
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Formal Verification Based on Relation Checking in SPIN: A Case Study
Erdogmus, Hakan; Johnston, R.; Cleary, C.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=2236c9d2-5c5a-4e38-a247-c782e780e4a0

https://publications-cnrc.canada.ca/fra/voir/objet/?id=2236c9d2-5c5a-4e38-a247-c782e780e4a0

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Formal Verification Based on Relation Checking

in SPIN: A Case Study *

Erdogmus, H., Johnston, R., Cleary, C.
January 1996

* published in the Proceedings of the First Workshop on Formal Methods in Software

Practice. San Diego, California, USA. January 11, 1996. NRC 39183.

Copyright 1996 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

This report also appears in Proceedings of FMPS’96, The First Workshop on Formal Methods in Software Practice, San
Diego, CA, January 10–11, 1996.

Copyright 1995 by National Research Council of
Canada

Copyright 1995 par Conseil national de recherches du
Canada

Permission is granted to quote short excerpts and to
reproduce figures and tables from this report, provided
that the source of the material is fully acknowledged.

Il est permis de citer de courts extraits et de reproduire
des figures ou tableaux du présent rapport, à condition
d’en identifier clairement la source.

Additional copies are available free of charge from: Des exemplaires supplémentaires peuvent être obtenus
gratuitement à l’addresse suivante:

Publication Office
Institute for Information Technology
National Research Council of Canada
Ottawa, Ontario, Canada
K1A 0R6

Bureau des publications
Institut de technologie de linformation
Conseil national de recherches du Canada
Ottawa (Ontario) Canada
K1A 0R6

ii

Formal Verification Based on Relation Checking in SPIN:

A Case Study∗

Hakan Erdogmus† Robert Johnston‡ Charles Cleary§

Abstract—A case study in formal verification of concurrent/distributed software is presented. The study concerns

the modular specification and verification of a remote task protocol. The verification methodology used is based on

semantic equivalence checking and is applicable to systems with hierarchical architectures. To support the methodology,

we extended the verification tool Spin with the ability to check a particular class of semantic relations, and the language

Promela upon which Spin is based with a simple mechanism to specify external operations. The foundations of semantic

equivalence checking are also discussed briefly.

1 Introduction

This paper illustrates a formal verification methodology based on semantic equivalence checking in the context
of a case study concerning the modular specification and verification of a remote task protocol. The method is
applicable to concurrent/distributed software structured as a hierarchy of modules, layered protocols in partic-
ular. The modular architecture of these systems are represented in terms of block diagrams consisting of nested
interconnected boxes. The systems of interest are closed in that we require their environments (contexts) to be
modeled explicitly. The model of the environment is considered to be an integral part of the system.

At the lowest level of a given system architecture are primitive boxes, or modules, for which we define
state machine behaviors in terms of Holzmann’s language Promela. Replaceable modules are encapsulated in
functional groups. Typically, a functional group contains two modules of different abstraction levels: a primitive,
monolithic module which specifies the service to be provided, and a more elaborate, compound module which, for
example, represents a distributed implementation of that service. In higher level modules, members of a functional
group serve as interchangeable components. We define functionality in terms of a semantic equivalence defined
on Promela behaviors. Thus a system specified by means of functional groups gives rise to proof obligations; it
has to be verified that the resulting modules constitute an equivalence class with respect to the given semantic
equivalence.

The proof obligations are specified in terms of nested and/or graphs which we call task structures. A task
structure is a collection of disjunctive or conjunctive tasks organized to form a modular correctness requirements
specification. A conjunctive task specifies obligations that must be satisfied individually, whereas, a disjunctive
task specifies alternative obligations. The result of a task is a verdict—true, false, or inconclusive—depending on
whether the underlying obligations are satisfied, dissatisfied, or infeasible to decide. Large tasks are decomposed
into more manageable subtasks along two orthogonal dimensions. Along the vertical dimension, the hierarchical
architecture of the system being specified is exploited; modules are verified using service specifications (or
abstractions) of their submodules. Along the horizontal dimension, it is the underlying property being verified
which is broken down into simpler properties that are easier to check. The decomposition of tasks into subtasks
is a design activity, and as such it depends highly on the skill of the designer.

All primitive tasks are expressed in terms of semantic equivalence checking. The equivalence chosen is trace
equivalence; two systems are considered equivalent if they possess the same set of visible execution traces. We
attack trace equivalence checking in the context of a more general problem, namely, that of inductive relation
checking. Inductive relations are a particular class behavioral relations which have local characterizations [10].
The decidability problem for non-trivial relations in this class is provably intractable. Thus a compositional
verification methodology is of double importance.

Behaviors of primitive modules are described in the specification language Promela. System architectures
which are initially expressed in terms of block diagrams are also translated to Promela models. This is done

∗NRC no. 39183. Supported in part by Bell Northern Research Laboratories, Montréal and INRS-Télécommunications.
†National Research Council Canada, Building M-50, Montreal Road, Ottawa, Ontario, Canada K1A 0R6
‡INRS-Télécommunications, 16 Place du Commerce, Verdun, Québec, Canada H3E 1H6
§Département de génie electrique, Université Laval, Québec, Canada

1

in a straightforward manner using cpp macros. Promela is a CSP-like language on which Holzmann’s tool
Spin is based. The latter is a general verification tool for specifying and proving correctness properties of
concurrent/distributed systems [17, 18]. We extended Spin with inductive relation checking to support our
methodology.

2 Inductive Relations and Trace Equivalence

Labeled Transition Systems (LTSs) are commonly used as the underlying formal model for verification problems.
A LTS is a quadruple 〈Σ, A, {−a→ | a ∈ A},−·→〉, where Σ is a set of states, A is a set of external (visible)
actions, the −a→ ⊆ Σ × Σ are called the external transition relations, and −·→ ⊆ Σ × Σ is called the internal
transition relation. The relations =·⇒ and =a⇒ are defined in the usual manner:

=·⇒0 def
= {〈s, s〉 | s ∈ Σ}

=·⇒
def
=

⋃
{=·⇒n | n ∈ Nat}

=a⇒
def
= =·⇒−a→=·⇒

For s ∈ Σ, let traces(s) denote the set of all finite external (visible) execution traces of s. Trace equivalence,
≡trace, simply equates two states of a LTS iff they have the same set of finite external traces. Let s, r ∈ Σ. Then
s ≡trace r iff traces(s) = traces(r).

Rather than on a LTS, the notion of inductive relation is more easily defined on a general extended trace
model called a Weak Process System (WPS). A WPS is a structure 〈Π,Λ, A,L,A, {·(a) | a ∈ A}〉, where Π is a
set of processes, Λ is a set of local behaviors, A is a set of (external) actions, L: Π �−→ Λ is called the labeling
function, A: Λ �−→ A is called the local action set function, and finally the ·(a): Π �−→ Π are called the transition
functions. Because its transitions are defined as functions, a WPS has a deterministic branching structure.

Given a WPS, let RELΛ be a binary relation on Λ. We call RELΛ a local relation.

Theorem 1 For every local relation RELΛ, there exists a unique maximal binary relation REL on Π which
satisfies for all P,Q ∈ Π, P REL Q iff L(P) RELΛ L(Q) and P (a) REL Q(a), for every a ∈ A(L(P))∩A(L(Q)).
The relation REL is called an inductive relation5.

Theorem 1 states that every inductive relation is uniquely characterized by an underlying relation on local
behaviors. To formulate ≡trace as an inductive relation, we specify a transformation Det which maps a given
LTS to a corresponding WPS by abstracting from internal transitions, and then identify the local relation
underlying ≡trace. In this light, let T = 〈Σ, A, {−a→ | a ∈ A},−·→〉 be a LTS. The transformation Det is

quite straightforward; it is similar to NFSA determinization: Det(T)
def
= 〈Π,Λ, A,L,A, {·(a) | a ∈ A}〉, where

Π
def
= 2Σ, Λ

def
= 2A, and for P ∈ Π, λ ∈ Λ, and a ∈ A, L(P)

def
= {a ∈ A | s−a→ for some s ∈ P}, A(λ)

def
= λ,

and P (a)
def
= {p ∈ Σ | s=a⇒p for some s ∈ P}. Note that Det does not fully take advantage of the potentially

richer structure of a WPS since for ≡trace, the notion of local behavior conveniently coincides with that of local
action set; i.e., A(L(P)) = L(P). The final step is the identification of the underlying local relation; let’s call
it TRACEΛ. The relation TRACEΛ simply coincides with equality between local behaviors: λ TRACEΛ λ′ iff
λ = λ′.

Theorem 2 Let s, r ∈ Σ in T. We have s ≡trace r iff {s} TRACEΛ {r} in Det(T).

The significance of the above theorems are explained in the next subsection.

3 Relation Checking in SPIN

The flow diagram of the Spine system is given in Fig. 2.
The algorithm used to decide trace equivalence is based on Theorems 1 and 2. A Promela model consists of

a network of communicating finite state processes, and as such it defines a global state machine—a finite LTS—
with an initial state and with transitions labeled by communications and other executable Promela statements.

5The term inductive is used because this class of relations was originally formulated in an inductive manner.

2

global variables sl, sr, initL, initR, LR Table, BL,BR, result;
begin

sL ← initial state of the lhs model; sR ← initial state of the rhs model;
InitL ← Add internal states({sL}); InitR ← Add internal states({sR});
LR Table ← ∅;
return V erify relation(InitL, InitR)

end

V erify relation(L,R)
local variables A, a;
begin

if 〈L,R〉 ∈ LR Table then

return true

endif;
LR Table ← LR Table ∪ {〈L,R〉};
BL ← Local behavior(L); BR ← Local behavior(R);
if Check local rel(BL,BR) then

A ← External actions(BL) ∩ External actions(BR);
for all a ∈ A do

L ← Add internal sates(Execute external action(L, a));
R ← Add internal sates(Execute external action(R, a));
if V erify relation(L,R) then

result ← true

else

result ← false;
break

endif

endfor;
return result

else

return false

endif

end

Figure 1: Pseudocode for the relation checking algorithm used in Spine.

Then deciding trace equivalence between two Promela models—let’s call them lhs and rhs models—corresponds
to verifying the relation ≡trace for their initial states in the combined LTS. The LTS considered is the union of
the two LTSs underlying the lhs and rhs models. This is computed on-the-fly by an exhaustive, synchronized
exploration of the respective state spaces. While the state spaces are being traversed, the transformation Det
is computed, again on-the-fly, by constructing subsets of states connected by continuous sequences of internal
transitions. Each such subset gives rise to a weak process. A pair weak processes—L and R for the lhs and
rhs models respectively—are produced at each iteration, allowing Theorem 1 to be applied: the local relation
TRACEΛ is checked between the local behaviors of L and R, an external action a common to both L and R

is executed, after which the procedure recurses. The general algorithm is illustrated in Fig. 1. In the figure,
Add internal states extends a given subset of states (a weak process) with those states reachable through a
sequence of internal transitions from at least one state in the subset. Then Execute external action, applied
to the result, constructs a new subset by executing a selected external action. Combined, these two procedures
implement the weak process transition functions L(a) and R(a). Check local rel verifies a given local relation
for the local behaviors associated with a pair of weak processes.

There was no mechanism in original Promela to distinguish between external (observable) and internal
(invisible) transitions. This ability is essential for semantic relation checking to be of any practical use. Typi-
cally, details of sequential computations within individual processes would not be relevant as far as the external
functionality of the overall system is concerned. Similarly, all inter-process communications may not be interest-
ing to observe either. Therefore, it should be possible to selectively specify the relevant, externally observable
communication actions in a given model. We modified the syntax of Promela’s channel declaration allowing a
channel to be annotated with the keyword external and a corresponding external name:

chan int name (extern ext name b type) = [n slots] of { chan structure }

Here ext name is the external name of the channel variable int name. Each external name must be unique in a
given model. This syntax makes it possible to treat send (!) and/or receive (?) operations on relevant channels
of a Promela model as externally observable actions during a Spine verification. More precisely, such operations
correspond to external transitions of the underlying LTS, whilst all other executable Promela statements are
treated as internal transitions. The keyword b type specifies precisely which types of operations are external: ! is
used to declare only the send operations to be external and ? is used to declare only the receive operations to be

3

fileL

fileR

poc.cspine

-eRel

cc

-o poc

-g

-lm

-eRel

-mN

-Mn

-Sn

-wN
-V

poc.

trace

Verdict
&
Stats

poc
*

*

C files

generator

options compilation

options
execution

options

executable

relation

checker

relation

checker
trace file

(false verdict)

screen

output

input

PROMELA

models

syntax

checking

&

code

generation compilation

execution

Figure 2: Flow diagram of the Spine verification system. Rel indicates the inductive relation to be verified.

external. If b type is omitted, both sends and receives are treated as external actions. For external synchronous
channels (n slots = 0), either ! is specified or b type is omitted altogether.

4 Case Study: A Remote Task Protocol

To demonstrate the methodology described in the introduction, we present a small case study inspired by a
proprietary protocol which was developed at BNR in the early eighties [27]. The case study concerns the re-
design and verification of this protocol whose purpose is to provide remote procedure call service to end users
over unreliable and semi-reliable6 connections. In what follows the emphasis is on architectural and modeling
concepts, and the details of the protocol are omitted.

4.1 The Remote Task System

We begin with a highly abstract view and then gradually refine it. Let us call this top level system view RT System.
The block diagram of RT System is given in Fig. 3.

In the figure, the box with rounded corners specifies RT System as an observation module. An observation
module represents a closed system—one that cannot be used as a component in a higher level module. Such
a module is only subject to external observation through its defined interface. Here, the interface of RT System

consists of two observation ports, ACCEPT and INVOKE. The shape of an interface port defines its type; in Fig. 3,
ACCEPT and INVOKE are synchronous ports.

RT System in turn consists of two components, an instance of a module called RT Users and an instance of a
module called RT Service Group. These are interaction modules; i.e., their instances can serve as components in
larger systems, or higher level modules. The interface of module RT Users has two output ports (dark circles)
and that of the module RT Service Group has two input ports (clear circles). In addition, RT Users has a provide
port (dark square) and RT Service Group has a use port (clear square) for shared variable type communication.
Interface ports of interaction modules are uniquely identified by their location on block diagrams. They can be
interconnected in various ways; connections are represented by different types of arcs. A solid arrow from an
output port of one component to an input port of another denotes a synchronous, or rendezvous, channel. A
provide port of one component can be connected to a use port of another by a solid line: the component with
the provide port owns a shared variable environment which the component with the use port accesses.

The module RT Service Group is drawn as a box with cut corners. This is a special kind of module we call
a union. A union is a collection of modules, called members, with compatible interfaces. We use a union to

6The term semi-reliable is used in the following sense: The connection can fail but provisions are provided for error recovery in

the case of retransmission errors and message losses. Upper layers can thus assume reliable service for normal operation, but must

also be prepared for more persistent connection failures to be able to resynchronize. If a message cannot be delivered correctly in

the first attempt, the upper layer must be able to detect this and resynchronize.

4

RT_System

RT_Service_Group

RT_Users

UserI UserA

ACCEPTINVOKE

EA

* *

Figure 3: Block diagrams of RT System and RT Users. Primitive modules are indicated by a ‘∗’.

#include "Common.env"
#include "RT_Users.int"
#include "%RT_Service_Group.int"
chan UItoRT (extern INVOKE) = [0] of {byte};
chan UAtoRT (extern ACCEPT) = [0] of {byte};
init
{

atomic{InitEA;
RT_Users(UItoRT, UAtoIRT);
RT_Service_Group(UItoRT, UAtoRT)}

}

Figure 4: The file %RT System.obs.

represent either a set of replaceable modules of the same intended external functionality (a functional union)
or customizable parts with varying external functionalities of a given system (a specialization union). A group,
defined recursively, is either a union or a module which has a component that is a group.

The Promela model of RT System is contained in the file %RT System.obs given in Fig. 4. The mapping
from the block diagram notation to Promela is straightforward. Note the one-to-one correspondence between
observation ports and external channels.

The Promela models specify more information than those of block diagrams, such as content types of
channels and initialization behaviors. For primitive modules, complete behaviors are specified in terms of process
type definitions. The following file naming conventions are used: files for interaction modules have the suffix
“.int”, and those for observation modules have the suffix “.obs”. For groups, we use the prefix “%”, and for
environment files we use the suffix “.env”. An environment file declares shared global variables and defines
macros used by more than one module. Shared variables are manipulated (tested, set, or initialized) through
the macros defined in the associated environment file. Access to a shared variable environment is limited by
provide-use connections in block diagrams. In this way, arbitrary patterns of shared variable communication are
forbidden. In Fig. 4, the include file Common.env contains message type definitions and other macros common to
all modules of the current example. InitEA is a macro defined in the file EL.env which in turn is included in the
file RT Users.int (not shown).

4.2 End Users and the Remote Task Service Group

The purpose of the module RT Service Group is to provide remote task service to two asymmetric end users in
terms of four service primitives. No direct communication exists between these users. One end user, UserI, is the
source (the Invoking user), and the other, UserA, is the designated target (the Accepting user). These make up
the module RT Users, as shown in Fig. 3. RT Users also contains a shared variable environment, EA, which UserA

uses. Outside access to this environment is made available by RT Users through a provide port (dark square). In
EA.env (not shown), two flag variables indicating the current status (idle/busy, blocked/unblocked) of the target
are declared and the associated macros are defined.

The source can initiate a remote task session by issuing a RRinvoke service primitive to RT Service Group.
Once the task has been initiated (the specified task has started its execution on the target’s machine), the target
can issue a number of Push and Pull service primitives to access the source’s data space, and when the task

5

HighLevel_RT_Protocol

**Std_RT_Service

Flat_RT_Protocol

HighLevel_RT_Protocol

Link_Subservice_Group

HLRTP_LSS_Pair

RT_Service_Group

Invoker Accepter

*

**

LP_Subservice

Link_

Protocol
Link_

Protocol

**

Std_Link_Subservice

Link_Subservice

*

EL

Link_Subservice_Group

EL

(c)

(b)

(a)

AccepterHInvokerH

Figure 5: Block diagrams for RT Service Group.

completes, it issues a RTcomplete service primitive to signal the termination of the current session.
The block diagram of RT Service Group is given in Fig. 5a. This is a functional union (group) consisting of

three member modules: The first module, Std RT Service, represents the service to be provided to the two end
users in terms of the four service primitives. It has a concise, abstract specification given in Fig. 7. The macros
RTServiceAvailable, RTServiceNotAvailable, UserAError, and RTServiceFailure are defined in EA.env. The second
module, Flat RT Protocol, provides transparent remote task service over an unreliable connection in terms of a
single layer protocol. This module combines two normally orthogonal functionalities—namely those of providing
a remote task service and a semi-reliable data link connection—within one monolithic protocol. It consists of two
module instances, Invoker and Accepter, communicating over two unreliable asynchronous connections (one for
each direction). The third module, HLRTP LSS Pair, is a group which provides transparent remote task service over
a semi-reliable connection by means of a more focused, higher level protocol which relies on the services of a data
link sublayer. The data link sublayer is responsible for semi-reliable data transfer. Hence, the two orthogonal
functionalities mentioned above are separated into two layers at the expense of some redundancy. The decom-
position of the module HighLevel RT Protocol (Fig. 5b) is similar to that of Flat RT Protocol; it consists of two
module instances, InvokerH and AccepterH, to interface with the end users. However, instead of communicating
directly, these modules take advantage of the services of the data link sublayer module. HighLevel RT Protocol

provides minimal error control; instead, this responsibility is delegated to Link Subservice Group, the module
implementing the data link sublayer.

The Promela model of the module RT Service Group is specified as a logical switch statement entirely in
terms of cpp macros. The file %RT Service Group.int is given in Fig. 6.

4.3 The Link Subservice Group

The block diagram of this group is given in Fig. 5c. Link Subservice Group is a functional union consisting of
two modules: (1) a standard link subservice module, Std Link Subservice, specifying the external functionality
of the data link sublayer in terms of the proper temporal ordering between ‘send message’ and ‘receive message’
primitives, and (2) a link protocol module, LP Subservice, which implements the standard link subservice via
two peer protocol entities, with full error and flow control, over an unreliable connection.

The module Link Protocol is based on the alternating bit protocol. We translated the implementation given

6

#if nRT_Service_Group==nStd_RT_Service
#include "Std_RT_Service.int"
#define RT_Service_Group(spI, spA) Std_RT_Service(spI, spA)
#endif
#if nRT_Service_Group==nFlat_RT_Protocol
#include "Flat_RT_Protocol.int"
#define RT_Service_Group(spI, spA) Flat_RT_Protocol(spI, spA)
#endif
#if nRT_Service_Group==nHLRTP_LSS_Pair
#include "%HLRTP_LSS_Pair.int"
#define RT_Service_Group(spI, spA) HLRTP_LSS_Pair(spI, spA)
#endif

Figure 6: The file %RT Service Group.int.

proctype _Std_RT_Service(chan fromUI, fromUA)
{
restart:

fromUI?RTinvoke -> if
:: RTServiceAvailable -> StartRT
:: RTServiceNotAvailable -> goto restart

fi;
do

:: fromUA?RTcomplete -> goto restart
:: fromUA?Pull
:: fromUA?Push
:: UserAError -> goto restart
:: RTServiceFailure -> goto restart

od
}
#define Std_RT_Service(spI, spA) run _Std_RT_Service(spI, spA)

Figure 7: The file Std RT Service.int.

in [32] to a Promela process type definition, and then defined LP Subservice as the composition of two instances
of this process type communicating via two unreliable asynchronous connections. We also explicitly modeled
message losses and link failures, and added a resynchronization mechanism to recover from persistent link failures.
The shared environment EL is used to model the effect that a user-level timeout is sufficiently longer than (i.e.,
cannot happen before) a link-level timeout.

4.4 Correctness Requirements for the Remote Task System

Our correctness criteria is based on trace equivalence; we require that all modules in the same functional obser-
vation group belong to the same equivalence class with respect to this relation. The observation group RT System

involves two functional unions, RT Service Group with three modules and Link Subservice Group with two mod-
ules, which together give rise to a functional group of a total of four observation modules. Let us enumerate
these:

1. RT System where RT Service Group = Std RT System.

2. RT System where RT Service Group = Flat RT Protocol.

3. RT System where RT Service Group = (HLRTP LSS Pair

where Link Subservice Group = Std Link Subservice).

4. RT System where RT Service Group = (HLRTP LSS Pair

where Link Subservice Group = LP Subservice).

The Promela model of each of the above modules is specified by a corresponding cpp macro file. For
example, module 3 above is specified by:

#include "Mods.env"

#define nLink_Subservice_Group nStd_Link_Subservice

#define nRT_Service_Group nHLRTP_LSS_Pair

#include "%RT_System.obs"

where the include file Mods.env contains module selectors of the form “#define nModuleName Integer.”
According to our correctness criteria, the above functional group must constitute a trace equivalence class.

The task structure given in Fig. 8 breaks down the correctness requirements of the remote task system into

7

RTP_Verif

Flat_RTP_Verif

HLRTP_Verif

Modular_HLRTP_Verif

HLRTP_LP_Verif

HLRTP_StdLSS_Verif

Link_Subservice_Verif

Figure 8: Task structure for the verification of RT System.

Link_Subservice_Verif

General_LSS_Verif

HLRTP_Verif

Simplex_LSS_Verif HalfDuplex_LSS_Verif

Figure 9: Task structure for the verification of the data link sublayer.

individual proof obligations, including those given rise by the functional observation group. Each box in Fig. 8
represents a task; unmarked boxes represent primitive tasks. Conjunctive and disjunctive (alternative) tasks
are indicated with and and or gate symbols, respectively. The alignment of subtasks indicates whether the
associated decomposition of the parent task is vertical or horizontal. The highest level task RTP Verif is hor-
izontally decomposed into two subtasks: Flat RTP Verif, which consists in checking the equivalence of module
1 to module 2 above; and HLRTP Verif, a compound subtask constructed to decide the equivalence of module 1
to RT System with RT Service Group = HLRTP LSS Pair. Note that these subtasks respectively correspond to the
verification of Flat RTP Protocol and HLRTP LSS Pair vis-à-vis the service specification Std RT Service, where the
common environment (context) is RT Users. HLRTP Verif is in turn horizontally decomposed into two disjunctive
subtasks: HLRTP LP Verif and Modular HLRTP Verif. The former consists in deciding the equivalence of module
1 to module 4, which turns out to be inconclusive because of state explosion. The latter subtask is proposed
as an alternative. This is an approximation which involves the vertical decomposition of HLRTP LP Verif into
two conjunctive subtasks: HLRTP StdLSS Verif, which stipulates the equivalence of module 1 and module 3, and
Link Subservice Verif, an independent verification of the data link sublayer which will be discussed later. This
decomposition follows the two-layer architecture of HLRTP LSS System; the system in question is verified with the
abstract service specification of the data link sublayer Std Link Subservice, and the actual implementation of
the data link sublayer, LP Subservice, is verified independently for conformance to Std Link Subservice.

4.5 Correctness Requirements of Link Subservice System

The subtask Link Subservice Verif is structured as shown in Fig. 9. The aim here is to verify the data link
sublayer as an independent general purpose module since the functionality provided by this layer can be used
by other higher level protocols. To do this, a specialization union, LSS User Group, is defined (Fig. 10). This
group contains three types of general purpose users of the functional union Link Subservice Group. The module
SR Pair defines two asymmetric users in a sender/receiver-type simplex communication via an underlying data
link service. It is used to verify the simplex operation of the data link sublayer. IR Pair defines two asymmetric
users in an initiator/responder-type half-duplex communication. This module is used to verify the half-duplex
operation of the data link sublayer. And finally, the module Generic LSS User defines two symmetric users in a
somewhat arbitrary full-duplex communication. It is used to verify the full-duplex operation of the data link
sublayer.

Three observation groups are derived from the interconnection of Link Subservice Group with LSS User Group

8

**

Generic_

LSS_User

LSS_

User
LSS_

User

**

IR_PairInitiater Responder

**

SR_PairSender Receiver

LSS_User_

Group

Figure 10: Block diagrams for LSS User Group.

via four asynchronous connections (Fig. 11). These groups differ only in terms of their interfaces (observation
ports). The interface observed is that of Link Subservice Group. The first of these modules, Simplex LSS System, is
for observing the simplex operation of the resulting system. Its Promela model is shown in Fig. 12. The second,
HalfDuplex LSS System, is defined for observing its half-duplex operation. And the last one, Generic LSS System,
is for observing the full-duplex operation. If we specialize each of these observation groups by selecting the
appropriate member from LSS User Group, we obtain three functional groups:

• Functional Group 1

1a) Simplex LSS System where (LSS User Group = SR Pair

and Link Subservice Group = Std Link Subservice).

1b) Simplex LSS System where (LSS User Group = SR Pair

and Link Subservice Group = LP Subservice).

• Functional Group 2

2a) HalfDuplex LSS System where (LSS User Group = IR Pair

and Link Subservice Group = Std Link Subservice).

2b) HalfDuplex LSS System where (LSS User Group = IR Pair

and Link Subservice Group = LP Subservice).

• Functional Group 3

3a) Generic LSS System where (LSS User Group = Generic LSS User

and Link Subservice Group = Std Link Subservice).

3b) Generic LSS System where (LSS User Group = Generic LSS User

and Link Subservice Group = LP Subservice).

Each of the above functional groups gives rise to an obligation involving one equivalence checking represented in
Fig. 9 by a corresponding primitive subtask. It is understood from the disjunctive horizontal decomposition that
the subtasks General LSS Verif and Modular LSS Verif are alternatives. These alternatives, however, do not rep-
resent equivalent obligations. Rather, Modular LSS Verif is proposed as an approximation to General LSS Verif.

4.6 Historical Notes and Results

The starting point of this case study was the original FSM descriptions of the modules Invoker and Acceptor

and some accompanying text describing the purpose of the protocol. From the informal text, we obtained the
service specification Std RT Service and defined the behaviors of the end users. From the FSM descriptions, we

9

LSS_User_Group

Link_Subservice_

Group

HalfDuplex_LSS_System

RECV0

SEND0

LSS_User_Group

Link_Subservice_

Group

Generic_LSS_System

RECV0 RECV1

SEND0 SEND1

LSS_User_Group

Link_Subservice_

Group

Simplex_LSS_System

RECV1

SEND0

Figure 11: Block diagrams of the systems used in the verification of data link sublayer.

#include "Common.env"
#include "%Link_Subservice_Group.int"
#include "%LSS_User_Group.int"
chan U0toLSS (extern SEND0?) = [1] of {byte}; /* User0 to local LP */
chan LSStoU0 = [1] of {byte}; /* local LP to User0 */
chan U1toLSS = [1] of {byte}; /* User1 to local LP */
chan LSStoU1 (extern RECV1!) = [1] of {byte}; /* local LP to User1 */
init
{
atomic{InitEL;

Link_Subservice_Group(U0toLSS, LSStoU0, U1toLSS, LSStoU1);
LSS_User_Group(U0toLSS, LSStoU0, U1toLSS, LSStoU1)}

}

Figure 12: The file %Simplex LSS System.obs.

obtained an initial version of the module Flat RT Protocol. Although the original FSM descriptions considered
only the behavior of a single remote task session, we considered a cyclic behavior in which a session may
immediately be followed by a new one. First, by an independent exhaustive validation of the underlying state
space using the Spin tool alone, we found out that this first version of Flat RT Protocol contained deadlocks
resulting from unspecified receptions, and some unreachable states. We modified the protocol and obtained a
second version, which turned out to be free of both deadlocks and unreachable states. However, this time a
subsequent Spine verification revealed that the resulting protocol did not behave as expected with respect to its
service specification Std RT Service; i.e., modules 1 and 2 of Section 4.4 were not trace equivalent. We identified
the source of the problem as follows: the protocol was not self-stabilizing; it was not always possible for the two
protocol modules to resynchronize when a session was abnormally terminated due to a timeout, leading to session
overlap. We modified the protocol again, adding the appropriate provisions and constraining the behavior while
remaining faithful to the intended external functionality. This resulted in a third and correct version of the module
Flat RT Protocol. We also realized that the protocol was attempting to mix the orthogonal functionalities of
providing simple data link and remote task session management services within one monolithic layer. This lead
us to believe that separating the data link functionality and transferring it a lower layer module would highlight
better the purpose of the protocol, thereby simplifying it further. This decomposition was captured by the module
HLRTP LSS Pair. We then described the data link functionality by the functional group Link Subservice Group

which was further decomposed and verified as described in Sections 4.3 and 4.5.
The results of Spine verifications for the final version of the system are shown in Table 1. Each entry in

the table corresponds to a task or subtask. All verifications were originally performed on a DEC workstation
and then replicated on a Sparc2 with 32 MB of memory. Verdicts for non-primitive subtasks were calculated
using 3-value logic. The total memory required by a conjunctive task is given by the maximum of the total
memories required by the constituent subtasks. The total time is the sum of the total times of the constituents.
For a disjunctive task, both the total memory and the total time required are the minimum of those required
by the constituent subtasks. Some runs were inconclusive due to state explosion, in which case rough worst-case
estimates are provided.

For this relatively small case study, our prototype implementation was sufficient since for most of the ver-
ifications, the state spaces involved were relatively small (less than 300,000 states). Although for two of the
verifications the results were inconclusive due to time and space demands, the decomposition of the correspond-
ing tasks into simpler, alternative subtasks proved successful; we were ultimately able to show our final design
to be correct with a high degree of confidence.

10

Task or Subtask Verdict No. of states Mem Time

Flat RTP Verif True 169/1313 4015/5649 1332 3:39
HLRTP LP Verif ? 69/? [3 × 107]/[9 × 109] ? ?
HLRTP StdLSS Verif True 69/1960 3045/46715 1416 2:28
General LSS Verif ? 1037/? [1 × 107]/? ? ?
Simplex LSS Verif True 191/2031 10098/210845 1468 13:01
HalfDuplex LSS Verif True 20/458 5192/51633 1456 4:14
Link Subservice Verif True — 1468 17:15
Modular HLRTP Verif True — 1468 19:43
HLRTP Verif True — 1468 19:43
RTP Verif True — 1468 23:22

Table 1: Verification results for the remote task system. Mem is the total memory required in kB. Under No. of
states, the first subcolumn relates to the lhs model and the second subcolumn relates to the rhs model. In
each subcolumn, the first figure is the total number of states generated by a Spin exhaustive validation run,
whereas the second figure indicates the total number of states (not necessarily distinct) revisited during the
Spine equivalence checking validation. A question mark indicates an inconclusive verdict due to memory/time
limitations and the figures between square brackets are estimated upper-bound values.

5 Background and Related Work

The class of inductive relations was originally suggested in [10]. This reference develops the foundations of
the WPS model in a slightly different setting . The WPS model results from an operational generalization of
extended trace models [14, 15, 4, 3]. The semantic relations (equivalences and preorders) that underlie most of
these models, as well as other semantic relations defined on the structure of a LTS, can be formulated as inductive
relations using suitable transformations from LTS to WPS, provided that it is possible to give them a local
characterization. Roughly a semantic relation can be characterized locally if it has a deterministic formulation
dependent uniquely on properties that can be inferred locally. For example, nondeterminism, acceptance sets
[14], failure sets [15], readiness sets [35], divergence (potential of an infinite internal computation), and deadlock
are local properties; they can all be recorded in terms of external tests that do not require copying or branching.
An example is testing equivalence [7]. However, for this relation the corresponding transformation and the
underlying local relation are more complex than those for trace equivalence; see [11] for details. Likewise, many
other extended trace relations can also be formulated as an inductive relation using the WPS model. For a
comparative discussion of these, refer to [35] and [23, Ch. 3]. As an example of a relation which can not be
formulated as such, we can give observation equivalence (or weak bisimulation) [25]—a relation which is too
discriminating to have a local characterization. Observation equivalence requires a form of external testing that
involves copying, which in turn gives it a global nature; see [1].

The definition of inductive relation given here is inspired by Park’s elegant notion of bisimulation [28].
Similar definitions have been adopted by other semantic relations now referred collectively as simulations or
bisimulations—for examples, see [25, 26, 30, 21, 2, 9]. Several algorithms have been proposed for checking
such relations [9, 5, 22, 12]. As in [22] and [12], we use an on-the-fly algorithm which does not require the
complete state space to be computed and stored a priori. The algorithm is based on the computation of a
synchronized product, as done in [12], but uses a deterministic technique with explicit subset construction. Our
algorithm differs from others in its generality; it treats a whole class of relations rather than a particular one.
The algorithms described in [12] have been implemented in the Lotos tool Cæsar-Aldébaran. This tool
is similar to Spine. Although its performance appears to be superior to that of Spine—probably due to the
avoidance of explicit subset construction—a detailed comparative evaluation is difficult because of the differences
between Lotos and Promela, but more importantly, because of the fact that their results are based on tests for
stronger relations. Inductive relation checking is polynomial on the structure of a WPS, but the transformations
from LTS to WPS are often exponential since they usually involve some kind of determinization to abstract from
internal transitions. This complexity is not introduced unnecessarily; it is inherent. In particular, deciding trace
equivalence is a PSPACE-hard problem [31]. Deciding most useful inductive relations on the structure of a LTS
also turns out to be PSPACE-hard.

Compositional verification of concurrent systems based on semantic relation checking has been explored in
[24], [20], and [23] in completely formal settings. In [24], abstractions of different levels are used as the basis
of decomposition. In [20], a property holds true for a system (parallel composition of processes) if it holds
true individually for its components, whereas in [23, Ch. 6], a property holds true for a Lotos system defined
in terms of a ‘conjunction’ of constraints if it holds true for each constraint individually. Here we regarded

11

decomposition—the construction of a modular verification strategy—as an informal design activity. As such,
this activity itself is not necessarily subject to formal justification although the resulting primitive tasks involve
formal proof checks. We used intuitive strategies—decompositions based on approximations and alternative
tasks—when it was appropriate. Such strategies were necessary to reduce the complexity when the verdict of a
primitive task was inconclusive due to extraordinary space or time requirements; the disadvantage was a lower
level of confidence on the result.

Task structures based on and/or graphs have been used in describing development models for system
specifications in Z [6]. We used them here for describing modular correctness requirements, distinguishing
between horizontal and vertical decompositions in task structures. A similar distinction between vertical and
horizontal steps was suggested by Turner [33] within the context of the step-wise refinement methodology for
developing Lotos specifications.

6 Conclusions and Future Work

We presented a compositional methodology for the specification and verification of concurrent or distributed
systems based on deciding semantic equivalences in Spin. The equivalence chosen was trace equivalence because
our tool currently supports only this relation and its preorder, trace inclusion. It is a well-known fact that only
safety properties can be reasoned about using these two relations. In practice, a more elaborate semantic relation,
such as testing equivalence or weak bisimulation equivalence would be more useful. However, weak bisimulation
equivalence—although it can be verified in polynomial time—does not have a local characterization, and hence,
is not supported by the relation checking algorithm incorporated to Spin. Other essentially weaker relations
such as testing equivalence and failures preorder can be handled.

The methodology described is indeed independent of the semantic relation and the specification language
used. In principle, it is applicable to a variety of other specification languages. In our opinion, Lotos [19] would
be a good candidate because of strong tool support behind it.

Using preorders instead of equivalences to capture the notion of one system implementing, or refining, another
can also be envisioned. In this case, a functional group could be defined as a partial order of modules as opposed
to an equivalence class.

So far the translation from the block diagram notation to Promela skeletons has been done manually. This
process can be automated. Proof obligations can also be derived automatically from such diagrams. These two
points are considered as future research directions.

Unfortunately, state explosion limits severely the usability of the current tool. Without clever decomposition
strategies, large systems cannot be handled. Approximative techniques such as Spin’s bit-state hashing [16] and
state space reduction techniques as proposed in [34], [13], and [29] are in principle applicable to semantic relation
checking. An approximative method has been described in [5] and a reduction technique based on partial orders
has recently been suggested in [8]. These techniques should be investigated in more detail to make semantic
relation checking in Spin a feasible complementary method to the more traditional temporal logic model checking
and invariant analysis by state space exploration.

The Spine tool is available through anonymous FTP. Please contact the author at erdogmus@iit.ncr.ca.

References

[1] S. Abramski. Observation equivalence as a testing equivalence. Theoretical Computer Science, 53:225–241, 1987.

[2] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced: preliminary report. In Proceedings of 15th ACM

Symposium on Principles of Programming Languages, 1988.

[3] E. Brinksma. On the existence of canonical testers. Memorandum INF-87-5, Department of Informatics, University
of Twente, Netherlands, 1987.

[4] S. D. Brookes and A. W. Roscoe. An improved failures model for communicating processes. In S. D. Brookes, A. W.
Roscoe, and G. Winskel, editors, Seminar on Concurrency, number 197 in Lecture Notes in Computer Science.
Springer-Verlag, 1984.

[5] R. Civalero, B. Jonsson, and J. Nilsson. Validating simulations between large nondeterministic specifications. In
Proceedings of Sixth International Conference on Formal Description Techniques, pages 3–17, 1993.

[6] R. Darimont and J. Souquières. A development model: Application to Z specifications. In Proceedings of IFIP

WG8.1 Working Conference on Information System Development Process. North-Holland, 1993.

12

[7] R. De Nicola. Extensional equivalences for transition systems. Acta Informatica, 24:211–237, 1987.

[8] M. L. de Souza and R. de Simone. Using partial-order methods for the verification of behavioral equivalences. In
Proceedings of 8th International Conference on Formal Description Techniques, pages 59–75, 1995.

[9] D. Dill, A. Hu, and H. Wong-Toi. Checking for language inclusion using simulation preorders. In Proceedings of 3rd

Workshop on Computer-Aided Verification, 1991.

[10] H. Erdogmus. A Flexible Framework for the Design of Concurrent Nondeterministic Processes. PhD thesis, INRS-
Télécommunications, Verdun, Québec, 1993.

[11] H. Erdogmus. Verifying semantic relations in SPIN. In Proceedings of 1st SPIN Workshop, Verdun, Québec, Canada,
Oct. 1995. INRS-Télécommunications.

[12] J. Fernandez and L. Mounier. Verifying bisimulations on the fly. In Proceedings of 3rd International Conference on

Formal Description Techniques, 1990.

[13] P. Godefroid. Using partial order methods to improve automatic verification methods, pages 176–185. Number 531
in Lecture Notes in Computer Science. Springer-Verlag, 1990.

[14] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, MA, 1988.

[15] C. A. R. Hoare. A model of Communicating Sequential Processes. Technical Report PRG-22, Oxford University
Programming Research Group, England, 1981.

[16] G. J. Holzmann. Algorithms for automated protocol validation. AT&T Technical Journal, 69(1), Jan./Feb. 1990.

[17] G. J. Holzmann. Design and validation of protocols: a tutorial. Computer Networks and ISDN Systems, 25(9):981–
1017, 1993.

[18] G. J. Holzmann. Basic spin manual. Technical report, AT&T Bell Laboratories, Murray Hill, N.J., Mar. 1994.

[19] ISO. Information Processing Systems, Open Systems Interconnection, LOTOS—A Formal Description Technique

based on the temporal ordering of observational behavior, IS-8807, 1988.

[20] B. Jonsson. Modular verification of asynchronous networks. In Proceedings of 6th Annual Symposium on Principles

of Distributed Computing, Aug. 1987.

[21] K. G. Larsen. A context dependent bisimulation between processes. Theoretical Computer Science, 49:185–215, 1987.

[22] K. G. Larsen. Efficient local correctness checking. In Proceedings of 4th Workshop on Computer-Aided Verification,
pages 35–47, 1992.

[23] G. Leduc. On the Role of Implementation Relations in the Design of Distributed Systems using LOTOS. Thèse
d’agréation de l’enseignement supérieur, Faculté des sciences appliquées, Université de Liège, Belgium, June 1991.

[24] A. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceedings of 6th Annual

Symposium on Principles of Distributed Computing, Aug. 1987.

[25] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[26] F. Orava. Verifying safety and deadlock properties of networks of asynchronously communicating processes. In
Proceedings of 9th International Workshop on Protocol Specification, Testing, and Verification. IFIP, June 1989.

[27] F. Pachl. XMS remote communication protocols. Internal Report 2X830810JP/2, BNR, Montréal, 1983.

[28] D. M. R. Park. Concurrency and automata for infinite sequences. In Proceedings of 5th GI Conference, number 104
in Lecture Notes in Computer Science. Springer-Verlag, 1981.

[29] D. A. Peled. Combining partial order reductions with on-the-fly model checking. In Proceedings of 6th Workshop on

Computer-Aided Verification, June 1994.

[30] W. Stark. Proving entailment between conceptual state specifications. Theoretical Computer Science, 56(1):135–154,
1988.

[31] L. J. Stockmeyer and A. R. Meyer. World problems requiring exponential time. In Proceedings of 5th ACM Symposium

on Theory of Computing, pages 1–9, Austin, Texas, 1973.

[32] A. S. Tanenbaum. Computer Networks. Prentice Hall, Englewood Cliffs, N.J., 1981.

[33] K. Turner. A LOTOS-based development strategy. In Proceedings of 2nd International Conference on Formal

Description Techniques, pages 135–191, 1989.

[34] A. Valmari. A Stubborn Attack on State Explosion, pages 156–165. Number 531 in Lecture Notes in Computer
Science. Springer-Verlag, 1990.

[35] R. J. van Glabbeek. The linear time – branching time spectrum. In J. C. M. Baeten and J. W. Klop, editors,
CONCUR ’90 — Theories of Concurrency: Unification and Extension, number 458 in Lecture Notes in Computer
Science, pages 278–297. Springer-Verlag, 1990.

13

