task template for the child task has
been moved from the _Template_list for processor 0 to the _Template_list for processor 1. Had the ttyinit
record, main(), and Child() been compiled into a relocatable object library, the inclusion files defining the
processor images could have been even simpler, essentially just referring to the files containing the three
fundamental externals.

There are four inclusion files: for each processor there is one for externals and one for code. First,
each inclusion file is compiled. Then, a binary image for each processor is linked using the compiled
objects for that processor, together with appropriate version of the system libraries. Detailed steps
necessary to build the library are described in Application Note 007 [5]. The file dummymain.c exists only
to satisfy the Consulair linker. Other systems may not require it.

Master:harmony:example:srtest:inc:dy134cmac:double:externs0.c

#include "Master:harmony:sys:src.compiler:macc:compiler.h”

#include "Master:harmony:sys:src:sys.h"

#include "Master:harmony:sys:src:servers:ity:tyinit.h"

#include "Master:harmony:sys:src:devices:mc68901:dvme134:m68901int.h"

#include "Master:harmony:example:srtest:src:templates.h”

#include "Master:harmony:example:srtest:src:dvme134:double:srtest0.c” " for double */
#include "Master:harmony:example:srtest:src:dvme134:ttyinit.c”

Master:harmony:example:srtest:inc:dy134cmac:double:externsi.c

#include "Master:harmony:sys:src:compiler:macc:compiler.h”

#include "Master:harmony:sys:src:sys.h”

#include “"Master:harmony:example:srtest:srcitemplates.h”

#include "Master:harmony:example:srtest:src:dvme134:double:srtesti.c” " for double */

Master:harmony:example:srtest:inc:dy134cmac:double:code0.c

#include "Master:harmony:sys:src:compiler:macc:compiler.h”
#include "Master:harmony:sys:src:sys.h”

#include "Master:harmony:sys:src:servers:tty:ttyinit.h"

#include "Master:harmony:example:srtest:srcitemplates.h”
#include "Master:harmony:example:srtest:src:main.c”

#include "Master:harmony:example:srtest:src:default:createand.c”

Master:harmony:example:srtest:inc:dy134cmac:double:codel.c

#include "Master:harmony:sys:src:compiler:macc:compiler.h”

#include "Master:harmony:sys:src:sys.h”

#include "Master:harmony:example:srtest:src:child.c”

#include "Master:harmony:.example:srtest:src:macc:dummymain.c” " for double */

34

The following are the included files which are in addition to those in Appendix A and are specific to
the two-processor configuration:

Master:harmony:example:srtest:src:dvme134:double:srtest0.c

extern task main();

extern task _Directory();
extern task _Gossip();

extern task _Tty_ server();
extern task _SPi_mc68901();
extern task _SPo_mc68901();
extern void _Mc68901_int();
uint_32 _Pnumber = O0;

struct TASK_TEMPLATE _Template_list[] =

{
{ MAIN, main, 1000, 7 1}
{ DIRECTORY, _Directory, 1000, 7 1
{ GoOssIpP, _Cossip, 2000, 5 1},
{ TTV, _Tty_server, 2000, 5 1},
{ ™, _SPi_mc68901, 1000, 0 },
{ TTO, _SPo_mc68901, 800, 0 },
{ o, 0, 00 0 }

15

struct INT_PAIR _lInterrupt_list(] =

{
{ s, _Mc68901_int b
{ o, o] }

I8
Master:harmony:example:srtest:src:dvme134:double:srtesti.c

extern task Child();
extern void _Mc68901_int();

uint_32 _Pnumber = 1;

struct TASK_TEMPLATE _Template_list[] =

{ CHILD, Child, 1000, 6 1}
{ o 0, 0o, 0 }

I8
struct INT_PAIR _Interrupt_list[] =

{

{ 5, _Mc68901_int L
{ o, 0 }

k
Master:harmony:example:srtest:src:macc:dummymain.c
task main()

{

}

35

APPENDIX C. DECLARATIONS AND SYSTEM FUNCTION CALLS
Compiler-related Definitions

Source: /harmony/sys/src/compiler/macc/compiler.h

The following typedef’s allow us to minimize portability problems due to the various C compilers
(even for the same processor) not agreeing on the sizes of int and short int. Note that these particular
definitions are specific to the Consulair Mac C compiler and may be different for other compilers.

typedef unsigned char uchar; /" unsigned characters */
typedef short int_16; /" 16-bit signed integers */
typedet unsigned short uint_16; /" 16-bit unsigned integers */
typedet long int_32; /" 32-bit signed integers */
typedef unsigned long uint_32; /* 32-bit unsigned integers */

Selected data structure definitions
Source: /harmony/sys/src/sys.h

Note that sys.h makes use of some basic types (and macros) that are compiler-specific. These types are
found in the compiler.h file for each compiler. The appropriate compiler.h file must be included before sys.h
in every Harmony inclusion file.

typedef uchar boolean;
#define TRUE 1
#define FALSE 0

typedef void task;
struct INT_PAIR

uint_32 INT_PHYSICAL_ID;
void (*INT_HANDLERY)();
k

struct TASK_TEMPLATE

uint_32 GLOBAL_INDEX;
task (*ROOT)();
uint_32 STACKSIZE;
uint_32 PRIORITY;

B
struct STD_RQST

uint_32 MSG_SIZE;
int_16 MSG_TYPE;

b
struct STD_RPLY

uint_32 MSG_SIZE;
uint_32 RESULT;

b

36

An INIT_REC structure must be at the start of any server initialization record. The size and format of the
remainder of the initialization record is server dependent. The MSG_TYPE field in the INIT_REC structure is
used by a server to distinguish the various types of initialization records it may receive.

struct INIT_REC /* basic server initialization record */

struct STD_RQST STANDARD;
struct INIT_REC “IR_NEXT; /" next record in initialization list */

b
struct ALTNAME_INIT_REC

struct INIT_REC INIT_REC_HDR;
char ALTNAME[32]; /* alternate server name */

k

Global task indices reserved for specific purposes:

#define MAIN 1
#define DIRECTORY 2
#define GOSSIP 3

The remainder of this Appendix lists user-callable functions and, where appropriate, identifies supplied
tasks.

Task Creation and Destruction
Task creation and destruction — supplied tasks

_Local_task_manager() root function for a task which is responsible for creating and destroying
tasks on its processor

_Explicit_scheduler() root function for a scheduling task that uses a recurring interrupt to define
epochs, and to facilitate other tasks being run after n epochs, as well as
defining the order in which tasks waiting for an epoch will run

Application-callable functions

uint_32 _Create(task_index)
uint_32 task_index;

_Create creates a task using the task template whose GLOBAL_INDEX is identical to the value of the
task_index parameter. It returns a task ID if successful. [f the creation is unsuccessful, 0 is returned and
the reason for the failure is indicated by the task error code.

void _Destroy(Id)
uint_32 id;

_Destroy destroys the task specified by the id parameter. All resources owned by the task are returned
to the system. lts connections are closed. Any descendants of the task are also destroyed. The
_Destroy primitive is sychronous, which means that the destruction is complete before the primitive
returns.

void _Suicide()
_Suicide destroys the task invoking the primitive.

uint_32 _Father_ld()
_Father_id returns the ID of a task's creator.

37

uint_32 _My_lId()
_My_id returns the task ID of the task invoking the primitive.

Message Passing

Application-callable functions
ulnt_32 _Send(rqst_msg, rply_msg, Iid)
char *rqst_msg, *rply_msg;
ulnt_32 Id;

_Send sends a message specified by the rqst_msg parameter to the task specified by the id parameter
and waits for a reply message in the /ply_msg parameter. _Send returns id if successful, 0 otherwise.

uint_32 _Recelve(rqst_msg, Id)
char *rqst_msg;
uint_32 Id;

_Receive attempts to receive a message from the task specified by the id parameter, unless idis 0, in
which case a message from any task will be accepted. The sender’s message is copied into the
rgst_msg. If the task specified by id has not called the _Send primitive to send a message to this
receiver, or if idis 0 and no task has, the receiver will block. The _Receive primitive unblocks when a
message for which it is awaiting becomes available. _Recsive returns the identifier of the task from which
the message was received.

ulnt_32 _Try_recelve(rqst_msg, Iid)
char *rqst_msg;
uint_32 Id;

_Try_receive functions similarly to the _Receive primitive except that it is nonblocking. If the desired
message is not available when the receiver calls _Try_receive then it will fail immediately and return 0.
Otherwise, it functions in a manner indistinguishable from _Recaeive.

uint_32 _Reply(rply_msg, Id)
char *rply_msg;
uint_32 Id;

_Reply transmits a reply message specified by the rply_msg parameter to the task specified by id from
which a message has been received. _Reply returns id if successtful, 0 otherwise.

Interrupts
Application-callable functions

vold _Awalt_Interrupt(Interrupt_id, rply_msg)
uint_16 Interrupt_id;
char ‘rply_msag;

_Await_interrupt blocks the task invoking the primitive until the interrupt specified by interrrupt_id
occurs. The message specified by rply_msg may be filled by the interrupt handler to record information
about the interrupt.

void _Enable()
_Enable allows interrupts to occur.

vold _Disable()
_Disable masks off interrupts.

38

Memory Management
Application-callable functions

char *_Getvec(size)
uint_32 size;

_Getvec allocates size bytes of storage. If successfui, it returns a pointer to the block of storage
allocated to the task. Otherwise, it returns 0 and sets the task error code to indicate the reason for the
failure. The task error code is set to OUT_OF_MEMORY if the request is not satisfied because a large
enough block was not found.

void _Freevec(biock)
char *block;
_Freevec releases the block of storage pointed to by the block parameter, which must have been
allocated previously with the _Getvec primitive. The task error code will be set if block does not point to a
block of storage owned by the task.

void _Trimvee(block, size)
char *biock;
uint_32 size;

_Trimvec reduces the block of storage specified by block, previously allocated by _Getvec, to size
bytes in size, returning excess bytes to the storage pool.

uint_32 _Sizeof(block)
char *block;

_Sizeof returns the allocated size (in bytes) of block allocated with _Getvec.

void _Tune_Getvec(size)
.uint_32 size;

_Tune_Getvec tunes _Getvec by arranging for searches to start at the first idle block of the indicated
size. This accelerates the search because it arranges to skip permanently allocated blocks at the
beginning of the pool, and because it takes into account the statistical behaviour of first fit storage
management that block sizes become graded in size, with blocks earlier in the pool being generally
smaller.

Using Servers
Using servers — supplied tasks

_Directory() root function for the directory task used to establish connections between clients
and servers

Application-callable functions

uint_32 _Server_create(task_index, init_iist)
uint_32 task_index;
struct INIT_REC ‘init_list;

_Server_create creates a server task, whose task template is specified by task_index. The init_list
parameter is a list of initialization records. The size and format of the initialization records is server-
dependent, but the struct INIT_REC must be at the start of each record. A server may indeed be
provided with several types of initialization records which are distinguished by the MSG_TYPE field in the
INIT_REC struct. The server knows the last initialization record has been provided when the IR_NEXT
field is 0. NULL (0) may be passed to _Server_create if no initialization is needed for the server.

struct UCB*_Open(directive, user_id)
char *directive;
ulnt_16 user_id;

39

_Open returns a pointer to a UCB (user connection block) if a connection can be opened to a server with
the specified directive. Because the UCB parameters are filled in atomically by the OPEN_RPLY
message, the server can detect if the client has died while the open was in progress, and thus can avoid
losing resources associated with that connection. Note that a server may get a CLOSE_REQUEST
message for a connection which the server has been informed that the client died before open
completed. Since _Open cannot know what /O model the client and server are using, it cannot initialize
whatever model dependent structures there may be in the UCB_XTRA. Instead, these must be initialized
when the ucb is used. However, it UCB_XTRA is allocated, _Open does indicate that initialization is
required by setting UCB_MAIN.STD_REPLY.RESULT to UCB_UNINITIALIZED. The user_id parameter
can be used as a primitive protection mechanism, but for most servers it will be 0.

void _Ciose(ucb)
struct UCB *ucb;

_Close closes the open connection of this task specified by ucb. Note that it does NOT fiush the butfer
first. Note also that a server may get two CLOSE_REQUEST messages, if the client dies while executing
_Close. Additional functions needed for implementing servers are listed in the section "Implementing
servers”.

Stream 1/0O Functions
Application-callable functions

struet UCB *_Selectinput(ucb)
struct UCB *ucb;

_Selectinput selects the stream specified by ucbto be the task’s current input stream. 1t returns the
task’s previously selected input stream.

struct UCB *_Selectoutput(ucb)
struct UCB *ucb;

_Selectoutput selects the stream specified by ucb to be the task's current output stream. 1t returns the
task’s previously selected output stream.

void _Seek(ucb, position, relative)
struct UCB *ucb;
int_32 position;
boolean relative;

_Seek changes the current position in the stream specified by uch. If relative is TRUE then the position
is moved position bytes relative to the current position. If relative is FALSE then the position is set
position bytes relative to the start of the stream.

char _Get()
_Get returns the next character available on the selected input stream.

char _Put(byte)
char byte;

_Put writes byte to the selected output stream. It returns byte.

void _Fiush()
_Flush forces the contents of the output buffer to be sent to the server.

void _Unget()

_Unget guarantees to unget the last character read, only if the previous operation on the stream was a
_Get.

40

int_32 _Get_number()

_Get_number reads a number from the selected input stream. The number must be in the format OXNNN
(hexadecimal), ONNN (octal), or NNN (decimal). _Get_number returns the value of the number read.

uint_32 _Get_string(s, n)
char *s;
uint_32 n;
_Get_string reads a line of characters from the currently selected input stream into s, stopping when
either a newline (\n') is encountered or n-1 characters have been read. _Get_string appends a null
character to sto terminate it, so it may write a maximum of n characters into s. _Get_string returns the
number of characters read, excluding the null terminator.

void _Put_decimai(n)
int_32 n;

_Put_decimal writes n on the selected output stream in decimal.

void _Put_hex(n)
uint_32 n;

_Put_hex writes non the selected output stream in hexadecimal format.

voild _Put_string(s)
char *s;

_Put_string writes the string s on the selected output stream.

boolean_Get_record(record, size)
char *record;
uint_32 size;

_Get_record reads size bytes from the selected input stream into the storage pointed to by record. It
returns TRUE if successful, FALSE otherwise.

boolean_Put_record(record, size)
char *record;
uint_32 slze;

_Put_record writes size bytes to the selected output stream from the storage pointed to by record. It
returns TRUE if successful, FALSE otherwise.

vold _Printf(fmt, x DEFN_VARARGS)
char *fmt;
Int_32 x;

_Printf performs formatted output. The fmt parameter is a string which controls the output format. The
x parameter is a marker indicating that a variable number of arguments may be present.

boolean_Only_nulis_left()

_Only_nulls_left is Harmony's nearest equivalent of end-of-file. It returns TRUE if the server for the
currently selected input stream can prove that all remaining bytes in the stream will be null bytes. It
returns FALSE if the server can prove that there exists at least one byte which is not null remaining in the
stream, or if the server is unable to establish whether there may be bytes that are not null remaining in the
stream.

vold _Nullity()

_Nullify nullifies any (currently) remaining bytes in an output stream. That is, all bytes from the current byte
position to the end of the stream become null. This does not affect bytes written in the future, only ones
written in the past. This function is most useful for read-write streams (on which _Seek can be used), as
this state is, by definition, always true for write-only streams.

41

Library of Utilities
Application-callable functions

vold _Copy(src, dest, num_bytes)
char *src, *dest;
uint_32 num_bytes;

_Copy copies num_bytes bytes from the storage pointed to by src to the storage pointed to by dest.

void _Zero(ptr, num_bytes)
char *ptr;
uint_32 num_bytes;

_Zero sets num_bytss bytes of storage pointed to by ptrto 0.

void _Sprintf(str, fmt, x DEFN_VARARGS)
char *str, *fmt;
int_32 x;
_Sprintf functions similarly to _Printf but instead of writing output to a stream it places the output bytes in
the storage pointed to by str.

int_32 _Sgetnum(s)
char *s;
_Sgetnum computes an integer value from an ASCIi string, s, returning 0O if the string does not represent
a valid number. We assume white space is stripped.

int_16 _Str_compare(s1, s2)
char *s1, *s2; .
_Str_compare compares two null terminated strings, s7 and s2. If the strings are equal, 0 is returned. I
the s1 is lexicographically less than s2, a negative value is returned. If s1 is lexicographically greater
than s2, a positive value is returned.

uint_32 _Str_length(s)

char *s;
_Str_length returns the length of a null-terminated string, s. The "0’ terminator is not included in the
length.
void _Str_copy(from, to, max)
char *‘from;
char *to;

uint_16 max;

_Str_copy copies the null-terminated string pointed to by from into the string pointed to by to. The
max parameter specifies the maximum number of bytes to copy including the null-terminator (\0°), which
is always appended to fo.

boolean _Str_equal(s1, s2)
char *s1, *s2;

_Str_equal compares two null-terminated strings for lexical equivalence. If either or both of the string
pointers are NULL, the comparison evaluates as FALSE.

uint_16 _Swap_16(in_16)
uint_16 in_16;
_Swap_16 swaps the upper byte of in_16 with the lower byte and returns the resuilt.
ulnt_32 _Swap_32(In_32)
uint_32 In_32;
_Swap_32 reverses the order of bytes of in_32 and returns the result.

42

Parsing Utilities

Application-callable functions

char **_Components(s)
char *s;
_Components parses a string into pathname components. The delimiters are "’ and /. The ' delimiter is
part of the component; the ' delimiter is not part of the component. The pathname is terminated by

white space (i.e. blank, tab, or newline) or by the NULL byte. The structure returned is a vector of strings
but is allocated as a single block.

char **_On_toggles(s)
char *s;
_On_toggles parses a string to collect the “on” toggles. Characters before the first white space (blank,
tab, or newline) are ignored. An on toggle is a '+ character following white space, followed by a keyword.
A keyword is a character string terminated by white space or a null byte. Using on toggle keywords
containing =" characters is ill advised. The structure returned is a vector of keyword strings but is allocated
as a single block.

char **_Off_toggles(s)
char *s;
_Off_toggles parses a string to collect the “off” toggles. Characters before the first white space (blank,
tab, or newline) are ignored. An off toggle is a -' character following white space, followed by a keyword.
A keyword is a character string terminated by white space or a NULL byte. Using off toggle keywords
containing '=' characters is ill advised. The structure returned is a vector of keyword strings but is allocated
as a single block.

struct VALUE_PARAMETER®_Value_parameters(s)
char *s;

_Value_parameters parses a string to collect the value parameters. A value parameter is defined as an
expression in the form "keyword=value_string”. A keyword is a string of characters terminated by the '='
character. A value string is a string characters terminated by white space or a null byte. Note that
characters before the first white space (blank, tab, or newline) are ignored. The structure returned is a
vector of VALUE_PARAMETER structs, but is allocated as a single block.

Int_32 _Evaluate(table, s)
struct EVALUATE_ENTRY table[];
char - H

_Evaluate searches a table for a given string. If found, the value associated with the string is returned. If
the string is not found or a table not supplied, but the string is a valid ASCI! representation of an integer
number, the string is evaluated as such and the appropriate value returned. if none of the above, then 0
is returned. White space is presumed to have been removed previously.

boolean _Valid_number(s)
char *s;

_Valid_number checks to see whether the string s holds a valid ASCI! representation of an integer
number,

void _Freeparse(parse)

char **parse;

_Freeparse is provided to protect users from trying to free the strings of a parse individually, because
these strings are allocated in a single block with the pointers to them.

43

Error Handling
Application-callable functions

boolean _Stackoverflow()
_Stackoverflow returns TRUE if the task’s stack is currently overflowed.

uint_32 _Set_task_error_code(error_code)
uint_32 error_code;

_Set_task_error_code sets the task error code to error_code. It returns error_code.

uint_32 _Task_error_code()
_Task_error_code returns the task error code.

void _Abort(s)
char 's;

_Abort terminates the execution of a task, closes all connections and releases all allocated resources.

Debug
Debugger — supplied tasks

_Dbg_control() root function for the debug control server that manages planted breakpoints

_Dbg_agent() root function for the debug agent task which is instantiated on each target
processor to perform operations on behalf of the debug control task.

_Dbg_shadow() root function for the debug shadow task which provides timeouts for the debug
control server for operations being performed by the debug agent tasks

_Gossip() root function for the general logging and reporting task, used in particular to report
processor faults .

Application-callable functions

vold _Breakpoint(s)I
char 's;

_Breakpoint is a breakpoint compiled into the code, rather than being planted dynamically. The string s
is printed by the debugger before entering the debugger’s interactive mode.

void _lLog_gossip(s)
char *s;

_Log_gossip logs the string s to the _Gossip task.
The following functions for manipulating use bits are actually implemented as macros:

void _Set_use_bit(n)

uint_32 n;
vold _Reset_use_bit(n)
uint_32 n;

void _Flip_use_bit(n)
uint_32 n;

boolean_On_use_bit(n)
uint_32 n;

Implementing Servers
Callable functions

uint_32 _Report_for_service(name, msg_type)
char *name;
uint_16 msg_type;

_Report_for_service is called by a server to register itself with the _Directory task. The argument name
is a string of length < 32, whose last character is a . The msg_lype parameter is one of
REPORT_FOR_SERVICE or REPORT_SECONDARY_NAME. Any secondary names must be reported
prior to the REPORT_FOR_SERVICE request, and only one REPORT_FOR_SERVICE may be done
during a server task's lifetime. Violation of this protocol may result in a deadlock. On a
REPORT_FOR_SERVICE call, _Report_for_service also informs the creator whether the server has
successfully registered with _Directory by sending it a REPORT_COMPLETED or
REPORT_UNSUCCESSFUL message.

struct CON_TABLE *_Alloc_connection_tabie(init_num_entries, grow_num_entries,
max_num_entries, data_blk_size)
uint_32 init_num_entries, grow_num_entries, max_num_entries;
uint_32 data_bik_size;

_Alloc_connection_table allocates a connection table. The init_num_entries specifies the initial size of
connection table to be allocated. The grow_num_entries argument specifies the amount by which the
table is to be grown each time it is grown. I it is zero, the table will not be grown. The max_num_entries
argument specifies a maximum size beyond which the table will not be grown. A zero value for
max_num_entries is used to indicate that there is to be no limit on the maximum size of the table. If the
data_blk_size is 0, the connection routines will leave the responsibility for managing connection data
block storage to the server, and allow the server to specify a pointer to the connection data biock in the

call to _Get_connection. The returned value is a pointer to the connection table, or 0 if the table could
not be allocated. .

char *_Get_connection(table, client, new_connection, con_data_blk)
struct CON_TABLE “*table;
uint_32 client, *new_connection;
char *con_data_bik;

_Get_connection allocates new connections in a connection table. The table is grown if necessary. If
the connection data block size for the table is 0, the server may pass a pointer to the connection data
block in con_data_blk; in this case, the connection routines do not aliocate/free the connection data
blocks, but use this pointer instead. _Get_connection returns the server's connection data block for the
newly allocated connection if the allocation is successful, or 0 if the operation was unsuccessful. This
routine also returns the connection number of the new connection in new_connection.

char *_Lookup_connection(table, client, connection)
struct CON_TABLE *table;
uint_32 client, connection;

_Lookup_connection looks up the specified existing connection in a connection table. It verifies the
client and connection and returns the server's connection data block for the specified connection it the
lookup is successful, or 0 if the lookup was unsuccessful.

uint_32 _Free_connection(table, connection)
struct CON_TABLE *table;
uint_32 connection;

_Free_connection frees a connection entry, connection, in a connection table, table. The
CON_DATA_BLK is freed, and the entry is made available for re-use. _Free_connection validates
connection. 1t returns the connection number freed if it was valid, otherwise it returns 0.

APPENDIX D. USING SUPPLIED SERVERS
This appendix describes the supplied tasks and shows how selected servers are used.
Server Tasks

Examples of creating the particular server are under /harmony/example/. In each case the related
basic structure definitions are under /harmony/sys/src/servers/. Once the server is created, an
application task can use the callable functions, listed in this Appendix and which can be found in a

directory /userlib/, under the appropriate directory (identified below).
Clock — supplied tasks

_Clock_server() root function for an alarm clock task that replies after a specified
interval or at a specified time, and allows a waiting task to be
explicitly awakened, as well as facilitating reading and setting of

time
_Clock_notifier() root function for a task receiving interrupts from a timer

The example task that creates a clock server for the DY-4 DVME-134 system can be found in
/harmony/example/clock/. The definition of the clock initialization record is in
/harmony/sys/src/servers/clock/clockinit.h.

struct CLK_INIT_REC I* Clock server initialization record */
{ .
struct INIT_REC ClI_HDR;
char Cl_NAME[32]; " clock server name */
uint_32 Cl_DEV_GRP; " device group for this clock */
uint_32 Cl_GRP_MEMBER; /" member number in device group */
uint_32 CI_X_NOTIFIER; I global index of notifier */
char *CI_CLK_IO_ADDR; I* (even) l/O address of clock chip */
uint_32 Cl_TIMER; " which timer on clock chip */
uint_32 CI_DEV_CODE; I* 1st logical interrupt for clock */
uint_16 CI_ALARM_RESOLUTION; /* in miliseconds */
b
#define GIT_CLK_INIT_REC 1

A typical set of initialization values for the _Clock_server can be found under
/harmony/example/clock/src/dvme134/. In particular, the actual values, assigned to the
CLK_INIT_REC, as listed below, are in clockinit.c.

struct CLK_INIT_REC Clock_init =
{

sizeof(struct CLK_INIT_REC), " MSG_SIZE v/

CIT_CLK_INIT_REC, I MSG_TYPE */

0, I* no more initialization records */
"CLOCK:", I* clock server name */

0, /' no device group */

0, " therefore no group member number */
CLOCK_NOTIFIER, I* global index for clock notifier */

|_ CAST(char ")MC68901_ADDR, /* /O address for clock chip */
MFP_A_TIMER, " Use timer 3 on the clock chip */
TIMER_A, * 1st logical interrupt for clk chip */

50 /* alarm resolution in milliseconds */

45

46

The following records are typical of those needed for a processor that is to have a clock server and are
illustrated in the example in the file clock0.c.

Assuming the following declarations:
extern task _Clock_server();
extern task _Clock_notifier();
extern task _Mc68901_int();

these records appear in the _Template_list:
{ CLOCK, _Clock_server, 1000, 6 },
{ CLOCK_NOTIFIER, _Clock_notifier, 500, 0

and this record appears in the _interrupt_list:
{ 5. _Mc68901_int }

Application-callable functions

Functions that interact with the clock server are listed below. They are defined in
/harmony/sys/src/servers/clock/userlib. The argument clock_ucb is returned by a prior call to _Open).

ulnt_16 _Getmonth(clock_ucb)
struct UCB *clock_ucb;

_Getmonth normally returns a 16 bit unsigned integer stored in the clock state. This integer is initialized
to 0 when a clock server is created, but may change later using the _Setmonth function. If clock_ucbis

0, _Getmonth will return 0 and set the task error code to INVALID_CONNECTION. If _Getmonth is unable
to communicate with the clock server corresponding to clock_ucb, the value retumed is undefined.

ulnt_16 _Setmonth(clock_ucb, month)
struct UCB *clock_ucb;
uint_16 month;

_Setmonth stores a 16 bit unsigned integer in the clock state, for subsequent retrieval using the
_Getmonth function. This value will not change over time, except via more calls to the _Setmonth
function. i clock_uchis 0, then _Setmonth will return 0 and set the task error code to
INVALID_CONNECTION. If _Setmonth is able to successfully modify the integer in the clock state
(through the clock server), then it will return month. Otherwise, the value returned is undefined.

uint_32 _Gettime(clock_ucb)
struct UCB *clock_uchb;

_Gettime returns the current time in milliseconds if successful. If clock_ucbis 0, then 0 will be returned
and the task error code will be set to INVALID_CONNECTION. If communication with the clock server is
unsuccessful, then the value returned is undefined.

uint_32 _Settime(clock_ucb, millisec)
struct UCB *clock_ucb;
uint_32 millisec;

_Settime sets the clock server's current time to millisec if successful. If clock_ucbis 0, then 0 will be
returned and the task error code will be set to INVALID_CONNECTION. If communication with the clock
server is unsuccessful, then the value returned is undefined. Otherwise, _Settime returns the current
time after setting it.

uint_32 _Delay(clock_ucb, millisec)
struct UCB *clock_ucb;
uint_32 millisec;

_Delay blocks the invoking task for millisec milliseconds. That is, millisec specifies a delta from the
current time to the time at which the task wishes to awake. If clock_ucbis 0, then _Delay will return 0 and

47

will set the task error code to INVALID_CONNECTION. If _Delay is successful in communicating with the
clock server (and thus delaying the task), it will return 0, unless the task is awakened with the _Wakeup
function, in which case the value returned with be the time at which the task was awakened by the clock
server. Otherwise, the return value is undefined.

uint_32 _Sleep(ciock_ucb, mllilisec)
struct UCB *clock_ucb;
uint_32 millisec;

_Sleep blocks the invoking task until the current time is millisec. Note that changing the current time
using the _Settime function can thus affect when the task will wake up. If clock_ucbis 0, then _Sleep
will return 0 and set the task error code to INVALID_CONNECTION. If _Sleep is successful in
communicating with the clock server (and thus putting the task to sleep), it will return 0, unless the task is
awakened with the _Wakeup function, in which case the value returned with be the time at which the task
was awakened by the clock server. Otherwise, the return value is undefined.

uint_32 _Wakeup(clock_ucb, wake_Id)
struct UCB *clock_ucb;
ulnt_32 wake_|d;

_Wakeup attempts to wake up the task whose task identifier is wake_id if that task is currently blocked on
the clock server as a result of invoking the _Delay or _Sleep functions. If clock_ucbis 0, _Wakeup will
return 0 and set the task error code to INVALID_CONNECTION. lf _Wakeup is unsuccessful in
communicating with the clock server, the return value is undefined. If _Wakeup is successful in
communicating with the clock server but the task specified by wake_id is not currently delaying or
sleeping, the _Wakeup will return 0. if _Wakeup successfully wakes up the specified task, _Wakeup will
return the time at which the task was awakened.

uint_32 _Time_from_vec(vec)
uint_16 vec|5];

_Time_from_vec calculates a time in milliseconds from a time specified in days, hours, minutes, seconds,
and milliseconds. The vec parameteris an array of 5 integers which are, in order from vec{0/to vec[4}:
milliseconds, seconds, minutes, hours, and days. The time in milliseconds is returned.

void _Time_to_vec(time, vec)
ulnt_32 time;
. uint_16 vec|5];

_Time_to_vec performs the inverse transformation of _Time_from_vec, calculating the days,
hours, minutes, seconds, and milliseconds of a time from a time in milliseconds. The result is
stored in the vec array.

Null server — supplied task
_Null_server() root function for a task supporting minimal server services

The definition of the null server initialization record is in /harmony/sys/src/servers/null/nullinit.h
struct NULL_INIT_REC
{

struct INIT_REC NULLI_HDR;
char NULLI_NAMEJ[32]; I server name */

b
#define NULLSERVER_INIT 1

A typical set of initialization values for the _Null_server can be found under /harmony/exampleftiming/src. In
particular, the actual values assigned to the NULL_INIT_REC, as listed below, are in nullinit.c.

48

struct NULL_INIT_REC Null_server_init =

{
sizeof(struct NULL_INIT_REC)), r MSG_SIZE */

NULLSERVER_INIT, " MSG_TYPE */
0, /" no more initialization records */
*NULL_SERVER:" /" null server name */

b

The following records are typical of those needed for a processor that is to have a clock server and are
illustrated in the example in the subdirectory ataristaty in the file timing0.c.

Assumning the following declaration:
extern task _Null_server();

this record appears in the _Template_list:
{ NULL_SERVER, _Null_server, 6000, 5}
Application-callable functions

Applications access the services provided by this task through the stream 1/O functions.

Tty server — supplied tasks

_Tty_server()
_SPi_mc68901() or IC-specific alternate
_SPo_mc68901() or IC-specitic alternate

root function for the tty server task
root function for the input notifier task
root function for the output notifier task

The definition of the tty server initialization record is in /harmony/sys/src/serversityAtyinit.h.

struct TTY!_PORT_INIT_REC

{

struct INIT_REC ~ TTY|_HDR;

char TTYI_NAME[32]; I* server name */

uint_32 TT_DEV_GRP; " device group this port is a member of */

vint_32 TT_GRP_MEMBER,; /" member number in device group */

uint_32 TTI_DEV_CODE, /* input logical interrupt */
TTL_INDEX, /" input task template */
TTO_DEV_CODE, * output logical interrupt */
TTO_INDEX, " output task template */
TTETC_DEV_CODE, " etc logical interrupt */
TTETC_INDEX; " etc task template */

char *TTY_ADDR; /" /O address of tty port */

uint_16 TTY_BAUD_RATE; " baud rate, ignored for ports */

|3

#define TTYIT_ALTNAME_INIT 1
#define TTYIT_PORT_INIT 2

/* without soft baud select */

A typical set of initialization values for the _Tty_server can be found under
/harmony/exampleftiming/src/ataristAty. In particular, the actual values assigned to the TTY|_PORT_INIT_REC,
as listed below, are in ttyinit.c.

struct TTY_PORT_INIT_REC Tt0_init =
{
sizeof(struct TTY]_PORT_INIT_REC),
TTYIT_PORT_INIT,
I_CAST(struct INIT_REC *)&Defauft_init,
“TEXT_TERMINAL®,
0,
ov
RECV_o0,
mr
XMIT_0,
TTO,
ETC_o,
ol
I_CAST(char *)MC68901_ADDR,
19200

h

struct ALTNAME_INIT_REC Default_init =
{
sizeof(struct ALTNAME_INIT_REC),
TTYIT_ALTNAME_INIT,
0,
"DEFAULT:",
1

The following records are typical of those needed for a processor that is to have a clock server and are

illustrated in the example in the file timing0.c.

Assuming the following declarations:
extern task _Tty_server();
extern task _SPi_mc68901();
extern task _SPo_mc68901();

these records appear in the _Template_list:

I MSG_SIZE */

I MSG_TYPE */

/* next initialization record */

I tty server name */

I’ no device group */

I therefore no group member number */
I* tti device code */

I tti template index */

I’ tto device code */

/" tto template index */

I* ttetc device code not used */

" ttetc template index not used */
/" /O address of tty port */

I’ baud rate */

" MSG_SIZE */

" MSG_TYPE */

/* no more initialization records */
I’ tty server name */

{ TEXT_TERMINAL, _Tty_server, 2000,5 },
{ T4, _SPi_mc68901, 500, 0 },
{ TT0, _SPo_mc68901,500, 0 },

and this record appears in the _Interrupt_list:
{ 6 _Mc68901_int }

Application-callable functions

Applications access the services provided by this task through the stream I/O functions.

49

50

UW server — supplied task

_UW_server()

root function for the UW server task

The definition of the UW initialization record is in /harmony/sys/src/servers/uw/uwinit.h.

struct UWI_PORT_INIT_REC

{
struct INIT_REC UWI_HDR;
char UWI_NAME[32];
uint_32 UW_DEV_GRP;
uint_32 UW_GRP_MEMBER,;
uint_32 UWI_DEV_CODE;
uint_32 UWI_INDEX;
uint_32 UWO_DEV_CODE;
uint_32 UWO_INDEX;
uint_32 TTETC_DEV_CODE;
uint_32 TTETC_INDEX;
char *‘UW_ADDR;
uint_16 UW_BAUD_RATE;
b
#define UWIT_ALTNAME_INIT 1
#define UWIT_PORT_INIT 2

" server name */

* device group this port is a member of */
/* member number in device group */
I input logical interrupt */

r input task template */

* output logical interrupt */

/" output task template */

" etc logical interrupt */

/* etc task template */

I* /O address of uw port */

/* baud rate, ignored for ports */

/* without soft baud select */

A typical set of initialization values for the _UW_server can be found under
/harmony/example/uwdemo/sre/dvme134/demoy. In particular, the actual values, assigned to the

UWI_PORT_INIT_REC, as listed below, are in uwinit.c

struct UWI_PORT_INIT_REC
{

sizeof(struct UWI_PORT_INIT_REC),

UWIT_PORT_INIT,

I_CAST(struct INIT_REC *)&Tt_init,

"Uwo:",

ol

ol

RECV_0,

uwl,

XMIT_0,

Uwo,

ETC_o,

0,
|_CAST(char “)MC685801_ADDR,
9600

UWO_init=

k

r MSG_SIZE */

" MSG_TYPE */

I* next initialization record */

/" UW server name */

/" no device group */

/" therefore no group member number */
/* SPi device code */

/* SPitemplate index */

* SPo device code */

/* SPo template index */

I* SPetc device code not used */

" SPetc template index not used */
/* VO address of uw port */

I* baud rate */

The following records are typical of those needed for the UW server and are illustrated in the example in

the file uwdemoO.c.

Assuming the following declaration:
extern task _UW_server();

this record appear in the _Template_list:
{ UW, _UW_server, 2000, 5 },

51

and this record appears in the _Interrupt_list:
{ 5,_Mc68901_int },

Application-callable functions

Applications access the services provided by this task through the streamio functions.

EHVT server — supplied tasks

Echo Handshake Virtual Terminal

_Ehwvt_server() root function of EHVT server task

_Ehvtic() root function of EHVT input consumer task
_Ehvtip_mc68901() or IC-specific alternate root function of EHVT input producer task

The definition of the EHVT initialization record is in /harmony/sys/src/servers/ehvt/ehvtinit.h.

struct EHVT_PORT_INIT_REC

{
struct INIT_REC EHVT_HDR;

char EHVT_NAME[32]; I EHVT server name */

uint_32 EHVT_DEV_GRP; /* device group this port is a member of */
uint_32 EHVT_GRP_MEMBER; /* member number in device group */
vint_32 EHVT_WAKEUP_DEV_CODE; /7 _Ehvtic wakeup logical int */
uint_32 EHVTIC_INDEX; /" EHVT input consumer task */
uint_32 EHVTI_DEV_CODE; " input logical interrupt */

uint_32 EHVTIP_INDEX; /* EHVT input producer task */
uint_32 EHVTO_DEV_CODE; /* output logical interrupt */

vint_32 EHVTO_INDEX; /* output task template */

uint_32 EHVTE_DEV_CODE; I etc logical interrupt */

uint_32 EHVTE_INDEX; I etc task template */

char *EHVT_ADDR; /* VO address of serial port */

uint_32 EHVTI_BUF_SIZE; /" input buffer size */

uint_16 EHVT_BAUD_RATE; /* baud rate, ignored for ports */

/" without soft baud select */
k

#define EHVTIT_ALTNAME_INIT 1
#define EHVTIT_PORT_INIT 2

A typical set of initialization values for the Ehvtic server can be found under
/harmony/example/uwdemo/src/dvme134/. In particular, the actual values, assigned to the
EHVT_PORT_INIT_REC, as listed below, are in ehvtinit.c

struct EHVT_PORT_INIT_REC Ehvt1_init =
{

sizeof(struct EHVT_PORT_INIT_REC), " MSG_SIZE */

EHVTIT_PORT_INIT, " MSG_TYPE */

0, /* no more initialization records */
"EHVT:", /* ehvt server name */

0, 7* no device group */

o, * therefore no group member number */
EHVTIC_WAKEUP, /* _Ehvtic wakeup logical int */

EHVTIC, I* EHVT input consumer task index */
RECV_o0, * tti device code */

EHVTIP, /" EHVT input producer task index */

XMIT_O, I* tto device code */

52
EHVTO, " output task template index */
ETC_0, /* ttetc device code not used */
0 " ttetc template index not used */

| CAST(char *)MC68901_ADDR,
2000,
9600

/* VO address of serial port */
" input buffer size */
/" baud rate */

b

Assuming the following declarations:
extern task _Ehvt_server();
extern task _Ehvtip_mc68901();
extern task _Ehvtic();
extern task _Sspo_mc68901();

these records appear in the _Template_list:

{ EHVT, _Ehwvt_server, 1500,5 },
{ EHVTIP, _Ehvtip_mc68901, 850, 0 },
{ EHVTIC, _Ehwtic, 750, 6 },
{ EHVTO, _Sspo_mc68901, 750, 0 1},

and this record appears in the _Interrupt_list:
{ 5,_SMc68901_int}

Application-callable functions

Applications access the services provided by this task through the stream 1/O functions.

File system — supplied tasks
The file system consists of three tasks:

_File_system() root function for the file system server task
_File_device() root function for the file device server task
_File_device_format() root function for the file device format server task

The example task that creates a file system server (and the underlying file device server) for the Atari 520
ST system floppy disk, can be found in /harmony/example/fsys/. The definition of the file system
initialization records is in /harmony/sys/src/servers/fsys/fsysinit.h.

struct FS_BASIC_INIT_REC
{

I file system server basic initialization record */

struct INIT_REC FSI_HDR;

char FSI_NAME[32]; /* server name */

char FSI_FDEV_NAME[32]; I* file device server name */
uint_32 FSI_ROOT_LDRV_NO; I root logical drive */
uint_16 FSI_OWNER_ROOT; I owner of ™ */

uchar FSI_O_PERMS_ROOT,; r* owner perms for ™" */
uchar FSI_W_PERMS_ROOT; /* world perms for ™' */
uint_16 FSI_SE_CACHE_SIZE; I* # substructure entries */
uint_16 FSI_SB_CACHE_SIZE; /* # substructure buffers */

k

struct FS_LDRV_INIT_REC
{

struct INIT_REC FS|_HDR;

uint_32 FSI_LDRV_NO;
uint_32 FSI_PDRV_NO;
uint_32 FSI_NUM_BLKS;
uint_32 FS|_BLK_SIZE;
uint_32 FSI_CYL_OFFSET;
char FSI_LABEL[32];

b

#define FSIT_BASIC_INIT_REC 1
#define FSIT_LDRV_INIT_REC 2

53

I logical drive initialization record */

I* logical drive number */
" physical drive number */
I* number of blocks */

" multiple of sector size */
I cylinder offset: 1st blk */
[* label string */

A typical set of initialization values for the file system can be found under

/harmony/example/tsys/src/atarist/floppy/ in the file fsysinit.c. This file defines the configuration for the file
system servers for an Atari ST floppy drive system. Fs0_init is the first record in the initialization record
list passed to _Server_create for “FILESYS0:” The extern declaration is included to satisfy the compiler

requirement for forward references.

extern struct FS_LDRV_INIT_REC FsO_l0_init;

struct FS_BASIC_INIT_REC Fs0_init =

{
sizeof(struct FS_BASIC_INIT_REC),
FSIT_BASIC_INIT_REC,
|_CAST(struct INIT_REC *)&Fs0_l0_init,
*FILESYSO:",
"FILEDEVO:",
or
ROOT_OWNER,
ROOT_O_PERMS,
ROOT_W_PERMS,
40,
2

k

struct FS_LDRV_INIT_REC Fs0_l0_init =
{
sizeof(struct FS_LDRV_INIT_REC),
FSIT_LDRV_INIT_REC,
0,
ol
0,
585,
512,
0,
"Filesys0-ldrvo",
15

extern struct FS_LDRV_INIT_REC Fs1_l1_init;
extern struct FS_LDRV_INIT_REC Fs1_I2_init;

" MSG_SIZE */

" MSG_TYPE */

I* next initialization record */

r* file system server name */

I* corresponding fdev server name */
I* root logical drive */

I* owner of root (™) */

I* owner perms for root (") */

* world perms for root ("**) */

I # substructure entries cached */
" # substructure buffers cached */

I MSG_SIZE */

" MSG_TYPE */

7" no more initialization records */
I logical drive number */

I physical drive number */

/" number of blocks */

" blk size - mutiple of sector size */
I* cylinder offset of first block */

I label string */

The following record is typical of that needed for creating a file system server. A file system server
requires the creation of a file device server described also in this Appendix.

54

Assuming the following declaration:
extern task _File_system_server();

this record appears in the _Template_list (in the file fsys0.c):
{ FILE_SYSTEM, _File_system_server, 3000, 6, },

Application-callable functions

The functions that interact with the file system server are listed below. They are defined in
/harmony/sys/src/servers/sys/suserlib/.

File system control

char *_Copy_file(from_name, to_name, user_id)
char *from_name, *to_name;
uint_16 user_id;

_Copy_file copies a file for the specified user. Errors are reported on the currently selected output
stream. _Copy_file returns to_name if successtul, and 0 if not.

char *_Copy_tree(fsys_ucb, from_root, to_root, user_id)
struct UCB *fsys_ucb;
char *from_root, *to_root;
uint_16 user_id;

_Copy_tree copies an entire tree of nodes. The parameter fsys_ucbis the connection block for file
system containing the source tree (from_root). Errors and status are reported on the currently selected
output stream. _Copy_tree returns to_root if successful, and 0 if not.

char *_Get_current_node(fsys_ucb, pathname)
struct UCB *fsys_ucb;
char *pathname;

_Get_current_node appends the current node for the specified file system to pathname. The
pathname string should be large enough to append up to 256 characters to it. _Get_current_node
returns pathname if it was successful, and 0 if not.

char *_Get_access_perms(fsys_ucb, pathname, owner, o_perms, w_perms)
struct UCB *fsys_ucb;

char *pathname;
uint_16 *owner;
uchar *o_perms;
uchar ‘w_perms;

_Get_access_perms returns in owner, o_perms, and w_perms, the owner and permissions for the
specified node in the specified file system. _Get_access_perms returns pathname if it was successful,
and 0 if not.

char *_Make_node(fsys_ucb, pathname, o_perms, w_perms)
struct UCB *fsys_ucb;

char *pathname;

uchar o_perms, W_perms;
_Make_node makes a new node in the file system tree. _Make_node returns pathname if successful,
and 0 if not.

struct SUBSTRUCTURE_ENTRY *_Next_substructure_entry(substr_entry)
struct SUBSTRUCTURE_ENTRY *substr_entry;

_Next_substructure_entry returns the next substructure entry.

55

struct RP_U_BITMAP_READ *“_Read_bitmap(fsys_ucb, Idrv_no, bm_length, bm_buf)
struct UCB *fsys_ucb;
uint_32 ldrv_no, bm_length;
struct RP_U_BITMAP_READ *bm_buf;

_Read_bitmap returns in bm_bufthe bitmap for the specified logical drive in the specified file system:
- bm_lengthis not the allocated size of bm_buf, but rather the size of the bitmap data area
(bm_buf->UBR_BITMAP); _Read_bitmap returns bm_bufif successful, and 0 if not.

struct SD *_Read_space_descriptor(fsys_ucb, pathname, sd)
struct UCB *fsys_ucb;
char *pathname;
struct SD *sd;

_Read_space_descriptor returns in sd the space descriptor for the specified node in the specified file
system. The space descriptor contains information about a node in the file system tree.
_Read_space_descriptor returns sd if successful, and 0 if not.

struct RP_U_SUBSTRUCTURE_READ *_Read_substructure(fsys_ucb, pathname,
sb_length, substr_buf)

struct UCB *fsys_ucb;
char *‘pathname;
uint_32 sb_length;

struct RP_U_SUBSTRUCTURE_READ ‘*substr_buf;

_Read_substructure returns in substr_buf the substructure for the specified node in the specified file
system. The routine _Next_substructure_entry can be used to walk the substructure buffer. The
sb_length parameter is not the allocated size of substr_buf, but rather the size of the substructure data
area (substr_buf->USSR_DATA). _Read_substructure returns substr_buf it successful, and 0 if not.

char *_Rename_node(fsys_ucb, pathname, new_node_name)
struct UCB *fsys_ucb; -
char *pathname, *new_node_name;

_Rename_node renames the specified node in the specified file system. The node's position in the file
system tree cannot be changed, only its name (within its parent's substructure) can be changed. Thus
new_node_name is just a companent name of size <« MAX_COMPONENT_SIZE, not a full pathname.
_Rename_node returns pathnamae it successful, and 0 if not.

char *_Rm_node(fsys_ucb, pathname)
struct UCB *fsys_ucb;
char *pathname;

_Rm_node removes the specified node in the specified file system. _Rm_node returns pathname if
successful, and 0 if not.

char *_Rm_tree(fsys_ucb, root)
struct UCB *fsys_ucbh;
char *root;

_Rm_tree removes an entire tree of nodes. Errors and status are reported on the currently selected output
stream. _Rm_tree returns root if successful, and 0 if not.

char *_Set_current_node(fsys_ucb, pathname)
struct UCB *fsys_uchb;
char *pathname;

_Set_current_node makes pathname the current node in the specified file system. _Set_current_node
returns pathname if successful, and 0 if not.

56

char *_Set_access_perms(fsys_ucb, pathname, change_owner, new_owner,
o_on, o_off, w_on, w_off, owner, o_perms, w_perms)
struct UCB *fsys_uchb;

char *pathname, change_owner;
uint_16 new_owner, ‘owner;
uchar o_on, o_off, w_on, w_off, *o_perms, ‘w_perms;

_Set_access_perms changes the owner and/or access permissions for the specified node in the
specified file system. This routine returns in owner, o_perms, and w_perms, the new owner and
permissions for the node. _Set_access_perms returns pathname if it was successful, and 0 if not.

char *_Shrink_flle(pathname, user_id)
char *pathname;
uint_16 user_id;

_Shrink_file shrinks the file specified by pathname so that it occupies the minimum number of blocks on
disk required to represent all of the information contained in the file. This routine writes the file size
status or errors to the currently selected output stream. _Shrink_file returns pathname if successful,
and O if not.

char *_Walk_tree(fsys_ucb, pathname, walk_data, traversal)
struct UCB *fsys_ucb;

char *‘pathname;
char *walk_data;
uint_32 traversal;

_Walk_tree is used to walk a tree of nodes in the file system to obtain the full pathname of each node in
the tree. On the first call to _Walk_tree the client passes 0 for walk_data, and the root of the tree to be
walked in pathname. Traversal may be PRE_ORDER or POST_ORDER indicating the type of tree
traversal to be done. On this and subsequent calls, Walk_tree returns a pointer to its internal data
structure (walk_data) and copies the fuli pathname of a node of the tree into pathname. _Walk_tree
returns NULL (0) for the pointer to its internal data when the walk is completed. On each call to
_Walk_tree, the client should pass in walk_data the pointer returned on the previous call to _Walk_tree.
Errors are reported on the currently selected output stream.

File system information

char *_File_size(pathname, user_id)
char *pathname;
uint_16 user_id;

_File_size writes the file size information about a file to the currently selected output stream. Errors are
reported on the currently selected output stream.; _File_size returns pathname if successtul, and O if
not.

uint_32 _Fsys_space(fsys_ucb, Init_list)
struct UCB *fsys_ucbh;
struct INIT_REC ‘*Init_list;

_Fsys_space displays space usage statistics for the specified file system on the currently selected
output stream; init_list is a pointer to the list of initialization records which describe the configuration of
the specified file system; _Fsys_space returns 1 if it is successful, and 0 if not.

char *_List_file(pathname, user_id, break_pages)

char *pathname;
uint_16 user_id;
char break_pages;

_List_file lists a text file on the currently selected output stream. If break_pages is set, _List_file pages
(i.e. prompts for input from the currently selected input connection every 23 lines). Lines are assumed
to be terminated by \n', and the file is assumed to be terminated by \0'. _List_file returns pathname if
successful, and 0 if not.

57

char *_List_nodes(fsys_ucb, pathname, check_substr)
struct UCB *fsys_ucbhb;
char *pathname, check_substr;

_List_nodes lists the substructure for the specified node on the currently selected output stream. The
list is formatted with several nodes per line. If check_substris set, nodes which have substructure are
tagged by a '+'; nodes whose substructure cannot be check are tagged by a'?". This routine provides
the equivalent of 'Is' or 'Ic' in Unix systems. Errors are reported on the currently selected output stream.
_List_nodes returns pathname if successful, and 0 if not.

char *_Put_tree(fsys ucb, root)
struct UCB *fsys_uchb;
char *root;
_Put_tree lists the full pathnames for all the nodes in the specified file system tree on the currently
selected output stream. The output is paged (i.e. the currently selected input stream is prompted after

every 23 lines of output). Errors are reported on the currently selected output stream. _Put_tree returns
root it successful, and 0 if not.

char *_Stat_node(fsys_ucb, pathname, user_id)
struct UCB *fsys_ucb;
char *‘pathname;
ulnt_16 user_ld;

_Stat_node writes the space descriptor information for a node to the currently selected output stream.
_Stat_node returns pathname if successful, and 0 if not.

Int_32 _Lsb_Index(file_ucb)
struct UCB *flie_uchb;

_Lsb_index returns the index of the last significant byte in the file specified by file_uch. The "last
significant byte” is defined as the last non-zero byte in the file. -1 is returned if the file contains no
significant bytes.

File device

While applications do not communicate with the file device server, the application programmer needs
to create the server. The following are the definitions for initialization record of the underlying file device
server, as well as the specific initialization values for the initialization record.

struct FD_BASIC_INIT_REC /* basic initialization record */
{
struct INIT_REC FDI_HDR;
char FDI_NAME[32]; * server name */
char *FDI_CONTROLLER_ADDR; /" I/O address of controller */
uint_32 FDI_CMD_DONE_INT; /* cmd done logical interrupt */
uint_32 FDI_X_CMD_NOTIFIER; I* global index */
uint_32 FDI_X_SEEK_NOTIFIER; /* global index */
boolean FDI_REPORT_DISK_ERR; 1* report disk errors in detail? */
b
struct FD_PDRV_INIT_REC I* physical drive initialization record */
{
struct INIT_REC FDI_HDR;
uint_32 FDI_DRV_NG; I physical drive number */
uint_32 FDI_DEV_CODE; " seek done logical interrupt */
uint_16 FDI_TYPE_DRYV; I* winchester/loppy */
uint_16 FDI_UNIT;
uint_16 FDI_HEADS; /" number of heads/racks */

uint_16 FDI_CYLINDERS; /" number of cylinders */

58

uint_16 FDI_SECTORS_PER_TRACK;
uint_16 FDI_BYTES_PER_SECTOR;
uint_16 FDI_NUM_ALT_CYLS; " or floppy encoding */

|5
File system server initialization record types:

#define FDIT_BASIC_INIT_REC 1
#define FDIT_PDRV_INIT_REC 2

Specific initialization values for the file device example are under /harmony/example/fsys/src/atarist/floppy/ in
the file fdevinit.c. This file defines the configuration for the file device server for an Atari ST floppy drive
system.

This file defines the configuration for the _File_device_server and the _FD_Format_server for an Atari
ST floppy drive system. Fd_init is the first record in the initialization record list passed to _Server_create
for the _File_device_server. The initialization records are replied to the file device server during the server
creation sequence (_Server_create). Note that only the first initialization record differs between the
_File_device_server and the _FD_Format_server. The physical disk drives are the same for both servers.

The following is included to satisfy the compiler requirement for forward references.
extern struct FD_PDRV_INIT_REC Fd_d0_init;

struct FD_BASIC_INIT_REC Fd_init =

{

h

sizeof(struct FD_BASIC_INIT_REC),

FDIT_BASIC_INIT_REC,

|_CAST(struct INIT_REC *)&Fd_d0_init,

"FILEDEVO:",

|_CAST(char *)DMA_CTRL_ADDR,
DISK_CMD_DONE,
FD_CMD_NOTIFIER,
FD_SEEK_NOTIFIER,

TRUE

struct FD_PDRV_INIT_REC Fd_d0_init =

{

The following task template definitions and related definitions for the file device server are grouped

/" for _File_device_server */

/" MSG_SIZE */

" MSG_TYPE */

/" next initialization record */

1 file device server name */

/* 11O address of controlier */

* cmd done logical interrupt */
/" ecmd notifier global index */
" seek notifier global index */
I* report disk errors in detail? */

" config for physical drive 0 */

sizeof(struct FD_PDRV_INIT_REC), I MSG_SIZE */
FDIT_PDRV_INIT_REC, /" MSG_TYPE */

0, /* no more initialization records */
0, " physical drive number */
DISK_SEEK_DONE, " dev code (seek done logical int) */
FLOPPY, " device type */

0, /* unit number */

1, " number of heads */

80, " number of cylinders */

9, * number of sectors per track */
512, " number of bytes per sector */

DOUBLE_DENSITY

/" floppy encoding */

together with those for the file system server, in the file fsys0.c.

59

Assuming the following declarations:
extern task _File_device_server();
extern task _FD_Cmd_notifier();
extern task _FD_Seck_notifier();

these records appear in the _Template_list:

{ FILE_DEVICE, _File_device_server, 4000, 5,},
{ FD_CMD_NOTIFIER, _FD_Cmd_notifier, 500, 0,},
{ FD_SEEK_NOTIFIER, _FD_Seek_notifier, 500, 0, }

and this record appears in the _interrupt_list:
{ Oxti1e, _Disk_int }

The third server is the file device format server _FD_Format_server. For the sake of brevity, the details of

this server are not given here. However, the Harmony source tree contains the files for the file device
format server.

TCP/IP server — supplied tasks

_IP_Rx() root function for ip receive agent task
_IP_Timer() root function for ip timer task

_IP_Tx() root function for ip transmit agent task
_TCP_server() root function for tcp server task
_TCP_timer() root function for tcp timer task

The task templates and initialization record definitions can be found in
/harmony/sys/src/serversicpip/userlibftcpipuser.h.

Application-callable functions

uint_32 _Connect(ucb)
struct UCB *ucb;

uint_32 _IP_send(ucb, buff, len, flags)

struct UCB *ucb;
struct BUFF_MSGIO *buff;
uint_16 len;

uint_16 flags;

uint_32 _IP_recv(ucb, buff_rply, len)
struct UCB *uch;
struct BUFF_MSGIO *buff_rply;
uint_16 len;

uint_32 _Listen(ucb)
struct UCB *ucb;

uint_32 _IP_addr_mask(net, addr_mask)
uint_32 net;
uint_32 addr_mask;

uint_32 _IP_bind_addr(net, text)
char *net;
char *text;

60

uint_32 _IP_host_addr(net, addr)
uint_32 net;
uint_32 addr;

uint_32 _iP_boot(net, id)
struct NET_INIT_REC
uint_32 id;

*net;

61

APPENDIX E. SOFTWARE ENGINEERING.CONSIDERATIONS:
SOURCE MANAGEMENT AND THE ORGANIZATION OF THE
HARMONY SOURCE TREE

The problem of managing Harmony source is different from that addressed by most software
development tools, such as Make, or SCCS, or RCS on Unix. Those tools are intended to manage a
program as it evolves. The concern is that as the program changes with time two things may happen:

« parts of the program on which other parts depend may change, necessitating recompilation, redoing
linkage editing, or other processing, in order to rebuild a correct and consistent version of the
program. This is what Make addresses.

« conflicting requirements of production use and further development dictate a regime of a sequence of
frozen versions of the program, termed releases, which production users can count on as being
stable while developers continue to evolve the subsequent release. The frozen versions may be
expected to have minor changes as errors are repaired, leading to sub-releases. If the program is big,
and worked on by several developers, they may need to be protected from tripping over each other,
for instance by preventing accidental and incompatible changes to the same module. These problems
are what SCCS (Source Code Control System) and RCS (Revision Control System) address.

The software management problem facing Harmony is completely different, and although the two
problems mentioned above do exist, they are minor by comparison. The problem of Harmony is that it is
not one program, but a family of programs. The problem arises because Harmony is portable,
configurable, and open, and because development is supported in many different computing environments.
This has the following implications for source code:

» Itis not known what computer system will be used for development of Harmony itself or application
programs to be used in Harmony. The first consequence is that though the source for Harmony is
organized in a tree, the form of pathnames identifying a particular unit cannot be stated in general!
Another consequence is that the tools available are in general unknown, much less how the tools are
invoked — unless they are tools provided with Harmony itself. Finally, the mechanism for
executing command sequences on a given development system is unknown.

"« Itis not known what target microprocessor the Harmony system will be for. Care in using portable
techniques means that this is surprisingly insignificant. Of course the functions written in assembler
need redoing for a new microprocessor, but apart from that, the main things dependent on
instruction set are the data structures describing the registers and other information saved on the
stack when a task is interrupted, and for the same reason the information hand-crafted onto the stack
when a task is created.

» It is not known what target microcomputer the target microprocessor is used in. This can affect what
resources are available, what interrupt priority levels have been preallocated, how interprocessor
interrupts are generated, what addresses are preallocated and what are available (what the memory
map must be), what powerup sequence and other initialization is required, etc. Both assembly
language and C code can be affected.

« It is not known what compiler and assembler will be used on the source. The compiler matters
because there are minor differences in the languages accepted. For example, one such difference is
that any compiler based on C as in Unix version 6 or earlier, does not permit the casting of external
initializers to match the type of the variable being initialized — whereas compilers based on C as in
Unix version 7 or later require the casting for type conformance. Another potential problem is caused
by the manner in which structures are returned from functions. Many compilers generate non-

62

reentrant code, which is catastrophic in a realtime system. With care, these problems can generally
be avoided. The assembler matters rather more, as the syntax of different assemblers may be quite
different. Register and subroutine linkage assumptions made by the compiler may require different
assembly language code. Field offsets in structs must be calculated by hand for the assembly code,
as assemblers rarely interpret C header files. Most annoying, the external symbols generated by C
compilers rarely are exactly the identifiers used in C programs, so the assembly code must be
changed to generate the appropriate symbols itself.

The pathetic linkers and library editors used in the industry often are incapable of resolving
backward references to modules occurring earlier in a library but not already forced to be loaded.
This means that a unit of compilation bigger than a function must be used, so all such references can
occur within a single linkage module.

Limits on table sizes in various compilers mean that the unit of compilation must be limited to be
smaller than the total source. In particular, many compilers will not accept all the header files as input
in a single compilation, because the number of structs and unions, the number of members of structs
and unions, or the number of defines, exceeds the maximum for which table space exists.

The intended market of board level computers means that not only is the specific configuration
unknown, e.g., device addresses, but the actual devices can differ in functionality and interface. A
Motorola 6850 ACIA is vaguely equivalent to a Signetics 2681 DUART or an Intel 8251A USART,
but the detail differences do affect the code for a terminal server. Similarly, the differences among
timer chips or alarm clock chips do affect the code for the clock server. Peripherals implemented as
separate boards, such as disk controllers, also have differences that are not transparent to the code
for servers, such as the file device server, and might be used with any microcomputer implemented
for the same bus. However, for a complex server, most of the code of the server is independent of
these differences, and should be common across versions.

Since many realtime systems are dedicated or highly specialized, Harmony is both configurable and
open, in that any part of the supplied software not needed can be omitted, and customized servers
required for the application can readily be added, whether they are modifications of supplied servers
or something wholly new. Different modes of system use must be supported also, from programs
downloaded into target systems for execution, to programs linked with Harmony then burned in
ROM, to programs linking to a silicon operating system version of Harmony itself supplied in ROM.

Many application programs must have access to header files from Harmony itself, i.e., data structure
definitions and manifest constant values. This is true both of programs intended to run with
Harmony on the target environment, and tools intended to run on whatever development
environment is used to produce Harmony programs. For the latter, problems such as byte-swapping
must be kept in mind.

These sorts of issues call for a new kind of source management. The solution used with Harmony

evolved from the solution used with Thoth to a similar (but simpler) problem. The Harmony source
management strategy is to regard the Harmony code tree as a database of source code, from which
appropriate items are extracted to make the version of interest at the moment. The granularity of the
database is that one fiinction is stored in each file, although there are also files containing logically grouped
external declarations, and logically grouped sets of #define, struct and union definitions. The extraction is
done by files containing only #include statements. Because the extraction is for a specific version, where
the file naming convention for the specific development host are known, file pathnames can be expressed
in the appropriate format. An inclusion file, as these are known, defines a compilation unit which should
be compiled together so the resulting object module can be stored in a library without the ordering concerns
mentioned above. The source explicitly makes no use of the #ifdef conditional compilation mechanism,

63

first because experience shows that if many alternate versions of code are combined this way the code
becomes unreadable, and second because finding code with version differences then requires searching the
complete text of the code, rather than just identifying files. The tree structure of the file system is heavily
used in organizing the database.

The first branching of the Harmony code directory identifies major categories of items. These include
the system itself (/sys/),! the supplied tools (/tools/), example programs (/example/), documentation
(/doc/), and support for ROM (/bootrom/). The Aools/ and /example/ subdirectories are divided at the next
level into specific tools and specific examples. Documentation for all the tools is grouped under the
directory /docftools/. Command files for VMS and for A/UX are in directory /scripts/ under fools/.

The source code directory (/src/) may contain files of source code directly. Or, if the program or
library is made up of major configurable abstractions, it will be divided into subdirectories corresponding
to these abstractions. Only files common to all abstractions (like certain header files) will appear at the top
level. Abstraction subdirectories themselves may have subdirectories if the abstraction subdivides naturally
into sub-abstractions, as /sys/src/servers/ does. The source code directly under /src/ or directly under an
abstraction such as /sys/src/connect/ is only that code in C which is identical for all versions. If some
attribute dictates a special variant, another level of subdirectory named for that attribute is interposed above
the source code. Clearly the contents below different variant-discriminating subdirectories are parallel to
each other. Often, there is a single version of the system that requires a small piece of code to be different
from the other versions. In these cases, we create a variant directory /default/, which applies to the majority
and a specific variant directory for the exception. Similarly, when the code is written in assembler instead
of C, a subdirectory is interposed naming the specific assembler. This is not completely satisfactory, as it
implies an assembler is used with only one compiler. Every variant subdirectory contains a file variant.doc
describing what characterizes the need for that variant.

For a specific program or library, such as /harmony/example/srtest/ or /harmony/sys/, the first
directory level distinguishes the source code database (/src/) from the directories of inclusion files (/inc/),
for compiling various versions of this entity.2 Every version has a corresponding directory (with
possible subdirectories) of inclusion files, the structure in general paralleling the structure of the source
directory (described above). The following versions are supplied with release 3.0:

Directory name Target board Microprocessor Host Compiler
dy134mpw2 DY-4 DVME-134 MCg&8020 Macintosh Apple MPW C 2.0
dy134cmac DY-4 DVME-134 MC68020 Macintosh Consulair Mac C
dy134aux DY-4 DVME-134 MC68020 Macintosh AUXC
dy134wvms DY-4 DVME-134 MC68020 VAX/VMS Whitesmiths' C
iovemac lo Inc. V68/32 MC868020 Macintosh Consulair Mac C
atstcmac Atari 520/1040ST MC68000 Macintosh Consulair Mac C
atstmpw?2 Atari 520/1040ST MC68000 Macintosh Apple MPW C 2.0
ch00Ocmac Omnibyte OB68K1A MC68000 Macintosh Consulair Mac C
chOOwvms Omnibyte OB68K1A MC68000 VAX/IVMS Whitesmiths' C
ch10wvms Omnibyte OB68K1A MC68010 VAX/VMS Whitesmiths' C

An inclusion directory should contain a file version.doc describing exactly what version this directory
corresponds to, i.e., what variants are included. Under an inclusion directory, there will be subdirectories
corresponding to the abstraction subdirectories (if any) under the corresponding source directory.

1 The “ftoken/” syntax is intended to be generic and is not that of Unix. The leading / does not imply the root.
2 We use the term variant in the source branch of the tree and the term version on the inclusion side of the tree.

64

Primarily, the files under the inclusion directory are inclusion files, to be compiled. An inclusion file can
also be used to generate listings, since the listing tool works on inclusion files.

Our software management scheme is based on layers or parallel trees. It is assumed that the developer
is working with at least three parallel trees. On the Macintosh these trees are mapped to three logical
volumes. The configuration in our laboratory for Harmony development uses the following logical
volumes:

Master
read-only copy of Harmony source
Working
updated sources to be integrated into Master
Derived
temporary files, temporary inclusion files that point to sources in Working, intermediate files
produced by the compiler, linker and tools

Our normal working procedure is for each user to have a read-only copy of the master source code.
Any Harmony system developer that needs to make a change to a file on the Master places the changed (or
new) file in the corresponding directory in a sparse tree on his Working volume. Deletions are marked in the
Working tree by special null files. In order to modify and to recompile a particular part of Harmony the
following steps are taken. The appropriate inclusion directories are copied from the Master volume (or from
Working in the case of altered inclusion files) to the corresponding node on the Derived volume. Because
the pathnames in the inclusion file are absolute, each pathname in the inclusion file on the Derived volume
still references all the source files in the Master volume. Then, to activate the revised files that have been
modified and deposited in Working, specific pathnames are changed to point to these revised copies. The
inclusion files on Derived volume are then compiled with the resulting object modules being left in the
inclusion directory of the file that was compiled. Likewise, when the object modules are combined into
libraries and into executable program images, all the generated files are left on the Derived volume. Similar
procedures are followed by Harmony application programmers, who may introduce their own layers
between Master and Derived.

e

65
APPENDIX F. DEVELOPMENT SYSTEM USED AT NRC

One of many characteristics that distinguish personal computers from workstations is the fact that a
working system based on a personal computer is made up of many third party software products. These
products include compilers, editors, utilities and even modules that augment the original operating system.
There are several choices for each component. The exercise of selecting a consistent set is non-trivial. The
configuration of a Macintosh system for Harmony development that is given below represents one set of
choices. There is no intention to imply that the chosen products are the best; merely that they have worked
well in our laboratory. Also, many of the choices were made in 1986, when the Macintosh was selected,
other choices may be more relevant today. Our system is evolving in step with the technology.

The following shows the range of systems used in our laboratory.
« Apple Macintosh Plus personal computer, 1 MB and 20 MB disk (minimum configuration)
» Macintosh SE with Radius full page display, 2.5 MB, 60 MB disk (typical configuration)

« Macintosh II or IIx with 4 MB, 40 - 80 MB disk (alternate typical configuration)
(Development under A/UX requires an upgraded Macintosh II or a Ilx.)

All the development machines in our laboratory are networked using LocalTalk and Phonenet, and are
running a file- or volume-sharing package, MacServe, from Infosphere. MacServe also offers a facility for
partitioning the disk into logical volumes. Harmony source management is based on a layered structure
which is well supported by the use of logical volumes. Other groups are using TOPS as the networking
software. In that case the volume partitioning is achieved with one of the volume partitioning utilities.
Elsewhere, even if there is only one user, more than one machine will likely be used. One machine
typically would be with the realtime target, while another might be in the office. Consequently, it is
convenient to use either MacServe or TOPS.

Consulair Mac C v.5.0 compiler is being used at present. Migration to the Apple MPW system and its
C compiler is in progress and is expected to be completed later in 1989. A preliminary version of the port
to MPW 2.0 for the Atari evaluation system is included in Release 3.0 of Harmony.

Source editing is done mainly using Paragon Concepts QUED/M programmer’s editor with macros
for navigating in parallel trees on different volumes. However, there is a distressing trend in some
development systems to enforce the use of the built-in editor, making it difficult to use an alternative editor,
such as QUED/M, which is often more powerful or more friendly than the built-in alternative.

InTalk virtual terminal from Palantir Software is being used because it has a macro facility, and also
because it supports XMODEM protocol, which is used for downloading to a target system. There are
several alternatives to InTalk available. Also, Apple MacTerminal is sometimes useful because of its
faithful emulation of the DEC VT100.

Other useful tools include MacTree from SRT Software, useful for displaying and managing large file
trees, particularly during the integration phase and HFS Navigator which modifies the behaviour of the file
access dialog box in the Macintosh operating system, so as to facilitate rapid switch of the current
directory.

Target systems in use in our laboratory, for which there are versions included in Release 3.0 of
Harmony, are listed in Appendix E.

