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Abstract

We describe a mixture-model approach to

adapting a Statistical Machine Translation

System for new domains, using weights that

depend on text distances to mixture compo-

nents. We investigate a number of variants

on this approach, including cross-domain

versus dynamic adaptation; linear versus

loglinear mixtures; language and transla-

tion model adaptation; different methods of

assigning weights; and granularity of the

source unit being adapted to. The best

methods achieve gains of approximately one

BLEU percentage point over a state-of-the

art non-adapted baseline system.

1 Introduction

Language varies significantly across different gen-

res, topics, styles, etc. This affects empirical mod-

els: a model trained on a corpus of car-repair manu-

als, for instance, will not be well suited to an appli-

cation in the field of tourism. Ideally, models should

be trained on text that is representative of the area

in which they will be used, but such text is not al-

ways available. This is especially the case for bilin-

gual applications, because parallel training corpora

are relatively rare and tend to be drawn from spe-

cific domains such as parliamentary proceedings.

In this paper we address the problem of adapting

a statistical machine translation system by adjust-

ing its parameters based on some information about

a test domain. We assume two basic settings. In

cross-domain adaptation, a small sample of parallel

in-domain text is available, and it is used to optimize

for translating future texts drawn from the same do-

main. In dynamic adaptation, no domain informa-

tion is available ahead of time, and adaptation is

based on the current source text under translation.

Approaches developed for the two settings can be

complementary: an in-domain development corpus

can be used to make broad adjustments, which can

then be fine tuned for individual source texts.

Our method is based on the classical technique

of mixture modeling (Hastie et al., 2001). This

involves dividing the training corpus into different

components, training a model on each part, then

weighting each model appropriately for the current

context. Mixture modeling is a simple framework

that encompasses many different variants, as de-

scribed below. It is naturally fairly low dimensional,

because as the number of sub-models increases, the

amount of text available to train each, and therefore

its reliability, decreases. This makes it suitable for

discriminative SMT training, which is still a chal-

lenge for large parameter sets (Tillmann and Zhang,

2006; Liang et al., 2006).

Techniques for assigning mixture weights depend

on the setting. In cross-domain adaptation, knowl-

edge of both source and target texts in the in-domain

sample can be used to optimize weights directly. In

dynamic adaptation, training poses a problem be-

cause no reference text is available. Our solution

is to construct a multi-domain development sample

for learning parameter settings that are intended to

generalize to new domains (ones not represented in

the sample). We do not learn mixture weights di-

rectly with this method, because there is little hope



that these would be well suited to new domains. In-

stead we attempt to learn how weights should be set

as a function of distance. To our knowledge, this ap-

proach to dynamic adaptation for SMT is novel, and

it is one of the main contributions of the paper.

A second contribution is a fairly broad investiga-

tion of the large space of alternatives defined by the

mixture-modeling framework, using a simple genre-

based corpus decomposition. We experimented with

the following choices: cross-domain versus dynamic

adaptation; linear versus loglinear mixtures; lan-

guage and translation model adaptation; various text

distance metrics; different ways of converting dis-

tance metrics into weights; and granularity of the

source unit being adapted to.

The remainder of the paper is structured follows:

section 2 briefly describes our phrase-based SMT

system; section 3 describes mixture-model adapta-

tion; section 4 gives experimental results; section 5

summarizes previous work; and section 6 concludes.

2 Phrase-based Statistical MT

Our baseline is a standard phrase-based SMT sys-

tem (Koehn et al., 2003). Given a source sentence s,

this tries to find the target sentence t̂ that is the most

likely translation of s, using the Viterbi approxima-

tion:

t̂ = argmax
t

p(t|s) ≈ argmax
t,a

p(t,a|s),

where alignment a = (s̃1, t̃1, j1), ..., (s̃K , t̃K , jK);
t̃k are target phrases such that t = t̃1 . . . t̃K ; s̃k are

source phrases such that s = s̃j1 . . . s̃jK
; and s̃k is

the translation of the kth target phrase t̃k.

To model p(t,a|s), we use a standard loglinear

approach:

p(t,a|s) ∝ exp

[

∑

i

αifi(s, t,a)

]

(1)

where each fi(s, t,a) is a feature function, and

weights αi are set using Och’s algorithm (Och,

2003) to maximize the system’s BLEU score (Pa-

pineni et al., 2001) on a development corpus. The

features used in this study are: the length of

t; a single-parameter distortion penalty on phrase

reordering in a, as described in (Koehn et al.,

2003); phrase translation model probabilities; and

4-gram language model probabilities log p(t), us-

ing Kneser-Ney smoothing as implemented in the

SRILM toolkit.

Phrase translation model probabilities are features

of the form: log p(s|t,a) ≈
∑K

k=1
log p(s̃k|t̃k).

We use two different estimates for the conditional

probabilities p(t̃|s̃) and p(s̃|t̃): relative frequencies

and “lexical” probabilities as described in (Zens and

Ney, 2004). In both cases, the “forward” phrase

probabilities p(t̃|s̃) are not used as features, but only

as a filter on the set of possible translations: for each

source phrase s̃ that matches some ngram in s, only

the 30 top-ranked translations t̃ according to p(t̃|s̃)
are retained.

To derive the joint counts c(s̃, t̃) from which

p(s̃|t̃) and p(t̃|s̃) are estimated, we use the phrase in-

duction algorithm described in (Koehn et al., 2003),

with symmetrized word alignments generated using

IBM model 2 (Brown et al., 1993).

3 Mixture-Model Adaptation

Our approach to mixture-model adaptation can be

summarized by the following general algorithm:

1. Split the corpus into different components, ac-

cording to some criterion.

2. Train a model on each corpus component.

3. Weight each model according to its fit with the

test domain:

• For cross-domain adaptation, set param-

eters using a development corpus drawn

from the test domain, and use for all fu-

ture documents.

• For dynamic adaptation, set global param-

eters using a development corpus drawn

from several different domains. Set mix-

ture weights as a function of the distances

from corpus components to the current

source text.

4. Combine weighted component models into a

single global model, and use it to translate as

described in the previous section.

We now describe each aspect of this algorithm in

more detail.



3.1 Corpus Decomposition

We partition the corpus into different genres, defined

as being roughly identical to corpus source. This is

the simplest way to exploit heterogeneous training

material for adaptation. An alternative, which we

have not explored, would be to cluster the corpus

automatically according to topic.

3.2 Component Models

We adapt both language and translation model fea-

tures within the overall loglinear combination (1).

To train translation models on each corpus com-

ponent, we used a global IBM2 model for word

alignment (in order to avoid degradation in align-

ment quality due to smaller training corpora), then

extracted component-specific relative frequencies

for phrase pairs. Lexical probabilities were also de-

rived from the global IBM2 model, and were not

adapted.

The procedure for training component-specific

language models on the target halves of each cor-

pus component is identical to the procedure for the

global model described in section 2. In addition to

the component models, we also used a large static

global model.

3.3 Combining Framework

The most commonly-used framework for mixture

models is a linear one:

p(x|h) =
∑

c

λcpc(x|h) (2)

where p(x|h) is either a language or translation

model; pc(x|h) is a model trained on component c,

and λc is the corresponding weight. An alternative,

suggested by the form of the global model, is a log-

linear combination:

p(x|h) =
∏

c

pc(x|h)αc

where we write αc to emphasize that in this case

the mixing parameters are global weights, like the

weights on the other features within the loglinear

model. This is in contrast to linear mixing, where the

combined model p(x|h) receives a loglinear weight,

but the weights on the components do not partici-

pate in the global loglinear combination. One conse-

quence is that it is more difficult to set linear weights

using standard minimum-error training techniques,

which assume only a “flat” loglinear model.

3.4 Distance Metrics

We used four standard distance metrics to cap-

ture the relation between the current source or tar-

get text q and each corpus component.1 All are

monolingual—they are applied only to source text

or only to target text.

The tf/idf metric commonly used in information

retrieval is defined as cos(vc,vq), where vc and

vq are vectors derived from component c and doc-

ument q, each consisting of elements of the form:

−p̃(w) log p̃doc(w), where p̃(w) is the relative fre-

quency of word w within the component or docu-

ment, and pdoc(w) is the proportion of components

it appears in.

Latent Semantic Analysis (LSA) (Deerwester et

al., 1990) is a technique for implicitly capturing the

semantic properties of texts, based on the use of

Singular Value Decomposition to produce a rank-

reduced approximation of an original matrix of word

and document frequencies. We applied this tech-

nique to all documents in the training corpus (as op-

posed to components), reduced the rank to 100, then

calculated the projections of the component and doc-

ument vectors described in the previous paragraph

into the reduced space.

Perplexity (Jelinek, 1997) is a standard way of

evaluating the quality of a language model on a test

text. We define a perplexity-based distance metric

pc(q)
1/|q|, where pc(q) is the probability assigned to

q by an ngram language model trained on compo-

nent c.

The final distance metric, which we call EM, is

based on expressing the probability of q as a word-

level mixture model: p(q) =
∏|q|

i=1

∑

c dcpc(wi|hi),
where q = w1 . . . w|q|, and pc(w|h) is the ngram

probability of w following word sequence h in com-

ponent c. It is straighforward to use the EM algo-

rithm to find the set of weights d̂c,∀c that maxi-

mizes the likelihood of q. The weight d̂c is defined

as the distance to component c. For all experiments

described below, we used a probability difference

threshold of 0.001 as the EM convergence criterion.

1Although we refer to these metrics as distances, most are
in fact proximities, and we use the convention throughout that
higher values mean closer.



3.5 Learning Adaptive Parameters

Our focus in this paper is on adaptation via mixture

weights. However, we note that the usual loglinear

parameter tuning described in section 2 can also be

considered adaptation in the cross-domain setting,

because learned preferences for word penalty, rel-

ative LM/TM weighting, etc, will reflect the target

domain. This is not the case for dynamic adapta-

tion, where, in the absence of an in-domain devel-

opment corpus, the only information we can hope to

glean are the weights on adapted models compared

to other features of the system.

The method used for adapting mixture weights

depends on both the combining framework (loglin-

ear versus linear), and the adaptive setting (cross-

domain versus dynamic), as described below.

3.5.1 Setting Loglinear Mixture Weights

When using a loglinear combining framework as

described in section 3.3, mixture weights are set

in the same way as the other loglinear parameters

when performing cross-domain adaptation. Loglin-

ear mixture models were not used for dynamic adap-

tation.

3.5.2 Setting Linear Mixture Weights

For both adaptive settings, linear mixture weights

were set as a function of the distance metrics de-

scribed in section 3.4. Given a set of metrics

{D1, . . . , Dm}, let di,c be the distance from the cur-

rent text to component c according to metric Di. A

simple approach to weighting is to choose a single

metric Di, and set the weights in (2) to be propor-

tional to the corresponding distances:

λc = di,c/
∑

c′

di,c′ . (3)

Because different distance metrics may capture

complementary information, and because optimal

weights might be a non-linear function of distance,

we also experimented with a linear combination of

metrics transformed using a sigmoid function:

λc =
m

∑

i=1

βi

1 + exp(ai(bi − di,c))
(4)

where βi reflects the relative predictive power of Di,

and the sigmoid parametes ai and bi can be set to

selectively suppress contributions from components

that are far away. Here we assume that βi absorbs

a normalization constant, so that the λc’s sum to 1.

In this approach, there are three parameters per dis-

tance metric to learn: βi, ai, and bi. In general, these

parameters are also specific to the particular model

being adapted, ie the LM or the TM.

To optimize these parameters, we fixed global

loglinear weights at values obtained with Och’s al-

gorithm using representative adapted models based

on a single distance metric in (3), then used the

Downhill Simplex algorithm (Press et al., 2002) to

maximize BLEU score on the development corpus.

For tractability, we followed standard practice with

this technique and considered only monotonic align-

ments when decoding (Zens and Ney, 2004).

The two approaches just described avoid condi-

tioning λc explicitly on c. This is necessary for

dynamic adaptation, since any genre preferences

learned from the development corpus cannot be ex-

pected to generalize. However, it is not necessary

for cross-domain adaptation, where the genre of the

development corpus is assumed to represent the test

domain. Therefore, we also experimented with us-

ing Downhill Simplex optimization to directly learn

the set of linear weights λc that yield maximum

BLEU score on the development corpus.

A final variant on setting linear mixture weights is

a hybrid between cross-domain and dynamic adap-

tation. In this approach, both the global loglinear

weights and, if they are being used, the mixture pa-

rameters βi, ai, bi are set to characterize the test do-

main as in cross-domain adaptation. When trans-

lating, however, distances to the current source text

are used in (3) or (4) instead of distances to the in-

domain development corpus. This obviously limits

the metrics used to ones that depend only on source

text.

4 Experiments

All experiments were run on the NIST MT evalua-

tion 2006 Chinese data set. Table 1 summarizes the

corpora used. The training corpus was divided into

seven components according to genre; in all cases

these were identical to LDC corpora, with the excep-

tion of the Newswire component, which was amal-

gamated from several smaller corpora. The target



genre for cross-domain adaptation was newswire,

for which high-quality training material is avail-

able. The cross-domain development set NIST04-

nw is the newswire subset of the NIST 2004 evalu-

ation set, and the dynamic adaptation development

set NIST04-mix is a balanced mixed-genre subset of

NIST 2004. The NIST 2005 evaluation set was used

for testing cross-domain adaptation, and the NIST

2006 evaluation set (both the “GALE” and “NIST”

parts) was used to test dynamic adaptation.

Because different development corpora are used

for cross-domain and dynamic adaptation, we

trained one static baseline model for each of these

adaptation settings, on the corresponding develop-

ment set.

All results given in this section are BLEU scores.

role corpus genres sent

train FBIS04 nw 182k

HK Hans proceedings 1,375k

HK Laws legal 475k

HK News press release 740k

Newswire nw 26k

Sinorama news mag 366k

UN proceedings 4,979k

dev NIST04-nw nw 901

NIST04-mix nw, sp, ed 889

test NIST05 nw 1,082

NIST06-GALE nw, ng, bn, bc 2,276

NIST06-NIST nw, ng, bn 1,664

Table 1: Corpora. In the genres column: nw =

newswire, sp = speeches, ed = editorial, ng = news-

group, bn = broadcast news, and bc = broadcast con-

versation.

4.1 Linear versus Loglinear Combination

Table 2 shows a comparison between linear and

loglinear mixing frameworks, with uniform weights

used in the linear mixture. Both types of mixture

model are better than the baseline, but the linear

mixture is slightly better than the loglinear mix-

ture. This is quite surprising, because these results

are on the development set: the loglinear model

tunes its component weights on this set, whereas

the linear model only adjusts global LM and TM

weights. We speculated that this may have been due

to non-smooth component models, and tried various

smoothing schemes, including Kneser-Ney phrase

table smoothing similar to that described in (Foster

et al., 2006), and binary features to indicate phrase-

pair presence within different components. None

helped, however, and we conclude that the problem

is most likely that Och’s algorithm is unable to find

a good maximimum in this setting. Due to this re-

sult, all experiments we describe below involve lin-

ear mixtures only.

combination adapted model

LM TM LM+TM

baseline 30.2 30.2 30.2

loglinear mixture 30.9 31.2 31.4

uniform linear mixture 31.2 31.1 31.8

Table 2: Linear versus loglinear combinations on

NIST04-nw.

4.2 Distance Metrics for Weighting

Table 3 compares the performance of all distance

metrics described in section 3.4 when used on their

own as defined in (3). The difference between them

is fairly small, but appears to be consistent across

LM and TM adaptation and (for the LM metrics)

across source and target side matching. In general,

LM metrics seem to have a slight advantage over the

vector space metrics, with EM being the best overall.

We focus on this metric for most of the experiments

that follow.

metric source text target text

LM TM LM TM

tf/idf 31.3 31.3 31.1 31.1

LSA 31.5 31.6

perplexity 31.6 31.3 31.7 31.5

EM 31.7 31.6 32.1 31.3

Table 3: Distance metrics for linear combination on

the NIST04-nw development set. (Entries in the top

right corner are missing due to lack of time.)

Table 4 shows the performance of the parame-

terized weighting function described by (4), with

source-side EM and LSA metrics as inputs. This

is compared to direct weight optimization, as both

these techniques use Downhill Simplex for param-

eter tuning. Unfortunately, neither is able to beat



the performance of the normalized source-side EM

metric on its own (reproduced on the first line from

table 3). In additional tests we verified that this also

holds for the test corpus. We speculate that this dis-

appointing result is due to compromises made in or-

der to run Downhill Simplex efficiently, including

holding global weights fixed, using only a single

starting point, and running with monotone decoding.

weighting LM TM

EM-src, direct 31.7 31.6

EM-src + LSA-src, parameterized 31.0 30.0

direct optimization 31.7 30.2

Table 4: Weighting techniques for linear combina-

tion on the NIST04-nw development set.

4.3 Cross-Domain versus Dynamic Adaptation

Table 5 shows results for cross-domain adaptation,

using the source-side EM metric for linear weight-

ing. Both LM and TM adaptation are effective, with

test-set improvements of approximately 1 BLEU

point over the baseline for LM adaptation and some-

what less for TM adaptation. Performance also im-

proves on the NIST06 out-of-domain test set (al-

though this set includes a newswire portion as well).

However, combined LM and TM adaptation is not

better than LM adaptation on its own, indicating that

the individual adapted models may be capturing the

same information.

model dev test

nist04- nist05 nist06-

nw nist

baseline 30.2 30.3 26.5

EM-src LM 31.7 31.2 27.8

EM-src TM 31.6 30.9 27.3

EM-src LM+TM 32.5 31.2 27.7

Table 5: Cross-Domain adaptation results.

Table 6 contains results for dynamic adaptation,

using the source-side EM metric for linear weight-

ing. In this setting, TM adaptation is much less

effective, not significantly better than the baseline;

performance of combined LM and TM adaptation

is also lower. However, LM adaptation improves

over the baseline by up to a BLEU point. The per-

formance of cross domain adaptation (reproduced

from table 5 on the second line) is slightly better for

the in-domain test set (NIST05), but worse than dy-

namic adaptation on the two mixed-domain sets.

model dev test

nist04- nist05 nist06- nist06-

mix nist gale

baseline 31.9 30.4 27.6 12.9

cross LM n/a 31.2 27.8 12.5

LM 32.8 30.8 28.6 13.4

TM 32.4 30.7 27.6 12.8

LM+TM 33.4 30.8 28.5 13.0

Table 6: Dynamic adaptation results, using src-side

EM distances.

model NIST05

baseline 30.3

cross EM-src LM 31.2

cross EM-src TM 30.9

hybrid EM-src LM 30.9

hybrid EM-src TM 30.7

Table 7: Hybrid adaptation results.

Table 7 shows results for the hybrid approach de-

scribed at the end of section 3.5.2: global weights

are learned on NIST04-nw, but linear weights are

derived dynamically from the current test file. Per-

formance drops slightly compared to pure cross-

domain adaptation, indicating that it may be impor-

tant to have a good fit between global and mixture

weights.

4.4 Source Granularity

The results of the final experiment, to determine the

effects of source granularity on dynamic adaptation,

are shown in table 8. Source-side EM distances are

applied to the whole test set, to genres within the set,

and to each document individually. Global weights

were tuned specifically for each of these conditions.

There appears to be little difference among these ap-

proaches, although genre-based adaptation perhaps

has a slight advantage.



granularity dev test

nist04- nist05 nist06- nist06-

mix nist gale

baseline 31.9 30.4 27.6 12.9

file 32.4 30.8 28.6 13.4

genre 32.5 31.1 28.9 13.2

document 32.9 30.9 28.6 13.4

Table 8: The effects of source granularity on dy-

namic adaptation.

5 Related Work

Mixture modeling is a standard technique in ma-

chine learning (Hastie et al., 2001). It has been

widely used to adapt language models for speech

recognition and other applications, for instance us-

ing cross-domain topic mixtures, (Iyer and Osten-

dorf, 1999), dynamic topic mixtures (Kneser and

Steinbiss, 1993), hierachical mixtures (Florian and

Yarowsky, 1999), and cache mixtures (Kuhn and De

Mori, 1990).

Most previous work on adaptive SMT focuses on

the use of IR techniques to identify a relevant sub-

set of the training corpus from which an adapted

model can be learned. Byrne et al (2003) use co-

sine distance from the current source document to

find relevant parallel texts for training an adapted

translation model, with background information for

smoothing alignments. Hildebrand et al (1995) de-

scribe a similar approach, but apply it at the sentence

level, and use it for language model as well as trans-

lation model adaptation. They rely on a perplexity

heuristic to determine an optimal size for the rele-

vant subset. Zhao et al (2004) apply a slightly differ-

ent sentence-level strategy to language model adap-

tation, first generating an nbest list with a baseline

system, then finding similar sentences in a monolin-

gual target-language corpus. This approach has the

advantage of not limiting LM adaptation to a parallel

corpus, but the disadvantage of requiring two trans-

lation passes (one to generate the nbest lists, and an-

other to translate with the adapted model).

Ueffing (2006) describes a self-training approach

that also uses a two-pass algorithm. A baseline sys-

tem generates translations that, after confidence fil-

tering, are used to construct a parallel corpus based

on the test set. Standard phrase-extraction tech-

niques are then applied to extract an adapted phrase

table from the system’s own output.

Finally, Zhang et al (2006) cluster the parallel

training corpus using an algorithm that heuristically

minimizes the average entropy of source-side and

target-side language models over a fixed number of

clusters. Each source sentence is then decoded us-

ing the language model trained on the cluster that

assigns highest likelihood to that sentence.

The work we present here is complementary

to both the IR approaches and Ueffing’s method

because it provides a way of exploiting a pre-

established corpus division. This has the potential

to allow sentences having little surface similarity to

the current source text to contribute statistics that

may be relevant to its translation, for instance by

raising the probability of rare but pertinent words.

Our work can also be seen as extending all previous

approaches in that it assigns weights to components

depending on their degree of relevance, rather than

assuming a binary distinction between relevant and

non-relevant components.

6 Conclusion and Future Work

We have investigated a number of approaches to

mixture-based adaptation using genres for Chi-

nese to English translation. The most successful

is to weight component models in proportion to

maximum-likelihood (EM) weights for the current

text given an ngram language model mixture trained

on corpus components. This resulted in gains of

around one BLEU point. A more sophisticated ap-

proach that attempts to transform and combine mul-

tiple distance metrics did not yield positive results,

probably due to an unsucessful optmization proce-

dure.

Other conclusions are: linear mixtures are more

tractable than loglinear ones; LM-based metrics are

better than VS-based ones; LM adaptation works

well, and adding an adapted TM yields no improve-

ment; cross-domain adaptation is optimal, but dy-

namic adaptation is a good fallback strategy; and

source granularity at the genre level is better than

the document or test-set level.

In future work, we plan to improve the optimiza-

tion procedure for parameterized weight functions.

We will also look at bilingual metrics for cross-



domain adaptation, and investigate better combina-

tions of cross-domain and dynamic adaptation.
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Ben Taskar. 2006. An end-to-end discriminative ap-
proach to machine translation. In ACL 2006

Franz Josef Och. 2003. Minimum error rate training for
statistical machine translation. In ACL 2003, Sapporo,
July.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: A method for automatic
evaluation of Machine Translation. Technical Report
RC22176, IBM, September.

William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. 2002. Numerical Recipes
in C++. Cambridge University Press, Cambridge,
UK.

Christoph Tillmann and Tong Zhang. 2006. A discrimi-
native global training algorithm for statistical MT. In
ACL 2006.

Nicola Ueffing. 2006. Self-training for machine trans-
lation. In NIPS 2006 Workshop on MLIA, Whistler,
B.C., December.

Richard Zens and Hermann Ney. 2004. Improvements
in phrase-based statistical machine translation. In
HLT/NAACL 2004, Boston, May.

R. Zhang, H. Yamamoto, M. Paul, H. Okuma, K. Yasuda,
Y. Lepage, E. Denoual, D. Mochihashi, A. Finch, and
E. Sumita. 2006. The NiCT-ATR statistical machine
translation system for the IWSLT 2006 evaluation. In
IWSLT 2006.

Bing Zhao, Matthias Eck, and Stephan Vogel. 2004.
Language model adaptation for statistical machine
translation with structured query models. In COLING
2004, Geneva, August.


