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Gerhard.Roth@nrc-cnrc.gc.ca, William.Scott@nrc-cnrc.gc.ca

Abstract— UAVs are becoming ubiquitous and will be widely
deployed in many applications. The result will be a large amount
of video data that needs to be organized and searched. A critical
image processing application for UAVs will be a Google-like real-
time search engine for large image and video databases. We have
developed a novel indexing and search method that can be applied
to large video databases. This technology enables a user to search
for strongly similar images in a large image database created by
intelligently subsampling the video sequences. The same image
search technology can also be used for the automatic mosaicking
of a set of unordered images to create a large panorama. A
number of experiments with video taken from UAVs demonstrate
the technology.

I. INTRODUCTION

Applications for unmanned autonomous flying vehicles

(UAVs) are rapidly increasing in number in both the military

and civilian fields. A common thread among them is the fact

that they all have some onboard image sensors which are

essential to vehicle functionality. There are two modes of

operation for these sensors: on-line for the real-time control

of the vehicle, and off-line for the purpose of collecting

surveillance and reconnaissance information. Clearly UAVs

will collect a vast amount of video data that will be stored

for further off-line processing. Therefore, a critical task will

be the ability to organize and search this video data in a

meaningful fashion. This problem will exist regardless of the

particular details of the UAV technology that is used to collect

the image data. The obvious solution of indexing UAV images

via navigation data will not be enough. One reason is that

the viewpoint of the onboard camera may be controllable so

different views are recorded even from the same GPS location.

Even in the best of cases a GPS location, when it is available,

is only approximate. Therefore in this paper, we assume there

is no GPS information associated with the archived video data.

UAVs will scan an environment in a repetitive fashion and

these surveillance videos will accumulate over months and

years. At a future date an operator will want to find certain

images or parts of images that are approximate matches. This

means there is a requirement for an image search application

that can match different views of an object that are not

identical, but instead, are what we call strongly similar. Two

images are strongly similar if they are different views of the

same object taken from approximately the same viewpoint,

but under different lighting, scale and occlusion conditions.

For example, in Figures 1 and 2 we see scenes under different

scale and occlusion conditions. If the leftmost picture in each

of these four images was selected, then the other three should

be returned by a matching process as being the same picture.

They are, according to our definition, strongly similar.

If strongly similar images taken from a UAV can be matched

by an operator, then it will be possible to identify how the

environment has changed or evolved over time.

Along with matching strongly similar images, such a search

process must also be able to match subimages, and not just

entire images. For example, an operator may manually select

as a search region part of an image instead of selecting the

entire image. Then the goal of the search algorithm is to find

all image fragments in the entire image database that match

this subimage in a strongly similar fashion. So the search

process must be able to deal with strongly similar, but not

identical images, and also be able to match image subparts,

and not just entire images. An example of this search process

in operation is shown in Figure 3

To achieve this goal requires the solution of two problems.

First, the video sequence taken from the UAV must be con-

verted into a sequence of significant key-frames, which are

individual images that compactly summarize the video. The

second is that these key frames, which could consist of tens of

thousands of images, must be searchable in the strongly similar

fashion described. To be able to search such a large number of

image frames, it will be necessary to create an inverse index

file in Google-like fashion. That is, a set of features must

be extracted from each image and there must be an index

structure mapping from these features to the images. This is

the classic Google-like search process, except that it is image

based. While such index based image based search methods

do exist, they currently can not match strongly similar images

nor can they handle subimage search. However, recently a new

generation of search algorithms based on local image features,

called interest points, have made good progress on these two

fronts. What is unique about our approach is that we have an

indexing and search method based on interest points that can

be applied to large image databases. The key to success is that

an index structure is created off-line which enables fast on-

line search for strongly similar image subregions in an image

database. Our approach is also scalable to very large image

databases, the type that will be produced by UAV collection.

The processing begins with an off-line phase consisting of

the following steps:

• Each video sequence is subsampled into significant still

images that are a compact representation of that video.

• Each of these images is processed to find features called

interest points along with their descriptor vector.



Fig. 1. Four views of a building at different scale.

Fig. 2. Four views of a poster with different levels of occlusion.

• An index file structure is created for the entire image

database from these interest points and their descriptor

vectors.

This off-line phase produces an index structure which can be

used to dramatically speed up the search process by efficiently

finding similar interest points across a large number of images.

In essence, it groups interest points that have similar descriptor

vectors together so that they can be searched efficiently. Our

indexing process is approximate in the sense that the resulting

search process only finds a subset of all the possible matches.

However, because there are normally far more interest points

obtained from these images than are necessary for reliable

matching, the fact that the indexing process produces only

approximate results is not a problem.

The on-line search proceeds in the following fashion:

• The user is presented all the images in the database and

selects one as the search image.

• The user then selects a subimage of this search image

(which many include the entire image) as the search

region.

• The search process uses the index file structure to find

all the images in the database which contain a subimage

that is strongly similar to this search region.

• These images are ranked from most to least similar and

are presented to the user in that order.

The rest of this paper will describe the technology used

to achieve this goal. In the Experiments Section a number

of different experiments on actual UAV datasets will be

described.

II. OFF-LINE PROCESSING PIPELINE

This section describes in more detail the steps in the off-line

processing pipeline.

A. Finding Significant Image Frames in Video

The first step in processing a set of UAV videos is video

summarization. Video is normally obtained at 15 to 30 frames

per second, making it impractical to create a database of

images using each video frame. It is therefore essential to

subsample the video into significant frames representative of

the video sequence. UAV video will have different rates of

change of the camera point of view at different parts of the

video. Therefore, a good strategy is to sub-sample the video

so that the change in viewpoint between significant frames is

normalized to remove the effect of the different rates of UAV

motion.

The approach we have used for video summarization is

described in more detail in [1]. The program tracks local

features from frame to frame [2], [3]. As the camera viewpoint

changes between frames, some of the image features tracked in

the initial frame are lost or have moved more than a specified

distance in the image. When either condition occurs for a large

fraction of the initial features, the initial frame is saved as a

significant frame and the base frame for the tracker is reset

to the current frame. The effect is to subsample the video in

proportion to the speed of camera motion.

On the average, there are three hundred significant

frames extracted from a ten minute video sequence.

For example, the video named “pred1b” in

http://www.cs.cmu.edu/˜vsam/download.html is one of

the Predator sequences processed in Section IV. It is one

minute sequence of a Predator UAV following two vehicles

on a road. With a sampling rate of 30 hz, this one minute

video sequence has 1800 frames. Thirty significant frames

are extracted from this video, a reduction by a factor of 60.

Figure 4 shows the last five significant frames extracted from

this one minute Predator video. Actual reduction rates vary



(a) User selected search region in black (b) First best matching region in black

(c) Second best matching region in black (d) Third best matching region in black

Fig. 3. Subimage retrieval example. Top left, selected image subregion. Other quadrants - matching subregions.

with the type of motion, but our experiments typically show

a reduction factor of almost 60.

B. Searching Image Databases

Our goal is to be able to search a large collection of

significant images frames produced by the video summa-

rization process in an interactive fashion. Typically, the user

is presented with a database of images and selects one of

these images as the search image. A subimage or the entire

image can be selected. The search is performed on the entire

image database. Matching images are presented to the user

in order of the best to worst match (e.g. as shown in Figure

3). While the basic image search paradigm is clear, the most

important question is what features should be extracted from

each image in order to do the search. Most image search

systems in operation use global features for the search. By

global, we mean that a feature vector is computed using

all the image pixels. The most common global feature is a

histogram of the frequency of occurrence of different pixel

values [4]. Colour histogram search has had some success

in image search applications that use global image features

[5]. While histograms are invariant to changes in rotation,

they are not invariant to changes in illumination. The most

important limitation of systems based on global image features

is that they are not able to search for matching subimages, only

matching images.

We believe it is essential to be able to perform subimage

search. This is clearly a requirement in UAV applications.

Subimage search requires the use of local feature vectors

computed from different parts of an image. Currently, very few

image search systems are based on local image characteristics.

The next section describe a search technique using local image

features with which we have had some success.

III. INTEREST POINTS

When considering how to characterize images locally the

key insight is to focus on the parts of the image that are

“interesting”. Consider a checkerboard as an example. In

this case, the corners of the checkerboard are clearly the

most interesting points. The regions that are purely black or



Fig. 4. Five significant frames from the predator video.

white are not unique, while the edges of the checkerboard

are more unique but not as unique as the corners. Thus, if

we could find corners in an image, their uniqueness would

make them a good set of local features. Mathematically, what

makes a corner interesting is the fact that the pixel location

has two strong image gradients in orthogonal directions. This

definition is imbedded in the classical Harris Corner operator

[6]. Applying this operator to a typical image will generally

produce hundreds to thousands of pixel locations that are

corners.

However, along with its pixel location, it is also necessary

to produce a description of each corner point that is useful

for matching. This description is a high dimensional vector

which is a function of the area surrounding the corner point.

There are a number of ways to define this descriptor vector, the

most obvious one being the local pixels surrounding the corner

point. However, we desire a descriptor invariant to changes

in lighting, scale, orientation and illumination and to partial

occlusion. Finding an interest point operator and a descriptor

which is invariant to all these changes is difficult. Dealing with

changes in scale is especially difficult, since it requires that

some estimate be made of the natural scale of that interest

point. First generation interest point operators such as the

Harris corner operator are not invariant to scale changes. A

second generation of interest point operators and associated

descriptors have recently been developed which are to some

degree invariant to these kinds of changes. The most successful

of these are the SIFT operator and a variant called PCA-SIFT

interest points.

A. SIFT and PCA-SIFT Interest Points

Second generation interest point operators return a sub-pixel

location of each point plus an orientation and scale [7], [8].

The local image patch at the given scale and orientation is then

normalized and a descriptor is computed. Ideally, descriptor

vectors should characterize the interest point region uniquely

so that similar interest points have a small Euclidian distance

between their descriptor vectors.

Currently, the best known and most successful second

generation interest point detector is the SIFT operator [8]. It

uses a Difference of Gaussians (DOG) operation to isolate the

location, scale and orientation of each interest point. Using the

dominant orientation of each interest point, a descriptor vector

is computed from the gradients of the surrounding image patch

at the computed scale and orientation. A normalized histogram

of these image gradients is computed and a 128 element vector

of gradient orientations is used as the descriptor vector for the

interest point. While the SIFT operator works well, the high

dimensionality of the descriptor vector makes it difficult to

create an efficient indexing scheme for image matching.

A recent attempt to reduce the dimensionality of the SIFT

descriptor vector is the PCA-SIFT interest point [9]. This

method uses the same DOG operator to find the interest

point location, orientation and scale, but computes a different

descriptor from the local image patch surrounding the interest

point. Instead of a 128 dimensional histogram of gradient

orientations for the SIFT operator, the PCA-SIFT algorithm

performs a Principal Component Analysis (PCA) on the gra-

dients of the image patch for a large number of interest points.

The PCA analysis produces 20 basis vectors that characterize

the typical normalized image gradient patch. For each interest

point, a dot product of the normalized image gradient patch

with the pre-learned 20 PCA basis vectors is computed and

stored. The result is a signed 20 element integer vector which

is the descriptor vector for that interest point.

There are three advantages to using PCA-SIFT as compared

to the standard SIFT. 1 First, the dimension of the descriptor is

reduced from 128 to 20 resulting in much faster matching. Sec-

ond, the PCA representation is hierarchic, while the original

SIFT representation of gradient orientations is not. This means

that each of these descriptor vector elements are naturally

ordered in terms of their importance. Therefore, to compare

two PCA-SIFT descriptors, it is often sufficient to compare

only the first 10 to 15 most significant vector elements. This

dimension reduction can further speed up the search process

at the cost of some loss in search accuracy. Thirdly, when

comparing two PCA-SIFT descriptors, it is possible to use a

fixed threshold to decide whether these two descriptor vectors

are close enough to be considered a match. The usual method

of comparing SIFT descriptor vectors is by the ratio of the first

to second best match distance relative to a threshold. Creating

an index structure for a fixed threshold match comparison is

easier than for a dynamic threshold. For these reasons we use

the PCA-SIFT interest point operator in our strong similarity

image retrieval system.

1A systematic comparison of different types of descriptor vectors is found
in [7].



B. Exhaustive Search Using Interest Points

A subimage retrieval system can be built using PCA-SIFT

interest points and their associated descriptor vectors. The

first step is to compute the interest points and descriptors

for a database of images off-line and to store them in a

file associated with each image. The user manually selects

a subimage to search for and the on-line system initiates a

search for similar subimages in the image database.

The basic on-line search algorithm is as follows.

1) Retrieve the interest points and their descriptors in the

manually selected search image sub-region.

2) For each interest point descriptor in the selected image

subregion, find the closest matching descriptor in each

database image.

3) Apply geometric constraints to remove inconsistent

matches (Optional).

4) Rank the searched images by the number of matching

interest points in the image.

5) Present the images to the user in ranked order, from

most to least similar.

However, there are thousands of interest points and de-

scriptor vectors associated with each image. Consequently,

exhaustive search is impractical for databases of more than

a few hundred images. The search process requires greater

efficiency. Clearly, two descriptor vectors that are strongly

dissimilar need not be compared. If similar descriptor vectors

could be grouped together, it would be possible to limit the

search to only those descriptor vectors that have a chance of

being a good match. To achieve this goal requires the creation

of a suitable index system for these descriptors. We describe

such an approach in the next section.

C. The MSB Index System

The key to our indexing system is a hashing method for

finding similar local descriptors in large image databases.

The descriptor associated with each PCA-SIFT interest point

is a 20 dimensional signed integer vector [9]. Our hash

function is simply the concatenation of the most significant

sign bits (MSBs) of this vector. We use this hash function

to group descriptor vectors having the same MSBs together.

Limiting the search process in this way reduces the number

of matching feature points. However, there are many more

matching interest points found by exhaustive search than are

necessary, so the order of the retrieved images is usually not

affected when using the MSB hash function. The redundancy

in matching interest points makes it possible to use this simple

MSB hash function to reduce the search time and still achieve

excellent retrieval results.

Our test system uses four different index files; grouping

descriptors for 8, 12, 16 and 20 significant bits. The 20

bit descriptor vector produced by the PCA-SIFT process is

hierarchical allowing the indexing process to work at different

levels of granularity. The smaller the number of MSBs that

must match, the better the retrieval performance but the

smaller the speedup. This index structure has three important

advantages:

1) Creating the index file is easy for large image databases.

2) Index files for very large image datasets can be created

by merging the index files of a number of smaller image

databases.

3) Search times can be reduced up to three orders of

magnitude when searching very large image databases.

The merging process is efficient, being linear in both space

and time. The most similar research to ours is [10], which

describes a hash function for the same PCA-SIFT feature

detectors. However, unlike our MSB hash function, Ke’s hash

function is not incremental so it is not possible to merge index

files created from Ke’s hash function in a simple fashion.

D. Index File Creation

An index file is created by the following process. Compute

all the PCA-SIFT interest points and their associated descrip-

tors for a given image database. Next, group descriptors with

the same MSB together in the file sorted by MSB order. Details

of this process are described in [11].

1) Index File Modification: One advantage of this indexing

scheme is that it is trivial to modify the index file structure

when changes are made. If new images are to be added or

deleted to the image database then this requires only a single

pass through the MSB index file. Another common situation

in image search applications is when the goal is to search the

union of a set of previously searched image databases. In this

case the individual image databases already have associated

MSB index files. Creating one large MSB index file for

their union requires only a simple merge process of these

MSB index files. The ability to easily modify the MSB index

files when images (and their descriptor vectors) are added or

removed from the database is an important advantage of our

approach.

IV. EXPERIMENTS IN STRONGLY IMAGE SIMILAR

RETRIEVAL

The experiments are performed on four UAV datasets. In

each case only one search example is chosen, more systematic

experiments are described in [11]. Figures 5, 6, 7,and 8 show

the search region and the best three results obtained in four

different search modes: exhaustive search, and indexed search

with 8, 12, 16 and 20 MSBs. The rows in each Figure are the

type of search (exhaustive, 8, 12, 16 or 20 MSBs indexed).

The first column in each figure consists of the manually

selected search region, which is the same in all four cases.

The remaining columns show the best three matches returned

by this type of search. Table I also shows the execution times

for the different databases and search modes, along with the

improvement ratio relative to exhaustive search. Consider the

case where number of MSBs in the indexed search increases

as we move from row two to five in each figure. The table

shows that in this case, the execution time decreases while

the figures show that search performance decreases. The loss

in performance is clear; the first row has the three closest

matching images returned by exhaustive search and by com-

parison in the remaining rows the indexed search process does



Database Image Size Number Images Exhaustive 8 MSB’s Ratio 12 MSB’s Ratio 16 MSB’s Ratio 20 MSB’s Ratio

Predator UAV 320x240 217 0.33 0.08 4.1 0.04 8.2 0.04 8.2 0.04 8.2

Insitu UAV 320x240 344 0.22 0.04 5.5 0.03 7.3 0.03 7.3 0.03 7.3

Georgia Tech 352x240 1591 2.55 0.36 7.1 0.141 18.0 0.061 41.8 0.06 42.5

California Coast 720x469 1500 17.1 2.25 7.6 0.44 38.9 0.22 77.7 0.16 106.9

TABLE I

SEARCH TIMES IN SECONDS AND THE TIME IMPROVEMENT RATIO RELATIVE TO EXHAUSTIVE SEARCH.

not always return the same three matching images. Increasing

the number of MSBs in the index file is a trade-off between

speed and performance; the search is faster but the retrieval

performance deteriorates.

A. Predator UAV Videos

The web site http://www.cs.cmu.edu/˜vsam/download.html

has a set of videos taken from a Predator UAV consisting of

five minutes of six different scenes. This has been summarized

by 217 significant images. Results from a representative search

are shown in Figure 5.

B. Insitu UAV Videos

The Insitu Group has a UAV described at

http://www.insitugroup.com from which we have processed

a video sequence. The video is approximately eight minutes

and there is considerable camera motion. This has been

summarized into 344 images and the results are shown in

Figure 6. Notice that the search region in this example is

very small, with only a few interest points, but the results are

still good.

C. Georgia Tech UAV Videos

Georiga Tech has a UAV from which we have

processed the two video files (obgtar2003attempt2 5x.avi,

and obgtar2003attempt3 5x.avi from web site

(http://controls.ae.gatech.edu/uavrf/movies) seven minutes

long. The video summarization process produces 1591

significant images, which is large because these videos are

already subsampled. The results are shown in Figure 7.

D. California Coast Aerial Images

The last dataset is different in that it consists not of a UAV

video but a set of indexed aerial images of the California

coast (http://www.californiacoastline.org). These images are

referenced via GPS and are sequential in the order they were

taken along the coast. We have downloaded 1500 such images

and the results are shown in Figure 8.

V. CONCLUSION

This paper has described an indexing structure for a general

image search system for UAV video. The research platform

is operational and is currently undergoing systematic testing.

The creation of panoramas from a set of overlapping images is

also an important UAV application, and is called mosaicking

[12]. The same image search technology is being used for the

automatic mosaicking of a set of unordered images to create

a large panorama.
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(a) Exhaustive search (b) First retrieval (c) Second retrieval (d) Third retrieval

(e) 8 MSBs search (f) First with 8 MSBs (g) Second with 8 MSBs (h) Third with 8 MSBs

(i) 12 MSBs search (j) First with 12 MSBs (k) Second with 12 MSBs (l) Third with 12 MSBs

(m) 16 MSBs search (n) First with 16 MSBs (o) Second with 16 MSBs (p) Third with 16 MSBs

(q) 20 MSBs search (r) First with 20 MSBs (s) Second with 20 MSBs (t) Third with 20 MSBs

Fig. 5. Predator search results: exhaustive (a-d), indexed search with 8 (e-h), 12 (i-l), 16 (m-p) and 20 (q-t) signficant bits.



(a) Exhaustive search (b) First retrieval (c) Second retrieval (d) Third retrieval

(e) 8 MSBs search (f) First with 8 MSBs (g) Second with 8 MSBs (h) Third with 8 MSBs

(i) 12 MSBs search (j) First with 12 MSBs (k) Second with 12 MSBs (l) Third with 12 MSBs

(m) 16 MSBs search (n) First with 16 MSBs (o) Second with 16 MSBs (p) Third with 16 MSBs

(q) 20 MSBs search (r) First with 20 MSBs (s) Second with 20 MSBs (t) Third with 20 MSBs

Fig. 6. Insitu search results: exhaustive (a-d), indexed search with 8 (e-h), 12 (i-l), 16 (m-p) and 20 (q-t) signficant bits.



(a) Exhaustive search (b) First retrieval (c) Second retrieval (d) Third retrieval

(e) 8 MSBs search (f) First with 8 MSBs (g) Second with 8 MSBs (h) Third with 8 MSBs

(i) 12 MSBs search (j) First with 12 MSBs (k) Second with 12 MSBs (l) Third with 12 MSBs

(m) 16 MSBs search (n) First with 16 MSBs (o) Second with 16 MSBs (p) Third with 16 MSBs

(q) 20 MSBs search (r) First with 20 MSBs (s) Second with 20 MSBs (t) Third with 20 MSBs

Fig. 7. Georgia tech search results: exhaustive (a-d), indexed search with 8 (e-h), 12 (i-l), 16 (m-p) and 20 (q-t) signficant bits.



(a) Exhaustive search (b) First retrieval (c) Second retrieval (d) Third retrieval

(e) 8 MSBs search (f) First with 8 MSBs (g) Second with 8 MSBs (h) Third with 8 MSBs

(i) 12 MSBs search (j) First with 12 MSBs (k) Second with 12 MSBs (l) Third with 12 MSBs

(m) 16 MSBs search (n) First with 16 MSBs (o) Second with 16 MSBs (p) Third with 16 MSBs

(q) 20 MSBs search (r) First with 20 MSBs (s) Second with 20 MSBs (t) Third with 20 MSBs

Fig. 8. California coast search results: exhaustive (a-d), indexed search with 8 (e-h), 12 (i-l), 16 (m-p) and 20 (q-t) significant bits.


