
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Tenth International Conference on Civil, Structural and Environmental 
Engineering Computing [Proceedings], pp. 1-15, 2005-08-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=237161ad-7613-4851-b4a6-2d7d01fa44ca

https://publications-cnrc.canada.ca/fra/voir/objet/?id=237161ad-7613-4851-b4a6-2d7d01fa44ca

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Development of model-based systems for integrated design of highway 

bridges
Halfawy, M. R.; Hadipriono, F. C.; Duane, J.; Larew, R.



 

 

 

 

 

 

  
Development of model-based systems for integrated 

design of highway bridges 

 

 

 

 

 

 

 

 

 

 

 Halfawy, M.R.; Hadipriono, F.C.; Duane, J.; 

Larew, R.   
 

 

 

 

 

 

 

 
NRCC-48176 

 

 

 

 

 

A version of this document is published in / Une version de ce document se trouve dans: 
International Conference on Civil, Structural and Environmental Engineering 

Computing, Rome, Italy, Aug. 30-Sept. 2, 2005, pp. 1-15  
 

 

 

http://irc.nrc-cnrc.gc.ca/ircpubs 

 

 

http://irc.nrc-cnrc.gc.ca/ircpubs


 

 

Development of Model-Based Systems for Integrated 

Design of Highway Bridges 

 

M.R. Halfawy*, F.C. Hadipriono+, J. Duane+, and R. Larew+ 

* Centre for Sustainable Infrastructure Research, Institute for Research in 

Construction, National Research Council, Canada; formerly, Research Fellow, 

Department of Civil Engineering, The Ohio State University, U.S.A. 

+ Department of Civil Engineering, The Ohio State University, U.S.A. 
 

 

 

Abstract 

 

 

This paper presents a model-based approach to facilitate the implementation of 

integrated software systems that can support bridge design processes throughout the 

project lifecycle. The approach involves the use of an integrated data model and a 

centralized project data repository, where project data can be efficiently managed 

and shared across various project processes. An integrated bridge data model, based 

on the ISO STEP standards, has been developed. Four main views (or sub-schemas) 

have been identified to support the core model: structural design, structural analysis, 

construction scheduling, and cost estimating. An object-oriented project repository 

is implemented based on the proposed data model. The prototype software aims to 

support the design of concrete box girder bridges.  

 

Keywords: model-based systems, bridge design, data standards, integrated systems.  

 

1  Introduction 
 

To reduce costs and improve project efficiency and quality, bridge designers need to 

adopt systems that can achieve close integration of various design and construction 

processes. Bridge design processes comprise a wide range of activities and are 

typically accomplished by a collaborative multi-disciplinary effort of several teams 

and organizations.  Fragmentation of the industry has caused much inefficiency that 

can be primarily attributed to the “gaps” between the design and construction phases 

of a project. Project information typically flows from design to construction, with 

very costly and time-consuming feedback loops during the construction phase, in the 

form of change orders. Experience shows that project gaps have often resulted in 

project cost and time overruns, reduced quality and maintainability, and the inability 

to access and communicate project information in a systematic and timely fashion.  

 

1 



Project gaps have been primarily created as a result of the lack of integration of the 

design and construction processes and the isolation of upstream activities from any 

input from downstream project activities. Hisatomi and Reismann [5] reported a 

study that concluded that 73% of the constructibility savings could be obtained when 

20% of engineering was complete; and 91% of the savings can be obtained when 

50% of engineering was complete. The study also showed that the largest savings 

were resulting from construction input into the design process. The International 

Association for Bridge and Structural Engineering (IABSE) has conducted another 

study that showed that “The average cost of rework on industrial projects exceeds 

12%. Design deviations (i.e. changes, errors, and omissions) accounted for roughly 

80% of the increased costs, while construction deviations accounted for about 20%” 

[5]. The need for project integration and closing the project gaps is considered a 

necessity to improve projects efficiency, quality, and productivity by streamlining 

different processes throughout the project lifecycle [3]. 

 

In recent years, the industry has also been moving towards adopting integrated 

project delivery systems (e.g. design-build) as a way to integrate design and 

construction processes and to address construction issues during early design stages. 

With the increase in project complexity and sophistication, integrated software 

systems are becoming increasingly critical for efficient management of the 

enormous amount of data and the large number of activities involved in such 

projects. The current integration trends created a strong demand for adopting 

integrated systems that enable addressing various project life cycle issues at early 

design stages, and allow project information to efficiently flow between different 

project processes.  

 

This paper presents a model-based approach that integrates the processes of 

structural design, analysis, cost estimating, and construction scheduling. The 

approach supports efficient management of project information, the integration and 

interoperation of function-specific software applications, and the collaboration of 

project teams. An effort to develop a data model to serve as a standard “core” model 

of bridge project information is described. The data model defines a consistent 

schema to represent, share, and exchange bridge project information, and aims to 

support the interoperability of bridge engineering software tools and to enable 

efficient sharing and exchange of project information across various disciplines 

involved in the bridge planning, design, and construction. A proof-of-concept 

prototype implementation is also discussed.  

 

2  A Model-Based Approach for Integrating Bridge 

Design Processes 
 

The bridge engineering industry has made significant investment and progress in 

developing software tools to support many project activities. Software applications 

typically use proprietary data models to represent much of the same data. Data 

exchange typically requires the output of one tool to be interpreted and transformed 

2 



into another format, and the re-entering of a large part of the data into the other tool. 

This translation process is known to be inefficient, and prone to interpretation and 

mapping errors. Although translators that map between different file formats are 

common in the industry, differences in data models and semantics between software 

tools often lead to inaccurate or incomplete mapping between different formats. 

Lack of interoperability and inefficient data exchange between software tools has 

been a major impediment to efficiently exchanging project information. Improving 

project efficiency and quality will largely depend on the ability to efficiently share 

and manage project information throughout the project life cycle.  

 

Model-based approaches have long been recognized as the main enabling 

technology for developing integrated project systems [4]. Model-based data 

representation is mainly distinguished from traditional approaches by embedding the 

semantics of objects, their attributes, and inter-relationships into the data to help 

communicate a semantically rich representation of the physical entities. Developing 

model-based data exchange standards has been an active area of research throughout 

the last decade. Several efforts have been underway to develop standard object-

based data models to support interoperability and data exchange among software 

applications (e.g. [2]). Several data models have reached a high level of maturity in 

supporting a wide range of project aspects. Most notable of these models are the 

Industry Foundation Classes (IFC), developed by the Industry Alliance for 

Interoperability (IAI) [6], and CIMSteel for steel construction projects [1]. However, 

the development of a standard integrated representation of “bridge models” to 

represent and exchange bridge data has received very little attention.  

 

In general, model-based data standards define schemas that represent the structure 

and organization of project data in the form of a class hierarchy of objects. The use 

of a standard model can significantly improve the consistency of project 

information, and facilitate its efficient sharing and exchange. A standard model can 

minimize the need for human intervention to re-interpret and reformat the data, and 

thus minimize the possibility of erroneous or inaccurate data transformation.  

 

Bridge design projects involve a large number of highly inter-dependent activities 

that need to be efficiently managed and coordinated. An integrated data model can 

enable the efficient flow of information among various project activities. The 

integrated bridge data model can be used to represent and integrate information of 

different project aspect models (e.g. structural design, analysis, scheduling, 

estimating, etc.), and thus providing a comprehensive project data model that would 

bind together the multi-disciplinary perspectives of the project information, and 

therefore enhance the communication between the multi-disciplinary project teams. 

Multi-disciplinary project teams can use the integrated model to assess dependencies 

and interactions between different project aspects, and to evaluate decisions and 

resolve conflicts. Figure 1 explains the role of a standard bridge information model.  

 

The integrated project model plays an important role in ensuring the consistency and 

integrity of project data, and enabling efficient data sharing and exchange. The 

3 



integrated model can assist in identifying data inconsistencies, manage dependencies 

and interactions between different project disciplines, and communicating the data in 

an efficient and effective way. By explicitly modeling the relationships between 

various project entities, methods to determine whether any interdependent objects 

need to be updated as a result of a change can also be implemented. 

 

Integrated Bridge 

Data Model

Structural Analysis

Construction Schedule

Site PlanSite Plan

SpecificationsSpecifications

Project DocumentsProject Documents

Project Management

Cost Schedule

Geometric DesignGeometric Design

Structural DesignStructural Design

ResourcesResources

 
 

Figure 1: Using a centralized shared data model to integrate bridge design processes 

 

3  Developing a Core Information Model for Bridges 
 

The main requirement for implementing integrated project systems in any domain is 

the availability of a data model that can model and integrate data across various 

project processes. The sheer size and complexity of data required to support bridge 

design activities makes the development of such a comprehensive data model a very 

challenging and expensive endeavour. To simplify the model development process, 

an approach typically known as “core models” is adopted to define a schema 

representing the “interfaces” or common data elements shared between various 

processes, with enough detail to support the integration and information flow 

between these processes. A major objective of this research is to define the scope 

and content of a Bridge Core Model (BCM) that can successfully support the 

integration of bridge design processes. 

 

Similar to most other data standards, the development of the BCM schema was 

based on the ISO 10303 Standard for the Exchange of Product Model Data (STEP) 

[7]. The bridge EXPRESS model defines an integrated schema that represents the 

structure and organization of design data in the form of a class hierarchy. The 

schema defines entities such as alignment data, span arrangements, configuration of 

structural elements, loading data, materials properties, construction schedules, and 

cost items.  

4 



 

The full schema was decomposed to four main sub-schemas, each representing a 

specific aspect in the project. The sub-schemas included: structural design, structural 

analysis, construction scheduling, and cost estimating. The integrated bridge schema 

results from linking these sub-schemas through references among their entities in a 

consistent manner. A major advantage of using the schema integration approach is 

that various sub-schemas can be modified and maintained independently without 

impacting the rest of the data model. The first attempt in schema development 

involved the definition of all of these sub-schemas [3]. However, in light of the 

availability of more mature and complete schemas that cover the areas of structural 

analysis (CIS/2 schema [1]) and construction scheduling and cost estimating 

(Industry Foundation Classes, IFCs [6]), the effort has been focused on developing 

the Bridge Structural Design (BSD) sub-schema, and on integrating and 

harmonizing BSD with parts of the CIS/2 and IFC schemas. The CIS/2 structural 

analysis schema defines entities for finite element structural analysis, while the 

Industry Foundation Classes (IFCs) defines entities for construction scheduling and 

cost estimating as part of a complete schema for buildings projects.  

 

The BCM consists of definitions of bridge structural entities, data types, and 

procedures, as well as rules that define the relationships among these entities. The 

BCM schema has been developed based on analysis of data from several projects 

and reviewing the information requirements of several structural applications. An 

entity is used to represent a class of a particular type such as beams, piers, etc. 

Figure 2 shows the EXPRESS-G diagram for the BCM schema indicating its 

structure and the entities relationships, as well as references to external schemas.  

 

The schema identified the basic structural elements of a typical bridge structure. The 

schema was defined, in a top-down strategy, as a decomposition hierarchy of 

structural entities. A schema that contains high-level abstractions was initially 

defined, and then lower-level entities were defined through successive top-down 

refinements. Specifically, a “Bridge” entity was defined at the top of the hierarchy, 

and the attributes of this entity were grouped into lower level entities and 

relationships (e.g. “Superstructure”, “Alignment”, etc.). All other entities in the 

model are accessible from the “Bridge” entity that represents the root of the entire 

schema. Relationships among different entities are described in the form of 

classification, association, and aggregation relationships. EXPRESS provides 

constructs to describe and represent each of these relationships. 

 

Each entity in EXPRESS is described by a set of attributes. For example, a 

superstructure entity is described by its skew angle, spans, diaphragms, structural 

form, etc. An attribute value can be of simple, aggregate, or user-defined data type, 

which can be another entity. For example, the attribute “Has_Skew_Angle” of the 

“Superstructure” entity has a simple type “NUMBER”, while the attribute 

“Has_Spans” has an aggregate type (an array) whose elements have values of 

“Span” entity. Also, some attributes can be calculated or derived from other 

5 



attributes values. For example, the “Self_Weight” attribute of any structural object 

can be calculated given the attributes that describe its geometry and material type. 

Bridge

Span

Beam

Cross_Section

Section_Properties

Superstructure

Project
Part_of [1:1]

RC_Beam Steel_Beam Composite_Beam

REAL
Length [1:1]

Pier

Abutment

Substructure

Site

Soil_Properties

Soil_layer

GWL

Grid_reference

Terrain_map

Subsurface_Properties [1:1]

Has_layers [1:n]

Has_GWL [1:1]

Bearings

Has_Bearings [1:1]

Deck

Has_Deck [1:1]

Pre-stressed_Beam

NUMBER

XSection_Location [1:1]

Roadway_Surface

Railing

Drainage

Alignment

Vertical_Align
ment

Horizontal_
Alignment

Location

Parapet

Foundation

Has_Foundation [1:1]
Has_Foundation [1:1]

Coordinate_System

Unit_System

Curb

Structural_Form

Girder_Slab

Truss

Rigid_Frame

Cantilever

Orthotropic

Box_Girder

1Has_Structural_Form [1:1]

Has_Coordinate_System [1:1]

Has_Unit_System [1:1]

Specifications

Schedule

Cost Estimate

Documents

Has_Properties [1:1]

Has_Roadway [1:1]

Has_Alignment [1:1]

Horizontal [1:1]

Vertical [1:1]

Boundary_Conditions

Has_Boundary_Conditions [1:1]

Diaphragm

NUMBER
Has_Skew_Angle [1:1]

Connected _To [2:?]

Has_Transverse_Element [0:?]

Section_Capacity

Diaphragm_Props

Has_Properties [1:1]

Has_Capacity [1:1]

Has_Railing [1:1]

Has_Parapet [1:1]

Has_Curb [1:1]

Has_Drainage [1:1]

Has_CostEstimate [1:1]

Has_Schedule [1:1]

Has_Specs [1:1]

Has_Docs [1:n]

Loads.Load_Case
Loads.Load_Case

CIS/2.Analysis_Model

Analysis [1:1]
Has_Structural_Form [1:1]

Deck_Properties
Has_Properties [1:1]

Simple

Continuous

1

Station

Starting_Station [1:1]

STRING

Id_Name [1:1]

Has_Address [1:1]

Has_Grid_Reference [1:1]

Has_Topology [1:1] Located_At [1:1]

Supporting _Abutments A[0:2]

Has_Abutments A[1:2]

Has_Piers A[0:?]

Supporting _Piers A[1:2]

Has_Beams A[0:?]

Has_XSection [1:1]

Has_Load_Cases A[1:?]

Has_Superstructure [1:1]

Has_Substructure [1:1]

Has_Spans L[1:?]

1

 

6 



 

Figure 2. EXPRESS-G schema of the Bridge Core Model (BCM)  

An entity type may have sub-types. For example, the “Beam” entity is further 

classified based on the beam material into “RC Beam”, “Steel Beam”, “Prestressed 

Beam”, or “Composite Beam” entities. Each of these sub-types can be further 

classified based on the beam structural form, and so on. The set of entities in each of 

these groupings is a subset of the entities that belong to the “Beam” entity. Each of 

these sub-types is called a “subclass” of the “Beam” entity type, and “Beam” is 

called the “superclass” for each of these subclasses. The relationship between a 

superclass and a subclass is often called an IS-A relationship, which signifies an 

inheritance or specialization/generalization relationship (a steel beam IS-A Beam).  

 

Association relationships between instances are represented in the form of object 

references. For example, a “Site” entity is associated with a “Bridge” entity by the 

“Located_At” attribute. Also, the relationship between a “Diaphragm” entity and its 

“Diaphragm_Properties” entity is represented by referencing the later entity as an 

attribute in the former entity. Aggregation relationships between instances are 

represented by containment of one or a group of some objects inside another object. 

For example, a “bridge” entity contains an “Alignment” entity, and a “Span” entity 

contains an array (or aggregation) of “Beam” entities. The EXPRESS code below 

shows the “Superstructure” and “Span” entity definitions. 

 

 

ENTITY Superstructure 

Is_Part_Of: Bridge; 

Has_Structural_Form: (ONEOF 

                                     Girder_Slab, Box_Girder, 

                                    Orthotropic, Truss,  

                                     Rigid_Frame, Cantilever); 

Has_Deck: Deck; 

Has_Transverse_Elements: SET [0:?] OF Diaphragm; 

Has_Spans: ARRAY [1:?] OF Span; 

Has_Skew_Angle: NUMBER; 

Has_Roadway: Roadway_Surface; 

Has_Railing: Railing; 

Has_Curb: Curb; 

Has_Parapet: Parapet; 

END_ENTITY; 

ENTITY Span 

Id_Name: STRING; 

Length: REAL; 

Starting_Station: Station; 

Type: (ONEOF Simple, Continuous); 

Has_Beams: ARRAY [0:?] OF Beam; 

Has_Bearings: Bearings; 

Supporting_Abutments: SET [0:2] OF Abutment; 

Supporting_Piers: SET [1:2] OF Pier; 

UNIQUE 

Id_Name; 

 END_ENTITY; 

4  A Model-Based Project Data Repository for Integrated 

Bridge Design 
 

The project data repository contains the specific persistent design objects generated 

and consumed by different applications. The repository schema is created using the 

integrated data model described in Section 3. Typically, a repository can be 

implemented using simple neutral files, or using a centralized Database Management 

System (DBMS). File-based data exchange is known to be limited in its scalability 

and ability to manage a large volume of shared project information, or to support the 

7 



required data management functionality. Also, sharing project data using neutral 

files makes it difficult to control or track changes and versions of the data.  

A centralized DBMS-based project repository is essential to support sharing and 

exchange of project information while being accessed concurrently by different 

users and applications. The DBMS helps to ensure data integrity and consistency 

across different applications. Users and applications can simply query the DBMS to 

retrieve the specific objects related to their respective views (e.g. structural objects, 

cost objects, etc.). The DBMS also enables the implementation of a variety of data 

management services that are typically required for large project systems. Besides 

the basic data management services, advanced functions such as version 

management, change management and propagation, concurrency control, security 

and authorization, and meta-data services, can also be implemented. 

 

The project repository also supports data sharing and interoperability of various 

function-specific software applications. Existing function-specific legacy 

applications (e.g. structural design, analysis, scheduling, etc.) can be integrated into 

a unified environment to share and exchange project data. Applications that can 

natively support the repository’s data model will be able to simply plug into the 

environment. However, applications that do not support the repository’s native data 

model will require the use of an adapter to perform bi-directional data mapping. 

Depending on the specific application, adapters can be developed in several different 

ways. An adapter can be implemented as stand-alone software or as an add-on to the 

host application using any language or Application Programming Interface (API) 

supported by the host application to access the application’s object model.  

 

5  Implementation of a Prototype Model-Based Bridge 

Design System  
 

A proof-of-concept prototype was implemented based on the model-based approach. 

The scope of the prototype was limited to support design of steel I-girder and 

concrete box girder bridges. A number of commercial software tools were used to 

support structural design and analysis (Sc-Bridge and GT-STRUDL) and 

construction scheduling (Primavera). Integrating commercial applications required 

the development of adapters to map their representation of the data to the schema 

implemented in the repository. Other tools have been developed to support 

geometric design, construction planning, quantity takeoff, and construction site 

modeling. These tools directly supported the proposed BCM data model, and 

therefore adapters were not needed for their integration.  

 

5.1 Implementing the Project Data Repository 
 

The project repository can generally be implemented using either a relational or an 

object-oriented DBMS. An object-oriented (OO) DBMS provides the functionality 

of a relational DBMS (e.g. persistence, concurrency control) in addition to the OO 

characteristics (e.g. inheritance, encapsulation). However, an OO DBMS is best 

8 



suited to support the modeling and manipulation of complex and nested structures. 

For example, in storing the bridge data, an OO DBMS can model the bridge as one 

object that contains and references a set of other objects such as piers, girders, etc., 

which simplifies data access and update. On the other hand, a relational DBMS will 

represent the objects, in a first normal form, in separate relations (or tables). For 

example, piers are stored in one table, girders in another table, and so on. Data 

related to different objects would need to be stored in different tables, which causes 

inefficiency in retrieving or updating these inter-related and complex objects.  

 

EXPRESS schemas are independent of any DBMS technology, and therefore cannot 

be used directly to implement a database. Databases are built using a schema in a 

specific format supported by the database. Mapping the data model to generate a 

database schema is dependent on the modeling method, as well as on the specific 

DBMS. The schema mapping process was extensively studied in the literature, and a 

number of methods and tools that map EXPRESS models to relational or object-

oriented schemas for a number of commercial DBMS were reported (e.g. [8]). 

 

The project repository was implemented using a commercial object-oriented DBMS 

called Persistent Objects and Extended database Technology (POET), which is now 

known as FastObjects [10]. Creating the repository followed a two-step process. 

First, the BCM EXPRESS data model was mapped to a schema supported by the 

POET DBMS. Second, the data management functions of the underlying DBMS are 

then used to populate, query, and manage the repository. Figure 3 describes the 

implementation of these steps, and shows the schema mapping process and the files 

generated by the schema compiler. 

 

To facilitate the first step, a schema translator was implemented to automatically 

map EXPRESS entities into POET persistent classes. The schema translator is based 

on the EXPRESS toolkit and EXPRESS Pretty Printing toolkit developed by the 

National Institute of Standards and Technology (NIST) [9]. The translator used calls 

to the Express Pretty Printing functions to translate the EXPRESS schema (stored in 

Bridge.exp file) to the POET C++ schema (Bridge.hcd file). The translator has three 

main phases. The first two phases perform parsing of the EXPRESS schema and 

create a symbol table and resolve references (similar to a compiler). These two 

phases create data structures, known as the Working Forms, that hold the data 

defined in the EXPRESS schema (entities, primitive data types, and aggregate data 

types, etc.). The third phase is used to write the POET database schema. This phase 

traverses the Working Forms data structures and generates the equivalent constructs 

in the database schema. The POET DBMS distinguishes between persistent and 

transient classes. The translator assumed all entities are persistent, and therefore all 

class definitions were preceded by the keyword “persistent.”  

 

Database operations to update, query, and retrieve the object are defined 

automatically by the schema compiler. POET schema compiler generates standard 

C++ classes corresponding to the class declarations in the header file. The schema 

compiler (ptxx) uses as input the header file generated by our EXPRESS-C++ 

9 



translator (Bridge.hcd) that contains persistent class definitions. This file defines a 

persistent C++ class to each entity defined in the EXPRESS schema. 

Structura l 

D es ig n 

Schem a

Structura l 

D es ig n 

Schem a

B rid g e C o re  M o d el (B C M ) EXPR ESS Sc hem a (b rid g e .exp)B rid g e C o re  M o d el (B C M ) EXPR ESS Sc hem a (b rid g e .exp)

Structura l 

A nalys is  

Schem a 

Structura l 

A nalys is  

Schem a 

C o nstructio n 

Sched uling  

Schem a

C o nstructio n 

Sched uling  

Schem a

C o st 

Estim ating  

Schem a

C o st 

Estim ating  

Schem a

EXPR E SS 

M odeling  

T ool

EXPR E SS-C ++ 

M ap p ing  

T o o l

B ridg e C ore  M odel C ++  S ch em a (bridge.hcd )B ridg e C ore  M odel C ++  S ch em a (bridge.hcd )

PO ET  Schem a 

C o m p iler

(p txx)

O O  D B  

Schem a

O O  D B  

Schem a
S h ared  P roject

D ata R ep o sito ry 

D B  Access  

T o o ls

C lass F acto ry

(bridge.cxx )
C lass D eclaratio n 

H ead er (bridge.hxx)

C lass D eclaratio n 

H ead er (bridge.hxx)
C lass F acto ry H ead er

(bridge.ptx )

C lass F acto ry H ead er

(bridge.ptx )

P O ET  Class 

D iction ary

P O ET  Class 

D iction ary

 
 

Figure 3. Mapping of the BCM EXPRESS schema to OO DBMS schema 

 

The schema compiler outputs three main files needed for the database schema: class 

declaration header file (Bridge.hxx), which contains persistent class declarations in 

standard C++; class factory header file (Bridge.ptx), which includes definitions for 

queries and container classes of persistent classes; and class factory file 

(Bridge.cxx), which defines in-memory constructors and destructors for persistent 

objects. The following example shows the definition of the “Superstructure” and the 

“Span” entities in the POET schema file. These definitions can be compared with 

the EXPRESS definitions of the two entities described in Section 3. 

 
Persistent Class  Superstructure { 

Private: 

       Bridge*                      Is_Part_Of; 

       double                       Has_Skew_Angle; 

       Deck*                        Has_Deck; 

       lset<Diaphragm*>    

Has_Transverse_Elements; 

       lset<Span*> Has_Spans; 

       Roadway_Surface* Has_Roadway; 

       Railing*                     Has_Railing; 

       Curb*                         Has_Curb; 

       Parapet*                    Has_Parapet; 

Public: 

      Superstructure (); 

     ~Superstructure(); 

Persistent Class  Span { 

  Private: 

      PtString                      Id_Name; 

      double                        Length; 

      Station*                     Starting_Station; 

      lset<Beam*>             Has_Beams; 

      Bearing*                   Has_Bearings; 

      lset<Abutment*>      

Supporting_Abutments; 

      lset<Pier*>               Supporting_Piers; 

      //index on Id_Name 

      useindex Id_NameIndex; 

  Public: 

     Span(); 

     ~Span(); 

10 



} 

 

 } 

 indexdef Id_NameIndex : Span { 

 Id_Name [[20]]; }  

The POET DBMS supported a variant of the relational Structured Query Language 

(SQL), called the Object Query Language (OQL). The data management component 

used the OQL to populate and query the database. Similar to SQL queries, the OQL 

queries can be embedded in code, saved as stored procedures, or placed in a text file. 

The following is an example of an OQL that retrieves all span objects of a concrete 

box girder bridge stored in the repository and then searches for the span whose 

Id_Name attribute has the value of “Span 2” and finds the Starting_Station value of 

that span. 

 

define extent allSpans for Span 

select  i 

from   i in allSpans 

           s in i.Starting_Station 

where i.Id_Name = “Span 2” 

 

5.2 Example System Use Case 
 

The following is a description of a use case of the prototype system (Figure 4).  

 

11 



Structural 

Analysis Tools 

3D Structural Model

Planning/Scheduling 

Tools

Structural Designer Structural Analyst Construction Planner 

FEM Model Construction Schedule Cost Estimate

Site Engineer

Site Plan

Site Engineering 

Tools 

Structural 

Design Tools 

Cost Estimating

Tools 

Cost Estimator

Integrated Project 
Data Repository 

A p p l i c a t i o n s T i e r
Structural 

Analysis Tools 

3D Structural Model

Planning/Scheduling 

Tools

Structural Designer Structural Analyst Construction Planner 

FEM Model Construction Schedule Cost Estimate

Site Engineer

Site Plan

Site Engineering 

Tools 

Structural 

Design Tools 

Cost Estimating

Tools 

Cost Estimator

Integrated Project 
Data Repository 

A p p l i c a t i o n s T i e r

 
 

Figure 4. The use case of using the prototype integrate bridge design system 

 

The design process starts by defining the spatial features of the construction site 

using the site modeling application. Designers use the 3D site model to plan the 

bridge alignment and span arrangements. The structural design application uses the 

interactive 3D parametric design functionality to allow designers to interactively 

define the parameters of the bridge structural objects including the geometric and 

configuration data, the materials properties, and load data. Using the design data, the 

application prepares an Sc-Bridge data file and runs Sc-Bridge to generate a 3D 

finite element model by transforming the structural model into a set of members and 

elements. Using GT-STRUDL commands, the finite element model data files are 

loaded into GT-STRUDL, and a stiffness analysis is performed. The analysis results 

are saved in the GT-STRUDL internal database. The results are then extracted from 

GT-STRUDL database, using GT-STRUDL commands. Analysis results are 

extracted in a set of formatted text files. These results files include, for example, the 

displacement at x, y, and z directions at all joints, the rotation around x, y, and z 

axes at all joints, the stress and strain at the centre of each element, and the bending 

moment and shear values at each joint of a structural member. The generation of 

these files from GT-STRUDL is performed by running special GT-STRUDL 

commands. The analysis files are then processed to generate the data structures that 

are needed to support the interactive visualization of the analysis model and results.  

 

12 



 
 

Figure 5. A shaded and wire-frame rendering of a concrete box girder bridge model 

After defining the bridge design parameters, construction planers and cost estimators 

use the design data stored in the repository, generate more objects, and link these 

objects with the design objects in the repository. Construction planners use the 

planning application to generate a preliminary construction logic plan and to 

interactively adjust this logic until it satisfies the project requirements. Plans can be 

modified by adding more activities, removing some activities, or changing the 

precedence relationships among activities. The planning application then prepares 

Primavera data files to perform scheduling calculations. The data files are loaded 

into Primavera and more data are entered to describe scheduling parameters such as 

the calendar to be used, the set of resources available, the duration of individual 

activities, and the number of resource units used by each activity. The application 

then performs the scheduling calculations. After performing the scheduling analysis, 

13 



planners can check if the project duration is within the specified requirement and 

whether the pattern of resource usage is within the capability of the contractor, and 

modify the schedule accordingly. Cost estimators also use the design data to 

calculate the quantities of concrete and steel for the bridge superstructure and 

substructure. The calculated values can then be input into a cost estimating software 

to calculate detailed cost schedules. Figure 5 shows an example of a 3D concrete 

box girder bridge model overlaid on a 3D triangulated irregular network (TIN) 

model of the construction site.  

 

6  Conclusions and Future Directions 
 

The bridge engineering industry is facing unprecedented challenges to improve the 

efficiency and quality of bridge design and construction projects. To address these 

challenges, the industry is currently undergoing a paradigm shift that emphasizes the 

integration of project processes throughout projects life cycle. However, the 

objectives of this integration can hardly be realized without the use of integrated and 

interoperable software systems.  

 

This paper presented a model-based approach to enable the integration and 

interoperability of software systems used throughout the life cycle of bridge design 

and construction projects. The approach involves the use of an integrated data model 

and a centralized project data repository, where project data can be efficiently 

managed and shared between various applications and project actors. Making 

various aspects of project information accessible from a single repository 

significantly improves the flow of information across various project disciplines. 

 

An effort to develop a standard bridge core model (BCM), based on the ISO STEP 

standards, and to implement this model using an object-oriented DBMS was 

presented. Four main views (or sub-schemas) have been identified to support the 

core model: structural design, structural analysis, construction scheduling, and cost 

estimating. Because of the comprehensive nature of the bridge core model, the 

primary goal of future work would be to refine and extend the BCM schema, mainly 

for areas related to structural analysis, cost estimating, and construction scheduling. 

A more thorough investigation of applicable parts of the CIS/2 and IFC schemas in 

the context of the bridge core model is needed. Also, the prototype system needs to 

be enhanced and extended by using a more robust distributed object-oriented 

database that would enable concurrent access to project data. 

 

Acknowledgements 
 

We acknowledge the support of the Thomas French Fellowship program at the Ohio 

State University to this research project. 

 

References 
 

14 



[1] CIMSteel Integration Standards (CIS/2), <www.cis2.org>, (Last Accessed: 

May 2005) 

[2] Eastman, C.M. 1999.  Building Product Models: Computer Environments 

Supporting Design and Construction. CRC Press, Boca Raton FL. 

[3] Halfawy, M.R. (1998), “A Multi-Agent Collaborative Framework for 

Concurrent Design of Constructed Facilities,” Ph.D. Dissertation, 

Department of Civil and Environmental Engineering and Geodetic Science, 

the Ohio State University. 

[4] Halfawy, M. and Froese, T., 2002. A Model-Based Approach for 

Implementing Integrated Project Systems, 9th International Conference on 

Computing in Civil and Building Engineering, Taipei, Taiwan, April 3-5, 

2002. Vol. 2. pp. 1003-1008. 

[5] Hisatomi, Yo, and Reismann, W. 1994. Design and Construct: Trend, 

Challenge, Improvement?. Journal of Structural Engineering International, 

No 3, Vol 4, 1994. 

[6] IAI 2005. International Alliance for Interoperability, Industry Foundation 

Classes – IFC 2x. On-line documentation. http://www.iai-international.org 

(Last Accessed January 2005).  

[7] ISO 10303-11, Industrial Automation Systems and Integration — Product 

Data Representation and Exchange — Part 11: Description methods: The 

EXPRESS language reference manual, International Organization for 

Standardization ISO, Geneva, 1994. 

[8] Loffredo, David, Efficient Database Implementation of EXPRESS 

Information Models. PhD Thesis, Rensselaer Polytechnic Institute, Troy, 

New York, May 1998. 

[9] National Institute of Standards and Technology (NIST), The NIST EXPRESS 

Toolkit, <www.mel.nist.gov/msidstaff/sauder/SCL.htm>, (Last Accessed 

May, 2005). 

[10] Versant 2005, FastObjects http://www.versant.com/products/fastobjects, 

 

15 

http://www.cis2.org/
http://www.versant.com/products/fastobjects

