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Abstract. The research presented in this paper is part of an ongoing 

investigation into how best to incorporate speech-based input within mobile 

data collection applications.  In our previous work [1], we evaluated the ability 

of a single speech recognition engine to support accurate, mobile, speech-based 

data input. Here, we build on our previous research to compare the achievable 

speaker-independent accuracy rates of a variety of speech recognition engines; 

we also consider the relative effectiveness of different speech recognition 

engine and microphone pairings in terms of their ability to support accurate text 

entry under realistic mobile conditions of use.  Our intent is to provide some 

initial empirical data derived from mobile, user-based evaluations to support 

technological decisions faced by developers of mobile applications that would 

benefit from, or require, speech-based data entry facilities. 

Keywords: mobile speech input, microphone efficacy, speech recognition 

accuracy/efficacy, mobile technology, mobile evaluation. 

1 Introduction 

Although speech recognition has been nominated as a key potential interaction 

technique for use with mobile technologies [2-4], its widespread commercialization 

and adoption remains limited on account of unacceptable error rates [5].  It is 

estimated that accuracy rates can drop by as much as 20%-50% when speech is used 

in natural environments [3-5].  Achievable accuracy is a strong determinant of users’ 

perception of speech recognition acceptability [2]; as such, it is important that we 

address the challenge of developing effective speech-based solutions for use in mobile 

settings. 

A number of measures can be taken to increase recognition accuracy [2, 5-9].  The 

research presented in this paper focuses on two such measures: (1) empirically-based, 

context-specific selection of speech recognition engines (and microphones) to 

maximize potential accuracy within a given domain of use; and (2) identification of 

the effect of background noise and mobility on speech recognition accuracy.  

Specifically, we report on a comparison of the capacity of 5 different speech 

recognition engines to support accurate, mobile, speech-based text entry. The work 

discussed in this paper represents a continuation of our ongoing investigation in this 



area [1].  Our previous work reported on an evaluation of the ability of a single speech 

recognition engine (SRE) to support accurate, mobile, speech-based data input; here, 

we build on our previous research to compare the achievable accuracy rates of a 

variety of SREs.  In the following sections, we briefly describe the background to our 

work (Section 2) and the evaluation design and process (Section 3); we would refer 

interested readers to [1] for greater detail in both regards.  In Section 4 we present, in 

detail, our results. In Section 5 we draw some initial conclusions from our 

observations. 

2 Related Work 

Speech recognition accuracy is typically degraded in noisy, mobile contexts because 

not only does background noise contaminate the speech signal received by the SRE 

but, additionally, people modify their speech under noisy conditions [5].  Specifically, 

in noisy environments, speakers exhibit a reflexive response known as the Lombard 

Effect [5, 10, 11] which causes them to modify the volume at which they speak and to 

hyperarticulate words.  Since research suggests it is not possible to eliminate or 

selectively suppress Lombard speech, the onus is placed on SREs to be able to cope 

with variations in speech signals caused by mobile speech input under noisy and 

changing acoustic conditions [5, 10]. 

Under mobile conditions, background noise can confuse, contaminate, or even 

drown out a speech signal; as a result, SRE accuracy has been shown to steeply 

decline in even moderate noise [4, 5].  Even in stationary conditions, microphone 

type, placement, and quality affects user performance [12]; when the complexities of 

non-static usage environments are introduced, the influence of the microphone 

becomes even more pronounced [1, 5, 7-9].  Our previous research focused on 

assessing the impact of mobility and background noise on the efficacy of three 

different microphones [1] for supporting mobile speech-based data entry.  Although 

previous research (see [1] for a detailed review) had been conducted into (a) the 

impact of mobility and background noise on speech recognition, and (b) the influence 

of microphone type on speech recognition, our prior work brought together, into one 

novel evaluation, many of the constituent – and previously unconnected – elements of 

previous studies to empirically compare the ability of three different microphones 

(appropriate in terms of form and function) to support accurate speech-based input 

under realistic, mobile, noisy conditions.  In the research we present here, we extend 

the reach of our previous study to apply the input signals we recorded in our initial 

study to a series of SREs in order to compare their efficacy to support accurate 

speech-based input under realistic, mobile, noisy conditions. 

3 Evaluation Design and Process 

There are two components to describing our evaluation design and process: (a) the 

set-up from our previous study; and (b) the manner in which we extended the 

previous study to complete the research we report on here.  In the following sections, 



we provide a brief overview of the former (for extensive detail, see [1]) and then 

describe how we used the data collected in (a) to extend our analysis to compare 

multiple SREs. 

3.1 Previous Experimental Design 

Our previous study compared three commercially available and commonly used  

microphones – the NextLink Invisio Mobile (bone conduction) microphone [13], 

Shure’s QuietSpot QSHI3 [14], and the Plantronics DSP-500 microphone [15] – in 

terms of their efficacy to facilitate mobile speech input.  We developed a very simple 

data input application which ran on a tablet PC running Windows XP and used IBM’s 

ViaVoice [16] speaker-independent SRE with a push-to-talk strategy.  For each data 

entry item, participants were shown precisely what to enter, and given a maximum of 

three attempts in which to achieve an accurate entry. Participants were given training 

on how to use the system (in conditions commensurate with the actual experimental 

set-up) prior to commencing the study tasks. 

We adopted a counterbalanced, between-groups design whereby participants were 

allocated to groups partitioned according to the three microphones; in 

counterbalanced order, each participant was required to complete a series of 10 data 

entry items under quiet environmental conditions, and 10 data entry items when 

surrounded by recorded city street sounds played at 70dB using a 7.1 surround sound 

system in our lab.  While completing their data entry tasks, participants were required 

to be mobile using our ‘hazard avoidance’ or ‘dynamic path system’ – see [1] for 

more details. 

Twenty four people participated in our study, 8 per microphone group.  Since 

studies have shown that speech recognition rates are typically much lower for 

accented speakers [5], we restricted our recruitment to participants who were native 

English speakers with a Canadian accent; we recruited equal numbers of male and 

female participants, but restricted our age range to 18 – 35 year olds (young adults) to 

limit speaker variation that comes with age.  In placing these restrictions on our 

participant recruitment, we recognize that we limited our ability to generalize from 

our results but we wanted to reduce the extraneous factors that may have impacted our 

results such that we were able to focus on the effects of the microphones rather than 

variances between the speakers; additionally, SREs available in North America are 

typically optimized to a ‘generic’ North American accent so by placing these 

restrictions on the participant recruitment we effectively tested the speech recognition 

technology within its self-proclaimed bounds. 

Of the range of measures we recorded for analysis during our previous study, the 

data of interest to the study reported here is the series of speech signal (or voice) 

recordings upon which our SRE operated.  In essence, each of these recordings 

captures what participants said, together with the background noise picked up by their 

respective microphones.  In so doing, these recordings capture the presence of 

Lombard speech as well as the impact being mobile (i.e., walking) had on 

participants’ speech: that is, the recordings are representative of likely speech patterns 

in real world contexts where users are exposed to noisy conditions as well as required 



to be mobile while interacting with their mobile device.  The following section 

describes how we utilized these recordings in our current study. 

3.2 Current Study Design 

As already mentioned, the intent of our current study was to extend our analysis to 

compare the efficacy of a range of SREs to that of the one used in our previous study 

(i.e., IBM’s ViaVoice), as well as to determine if there was a single microphone-SRE 

pairing that proved to be most effective. Bearing in mind that we set up our previous 

experiment to reflect the real world context in which speech recognition may 

ultimately be used, and given that we took care to homogenize our participant group 

as far as possible with respect to accent and age, we feel that the results of our current 

investigation are valid as an initial indication of the potential benefits of one SRE 

over another for mobile interaction; that said, we suggest that the results of this study 

be considered as a baseline and acknowledge that the impact of speaker accent, 

especially, and age need to be investigated independently. 

We compared the speaker-independent efficacy of (1) the IBM ViaVoice SRE 

(from our previous study) to the efficacy of 4 mainstream SREs: (2) the speaker-

independent Sphinx 4 open source SRE (developed by CMU), set up with the default 

configuration and loaded with the specific grammars (as before) that were needed for 

the data entry application [17]; (3) Philips’ SRE [18] and (4) Microsoft’s SRE within 

Windows XP [19], both of which were set up with our required grammars; and (5) the 

Nuance Dragon Naturally Speaking SRE [20], which was essentially grammarless 

because it did not support grammar specification.  Engines 3, 4, and 5 all support 

speaker-dependence (i.e., can be trained for specific users) but we used each in a 

speaker-independent mode in order to assess the ‘walk-up-and-use’ capabilities of 

each; we loaded a fresh profile for each participant such that the engines did not learn 

over time across participants.   

We focused on first-attempt data input: that is, we filtered out, and only used, the 

recordings associated with participants’ first attempts (successful or not) at inputting 

each data item.  This decision not only allowed us to accommodate the fact that, for 

items correctly recognized first time by ViaVoice in our previous study, we only had 

one recording, but it also placed all our SREs on an equal footing. 

We passed, using an automated process, the first-attempt voice recordings through 

each of our 4 additional SREs to derive a Boolean measure of accuracy for each data 

entry attempt.  Our set of recordings included 160 files per microphone, 80 recorded 

under our quiet condition and 80 under our noisy condition.  On this basis, each SRE 

was subjected to a total of 480 recordings, allowing us to test each against the three 

microphones and the two background audio conditions. 

4 Results and Discussion 

Our primary measure of accuracy was calculated as a ratio of the total number of first-

attempt correct entries divided by the total number of tests (according to analytical 

breakdown).  A multiple factor ANOVA showed that SRE (F4,2370=27.03, p<0.001) 



and the combination of SRE and microphone (F8,2370=3.49, p=0.001) had a significant 

effect on accuracy.  Figure 1 shows the accuracy rate achieved according to SRE. 

Tukey HSD tests showed that: the accuracy achieved using IBM ViaVoice was 

significantly higher than for all of the other engines; that the speech recognition 

accuracy achieved using Philips’ SRE was significantly less than all of the other 

engines; and that the difference in accuracy achieved using the Sphinx, Microsoft, and 

Dragon engines was not statistically significant. 
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Fig. 1. Accuracy rate (accurate attempts/total attempts) according to speech recognition engine. 

As can be seen from Figure 1, the maximum accuracy rate achieved on first 

attempt was approximately 54% for the IBM ViaVoice engine. 

The results shown in Figure 1 are calculated irrespective of background noise.  We 

did not find the combination of SRE and noise level to significantly affect accuracy 

(F4,2370=0.42, p=0.796); furthermore, by analyzing the data across all background 

noise conditions, we obtain a picture of the likely average accuracy achievable by 

mobile or nomadic users who may typically move between noisy and quiet 

environments as they work.  

Figure 2 shows the accuracy rates achieved according to SRE+microphone pairing.  

Tukey HSD tests showed that, with the exception of the Philips’ SRE, when 

combined with the Invisio microphone, each SRE returned significantly lower 

accuracy rates than when combined with the other two microphones; there was no 

significant difference for these 4 SREs when combined with the QSHI3 and DSP-500 

microphones.  In the case of the Philips’ SRE, however, the Invisio+SRE combination 

only returned significantly lower accuracy rates than the DSP-500+SRE combination 

(p<0.001); the Philips’ SRE+QSHI3 and SRE+DSP-500 combinations did, however, 

return significantly different accuracy rates (p<0.001). 

Focusing on the Invisio microphone across all 5 SREs, the Invisio+IBM and 

Invisio+Philips combinations returned significantly different accuracy rates 

(p<0.001), the former demonstrating a higher accuracy rate; the same was true for the 

Invisio+IBM and Invisio+Dragon combinations (p=0.01), for the Invisio+Microsoft 

and Invisio+Philips combinations (p<0.001), and for the Invisio+Microsoft and 

Invisio+Dragon combinations (p=0.01). When combined with the Invisio 



microphone, there was no significant difference in the accuracy rates returned by the 

IBM, Sphinx, and Microsoft SREs. 
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Fig. 2. Accuracy rate according to speech recognition engine and microphone. 

The QSHI3+Philips combination was significantly less accurate than all of the 

other SREs combined with the same microphone (p<0.001 in each case); additionally, 

the QSHI3+IBM combination was significantly more accurate than the 

QSHI3+Sphinx combination (p=0.016).  With these noted exceptions, there were no 

other significant differences for the QSHI3 microphone across the various SREs. 

When combined with the IBM SRE, the DSP-500 microphone was significantly 

more accurate than when combined with the Sphinx (p=0.04) and Philips (p<0.001) 

SREs.  There were no other significant comparisons across any of the other pairings 

for this particular microphone – most noticeably, unlike its performance with the 

other two microphones, the Philips SRE was on a par with the majority of the other 

SREs when combined with the DSP-500 microphone. 

With the exception of the QSHI3+IBM, DSP-500+Microsoft, and DSP-

500+Dragon combinations, the combination of DSP-500 microphone and IBM 

ViaVoice SRE returns the highest overall accuracy rates (approximately 71%).  These 

results demonstrate the impact of pairing microphones with SREs to achieve the best 

possible potential for accurate speech recognition: for example, where ViaVoice’s 

dominance is significantly reduced when paired with the Invisio microphone, the 

Philips’ generally poor recognition is greatly boosted when paired with the DSP-500 

microphone. 

Of the total 952 accurately recognized data inputs, 41 were correctly recognized 

despite user error during input. We classify user error as instances where: users 

pressed the push-to-talk button but didn’t speak (this was registered as an input 

attempt by the system); users pressed the push-to-talk button after they had started to 

speak or released it before they finished speaking (essentially clipping their recorded 

speech); or users simply said the wrong thing.  Figure 3 shows the extent to which 



each microphone+SRE coped with such errors to return a correct interpretation of the 

users’ input. 
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Fig. 3. Breakdown of correct recognition despite user input error. 

Although we attribute no statistical significance to the tallies shown in Figure 3, it 

is interesting to note that certain microphone+SRE combinations appear better able to 

accommodate user input error.  In particular, the fact that 12% of the correctly 

recognized flawed inputs are attributable to the Philips SRE+DSP-500 combination 

reflects, and perhaps accounts for, the significantly better accuracy rate achieved by 

this combination compared to the SRE’s pairing with the other microphones (see 

Figure 2).  Furthermore, although the IBM ViaVoice+DSP-500 combination has thus 

far excelled compared to the other SRE+microphone combinations, its dominance is 

much less when required to cope with flawed user inputs: in fact, the Sphinx+QSHI3 

dominates in this capacity. 

5 Conclusions & Preliminary Guidelines 

Although it is premature to suggest concrete guidelines on the basis of our initial 

research, we close this paper with our conclusions and some preliminary guidance 

(which we call suggestions to reflect their current status) for designers. 

Suggestion 1: Carefully consider the selection of microphone+SRE pairing, 
preferably by conducting empirical comparisons relative to intended context of use.  
Our results clearly indicate the importance of carefully considering SRE+microphone 

pairings relative to a specific context of use when developing speech-based mobile 

applications.  By simply changing the microphone with which a given SRE is paired, 

it is possible to dramatically enhance the achievable accuracy rates – for example, 



ViaVoice paired with the Invisio microphone returned a deplorable accuracy rate of 

29% but this more than doubled to 71% when the same SRE was paired with the 

DSP-500 microphone.  We have only compared microphone+SRE pairings relative to 

one context of use so are not in a position to make generalized recommendations 

concerning microphone+SRE pairings relative to various contexts of use at this time; 

furthermore, we would strongly encourage designers to conduct contextually-relevant, 

empirical analysis relative to the specific context for which they are designing a 

mobile application in order to elicit the most reliable data and thereby make the most 

informed decision.   

Suggestion 2: Determine the likely extent to which target users will make 
mechanical or verbal errors during input (i.e., to what extent their physical 
environment and/or multitasking behavior may impact their capacity to devote 
attentional resources to speech-based input) and be prepared to trade off general 
accuracy against error tolerance.  We have demonstrated the importance of 

considering, for any given application and domain, the extent to which users are likely 

to make mechanical or verbal errors during speech-based data entry.  Our results 

suggest that designers may, depending on the context for which they are designing, 

have to make trade offs between SRE-microphone pairings that return high raw 

accuracy and pairings that have an increased ability to cope with flawed input. 

Suggestion 3: Carefully consider the requirement for accurate first time data entry 
versus scope to tolerate repeated entries in order to enter data correctly.  Our study 

only looked at first attempt accuracy; while this is often essential, we recognize that 

under situations where multiple attempts to achieve an accurate input would be 

tolerable, the breakdown of ultimate accuracy rates across the SREs we tested might 

differ. 

Suggestion 4: Carefully consider the applicability of different microphone designs 
relative to the intended context of use.  We recommend that designers carefully 

consider not only the accuracy that can be achieved using a given microphone, but 

also its appropriateness to the context in which it is to be used – e.g., if a user has to 

wear a safety helmet or to use specific equipment such as a stethoscope, to what 

extent can a given headphone mounted microphone be accommodated or does and 

alternative form factor need to be sought?  Accuracy alone is insufficient to make the 

microphone usable. 

Finally, as previously discussed, our study is not without its limitations; as such, 

we present our results within the scope of our noted caveats.  We were testing 

speaker-independent operation of the SREs (since our interest was in their ‘walk-up-

and-usability’); we recognize that if the speaker-dependent SREs (Philips, Microsoft, 

and Dragon) were to be trained, their accuracy rates would likely dramatically 

improve.  That being said, our results not only demonstrate the difference in the 

capabilities of these systems (which are normally trained prior to use) to cope with 

speaker-independent, walk-up-and-use situations, but we also present the results as 

empirical data to assist a designer when selecting an SRE and microphone for use in a 

speaker-independent capacity.  At the very least, we have empirically highlighted the 

complexity of decisions surrounding microphones and SREs for mobile applications; 

we have provided data that was not previously available to designers and, as such, 

hope that it not only proves useful to designers of speech-based mobile data input, but 



also highlights those areas that require detailed consideration when making speech 

technology decisions during the design process.  
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