NRC Publications Archive Archives des publications du CNRC

Mechanical effect of friction and stretching on endothelium denudation El-Ayoubi, Rouwayda; Delorme, Sébastien; DiRaddo, Robert

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=2087fb6a-1b98-4cc3-8fa5-56baa3337af1 https://publications-cnrc.canada.ca/fra/voir/objet/?id=2087fb6a-1b98-4cc3-8fa5-56baa3337af1

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Mechanical effect of friction and stretching on endothelium denudation

Rouwayda El-Ayoubi, Sébastien Delorme, Robert DiRaddo Industrial Materials Institute, 75 de Mortagne, Boucherville, QC, Canada, J4B 6Y4

Background

Denudation of artery endothelium during angioplasty is a predictor of restenosis (Kuntz et al, 1992), the main complication of angioplasty. This study aims at quantifying the relationship between endothelial denudation and mechanical causes of denudation, such as friction between the balloon and the artery and stretching of the arterial walls.

Methods

Fresh porcine aortas were cut into 74 axially and 74 circumferentially oriented samples (60mmx15mm). Each sample was mounted onto a friction-testing apparatus, with the luminal side facing a sheet of polyethylene-teraphtalate, and pulled over a distance of 10, 30 and 50 mm, while subjected to a normal force of 0.5kg, 2 kg and 3 kg, with and without a 50% stretch factor in the direction of friction. After friction damage was applied, the luminal side of each segment was treated with 1 mg/ml collagenase, prepared in culture medium (DMEM), for 40 minutes and the remaining endothelial cells were removed by gently scraping the intimal surface. After centrifugation and suspension in culture medium (Keravis et al., 2000), the isolated endothelial cells were counted by hematocymeter. Endothelial cells were also counted on a control group of 19 aorta samples that were not subjected to friction damage.

Results

In axial samples, the stretch factor had no effect on endothelium denudation. A significant loss of endothelial cells was observed in samples subjected to 2kg and 3 kg over 50 mm, and with 3kg over 30 mm. In circumferential samples: compared to non stretched samples, preliminary data shows an increase loss of endothelial cells with a 50% stretch factor on all samples pulled over a distance of 50 mm.

Conclusions

These results suggest that endothelium denudation increases both with friction force and friction distance. Moreover, stretching in the circumferential direction increases endothelial denudation further. These results will help optimize balloon deployment conditions to reduce the occurrence of restenosis.

References

Kunz RE, et al. *Circulation* 1992; 86(6):1827-35. Keravis T, et al. *J Vasc Res* 2000; 37(4):235-49