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Appendix B  
An Economic Analysis of Pair 

Programming 
by Hakan Erdogmus and Laurie Williams 

 
In this appendix, we present a detailed economic analysis of pair programming based on the empirical 
study conducted at the University of Utah, as discussed in Chapter 4.  (You should probably read Chapter 
4 before reading this because we won’t go back over the details of the experiment.)  In Chapter 4, we 
indicated that pairs produce higher quality code but that it might take 15% longer to produce this higher 
quality code.  Once code is written, it then goes on to testing and ultimately to the customer.  When you 
consider the savings of putting higher quality code into test and into the hands of the customer, our 
economic analysis shows that this initial 15% cost is more than made up for.  We write this appendix for 
the reader who would like to know more about how we can claim the overall lifecycle affordability of pair 
programming.   

Introduction  

The economic feasibility of pair programming is a key issue. Many instinctively reject pair programming 
because they think that code development costs will double.  If it is more expensive, managers simply will 
not permit it.  Naturally, the goal of a software firm is to be as profitable as possible while providing their 
customers with the best, high-quality products quickly and cheaply.   Organizations decide whether to 
adopt process improvements based on the business value of their outcome.   
 
First, we compute and analyze a basic comparison of the processes.  This basic comparison indicates that 
pairs perform better considering efficiency and overall productivity. We further this basic comparison by 
incorporating additional factors into a more complex Net Present Value (NPV) analysis.  This economic 
comparison indicates that pair programming should be considered as an economical alternative over solo 
programming. NPV considers the time-value of money: the premise that a dollar today is worth more than 
a dollar in the future.  Economic models based on NPV have previously been suggested to evaluate the 
return on software quality and infrastructure initiative (Boehm 1981, Erdogmus 1999, Erdogmus and 
Vendergraaf 1999, Favaro et al. 1998, Levy 1987).             

Factors of the Basic Comparison  Model 

Sound research design guides us to have only one experimental variable, the variable under study.  
Programmers create software using a variety of software development practices.  We ensured all 
programmers in the study used all the same practices (for design, testing, etc.) except for the experimental 
variable, the work unit:  solo programmer versus pair of programmers working in tandem.  In our analysis, 
we refer to the work unit as: 
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• N: size of the work unit (persons). The number of developers in a work unit. N equals 1 for a 
solo programmer (hereby, a soloist), and 2 for a pair of programmers (hereby, a pair).  

 
The values of the several model variables we use are determined based on past research studies and 
statistics reported in the literature. The chosen values are primarily for illustration purposes. The actual 
values could be different, and they would most likely be both project- and skill-dependent. However, we 
believe the general conclusions we make are still sound with reasonable variability of these values.      
 

• π. new-code productivity (LOC/person-hour). The average per-person hourly output (LOC) of 
new code for the work unit.   
 
According to a study by Hayes and Over (Hayes and Over 1997), the average productivity 
rate of 196 developers who took PSP training was 25 LOC/hour. This figure will be the 

chosen value of π for N = 1 (soloist).  
 

Anectodal evidence (Wiki 1999, Auer and Miller 2001) suggests that pairing does not take 
any additional time over solo programming.  However, the University of Utah experiment 
indicated that pairs might take 15% more time than solo programmers.   In our analysis, we 
are conservative and assume that the observed 15% difference is real (despite the fact that, 
statistically speaking, this difference was insignificant). With this assumption, in a single 
person-hour, each developer of a pair produces an average of 25/(1.15) = 22 LOC.  Thus, for 

N = 1 we use π = 25 LOC/person-hour, and for N = 2,  π is taken to be a conservative 22 
LOC/person-hour.   

 

• β. defect rate (defects/LOC). The average number of defects per unit of output (LOC) 
associated with the work unit.  
 
According to Jones (Jones 1997), code produced in the US has an average of 39 raw defects 
per KLOC. This statistic is based on data collected from such companies as AT&T, Hewlett 
Packard, IBM, Microsoft, Motorola, and Raytheon, with formal defect tracking and 
measurement capabilities. According to the same reference, on average, 85% of all raw 
defects are removed via the development process, and 15% escape to the client.   

 
Together the two pieces of statistics suggest an average defect rate of (39)(0.15) = 6 
defects/KLOC. This figure represents defects that escape to the customer. The number is 
consistent, though on the low side, with data from the Pentagon and the Software 
Engineering Institute, which indicate that typical software applications contain 5-15 defects 
per KLOC (Gross et al. 1999). We adopt the average 6 defects/KLOC (or .006 defects/LOC) 

as the value of β for N = 1 (soloist).   

 
As was discussed in Chapter 4, the code written by the pairs in the experiment passed an 
average of 90% of the specified acceptance tests compared to code written by soloists, 
which passed on average only 75% of the same test suite. This result suggests that pairs 
have only 40% of the defects that solo programmers have after acceptance tests.  If we 
assume that this ratio is retained in defects that escape to the customer, we can adopt as the 

value of β for N = 2 (pair) is (6)(0.4) = 2.4 defects/KLOC.  

 

• ρ. rework speed (defects/person-hour). The speed at which defects are fixed by the work unit 
following the deployment of a piece of code.  
 
A study of a set of industrial software projects from a large telecommunications company 
(Russel 1991) showed that each defect found by a customer required an average of 4.5 
person-days, or 33 person-hours of subsequent maintenance effort or rework (based on a 
7.5-hour workday).  This statistic is consistent with data reported by Humphrey (Humphrey 
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1995). Based on this observation, the rework speed ρ for N =1 (soloist) is taken to be 1/33 = 
0.03 defects/person-hour.  

 
No data is available regarding the effect of pair development on rework activities.   We will 
assume pairs will perform rework with the same 15% cost relative to soloists as was found in 

the experiment. Under this assumption, the estimated rework speed ρ for N = 2 will be 
0.03/1.15 = 0.026 defects/person-hour.  

The Basic Comparison Model 

In the basic comparison model, we compare three metrics, ε (efficiency), π (new-code productivity), and π0 
(overall productivity).  

Efficiency 

 
Efficiency is defined as the percentage effort spent on developing new code relative to the total lifecycle 
effort (which includes the effort expended on rework).  
 

Given a productivity rate of π, the effort required in person-hours to deploy ω lines of code of output is 
given by: 
 

 := E
pre

ω
π

  
This quantity specifies the initial development (or pre-deployment) effort, and is followed by rework (or 
post-deployment) effort once the code has been delivered to the client.  
 
Rework effort, Epost, is the maintenance effort expended due to runaway defects after a piece of new code 
has been deployed.  
 

 := E
post

ω β
ρ  

 

Here ωβ is the number of defects and ρ is the speed of rework. Effort is always adjusted to the work unit 
by multiplying it by the work unit size N.  
 
Total effort, Etot, is the sum of the initial development and rework efforts: 

 

 := E
tot

ω ( ) + ρ β π
π ρ

 

 

Efficiency, ε, is then the ratio of the initial development effort Epre to the total effort Etot. It is given by: 
 

 = ε
ρ

 + ρ β π  
 

The percentage effort spent on rework then equals 1 –  ε, or:  
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β π
 + ρ β π  

Overall Productivity 

Overall productivity, π0, is the average hourly output of defect-free code per programmer hour (assuming 

that the code is defect-free after rework). It equals the total output ω in LOC divided by the total effort Etot 
in person-hours. This measure shows just how much the “realized productivity” can be dominated by the 
extensive cost of rework late in the lifecycle.  Expressed in terms of efficiency and new-code productivity, 
overall productivity is given by: 
  

:= π
0

π ε  

Results 

Table 1 compares a soloist to a pair with respect to the metrics efficiency, new-code productivity, and 
overall productivity.  In each row, the cell in bold typeface indicates the more favorable alternative with 
respect to the corresponding metric. Pairs fair considerably better in efficiency and overall productivity, 
indicating that initial investments in quality during pair programming pays for itself over the product 
lifecycle.  

Table 1.  Comparison of a soloist to a pair. 

   

 Soloist Pair 

Efficiency (ε) 
(decimal %) 

.17 .34 

New-code productivity (π) 
(LOC/person-hour)  

25 22 

Overall productivity (π0) 
(LOC/person-hour)  

4.3 7.4 

 

 Factors of the Economic Comparison Model 

The second comparison model is more complex than the basic comparison model and considers additional 
important factors that determine economic feasibility.   
 
A software project incurs costs as it accumulates labor hours and realizes value as it delivers functionality.  
A project is economically feasible when the total value it creates exceeds the total cost it incurs. We 
assume that the net value generated depends on (1) the project’s labor cost, (2) the time value of 
money/present value, and (3) the value that the project earns proportionate with the output it produces.  
The following sections discuss the factors and the underlying parameters that will be used in the advanced 
analysis. 

Labor Cost 

Programmer labor (C) is often the most important cost driver in a software development project.  We will 
assume that initial development and rework are performed by the same work unit, resulting in the same 
constant value for both variables. Since C is assumed to be invariant, we will later be able to eliminate it 
using a ratio metric.  
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Time Value of Money and Present Value 

When costs and benefits of a project are spread over time, the time at which the costs are incurred and 
benefits are realized must be taken into account.  A cash flow expected to occur in the future is worth less 
in today’s dollars than a cash flow that occurs now. As the time horizon widens, the difference between 
the value of a dollar today and the value of a dollar in the future also widens. Time value of money 
captures the spread between these two values.  .  Discounting is the process of downward adjusting a 
future cash flow to express it in today’s value using a compound interest rate, called the discount rate.  
The discounted value of the cash flow is referred to as the present value (PV).      
 
In economic terms, cost and benefits of a project are represented as negative and positive cash flows, 
respectively, that occur at specific points in time.   The fundamental implication of time value of money is 
that a project should earn as fast as possible and spend as slow as possible to generate maximum economic 
benefit.   

Earned Value 

Earned value (EV) expresses the output produced by a work unit using a linear relationship between 
development effort and value.  Each unit of new code produced earns a fixed amount of value.    We 
assume that rework effort does not earn any value. Only projects that are 100% efficient earn extra value 
for each labor hour, creating a disincentive to produce defective code, and conversely, an incentive to 
produce quality code. 
 
Let unit value, V, refer to the average value earned by one unit of output produced. In our case, V is the 

average value of a single line of new code. Then, earned value corresponding to an output of ω lines of 
code is given by: 
 

:= EV V ω  

Value Realization 

Realized value is value that is realized by the client when a functional, defect-free product has been 
delivered to a customer.  Earned value is not the same as realized value.  For example, earned value may 
never be realized if a project fails to deliver a functional product to the client.    

The Software Factory Model 
For our economic analysis, we consider a value realization model called the Software Factory.   New code 
is developed, deployed, and reworked in very small increments. Initial development of new code and 
rework of deployed code are intertwined in a never-ending cycle. Value is realized in very small 
increments as micro-chunks of new functionality are gradually delivered. Consequently, earned and 
realized value are essentially the same. The Software Factory model is illustrated in Figure 2. The ticks 
represent micro-deployment points where small chunks of new code are delivered incrementally. In the 
perfect (idealized) version of the Software Factory model, the distance between two deployment points 
approaches to zero, resulting to a truly continuous process.  Emerging agile software development 
methodologies (Fowler 2000) such as XP (Beck et al. 2001) and SCRUM (Rising 2000) support frequent 
delivery of working code to customers.  Agile methodologies are best treaded under the Software Factory.  

 

Start 

Rework
…

Deploy DeployDeploy DeployDeploy

Rework ReworkReworkRework

 

Figure 1:  The Software Factory model of value realization. 
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Defect Recovery Efficiency 

Defect recovery efficiency involves two components: latency and coverage.  Latency is the elapsed time 
between the deployment of a software artifact and the discovery of a fault by the client. Coverage is the 
number of defects reported or discovered in relation to the total number of defects (including those that 
have not been discovered).  In practice, the discovery of defects by the client can neither be instantaneous 
nor complete. For example, Jones (Jones 1997) states that in large industrial projects, more than half of the 
defects in customer code have a latency of one year, while total coverage four years after deployment 
hovers around 97%.   
 
In emerging, agile processes, the continuous testing and frequent client feedback are believed to lead to a 
defect recovery with low latency and high coverage.   In our analysis, we assume a perfectly efficient 
defect recovery process: one with full coverage and zero latency. These idealized conditions are opposing 
in terms of their impact on net value generated: while increased coverage tends to decrease net value, 
increased latency tends to increase it. When time value of money is taken into account, these assumptions 
lead to a conservative overall bias, with a mild tendency to underestimate net value. However the level of 
underestimation may be different for different development processes.     

The Economic Comparison Model 

Net Present Value (NPV) 

Capital investment decisions are often made based on the concept of Net Present Value (Ross 1996). 
Economic models based on NPV have previously been used to evaluate the return on software quality and 
infrastructure initiatives (Levy 1987, Boehm 1981, Erdogmus and Vandergraaf 1999, Favaro et al. 1998). 
 
NPV is the difference between the present value of benefits and the present value of costs: 
 

NPV = PV(benefits) – PV(costs), 
 

where PV denotes present value.    
    
A project is thought to have business value when its Net Present Value, NPV, is positive, and to be 
unprofitable when its NPV is negative. Among a set of possible projects, the one with the highest NPV 
generates the most value, and should be favored over the others.   

 
For the Software Factory model, NPV reduces to: 
 

:= NPV∞  − IRV TDC ∞  
 

Here IRV denotes Incremental Realized Value and TDC denotes Total Discounted Cost.   Each of these 
will be discussed below.    
 
NPV is very sensitive to changes in V, the average value earned by one unit of output produced, measured 
in $/LOC.  Figure 3 shows how NPV varies as V and time horizon of the project increases for a pair under 
the Software Factory model, where the labor cost C is fixed at $50/hour. Note that the slope of the NPV 
curve changes drastically along the output axis as V varies.  
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Due to this sensitivity, our interest is not on NPV per se. We need a derived metric whose value can be 
used to rank two alternatives independent of  a particular choice of unit value and of the constant labor 
cost C. Breakeven Unit Value meets the first need. 
 

 

Figure 2:  NPV for a pair under the Software Factory model as a function of unit value V and cut-
off time τ for a fixed annual discount rate of δ = 0.1.  Output is plotted in KLOCs. Cut-off time, 
measured in years, represents the time horizon of the project. Labor cost is fixed at C = $50/hour.  

Breakeven Unit Value 
Breakeven Unit Value (BUV) is the threshold value of V above which the NPV is positive.  BUV is 
determined by solving the equation NPV = 0 for V. Recall that V is measured in $/LOC, based on the 
assumption that each unit of output produced increases the value earned by a constant amount.        
 
A small BUV is better than a large BUV. As BUV increases, a project becomes less and less worthwhile, 
because higher and higher margins are required to turn a profit.   In the Software Factory model, BUV also 
makes the economic comparison independent of the particular choice of the discount rate.  
 

BUV in the Software Factory 
When both value realization and cost accumulation are continuous and incremental, BUV’s dependence on 
both output and discount rate is broken. However, BUV remains dependent on C, the hourly labor late.   
 
For example, for a fixed labor cost of C = $50/person-hour, a soloist achieves a BUV of $12/LOC while a 
pair a BUV of $7/LOC, indicating an advantage for the pair. These are the minimum marginal benefits 
required in the Software Factory for a project to break even.  

Breakeven Unit Value Ratio (BUVR) 

A comparison can be made between the return on investment offered by two different processes through 
an examination of the ratio of their BUVs. 
 
Define BUV Ratio (BUVR) as the ratio of the BUV of a soloist to the BUV a pair.    
 

 = BUVR
BUV

solo

BUV
pair  

 
Values of BUVR greater than unity indicate an advantage for pairs; values smaller than unity indicate an 
advantage for soloists. As this ratio increases, the advantage of the pair over the soloist also increases.  
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The metric BUVR makes the comparison between the two work units not only independent of V, but also 
of the hourly labor cost C.   
 

BUV Ratio in the Software Factory  
The BUV Ratio, BUVR, under the Software Factory model is given by: 
 

 = BUVR∞

π
pair

ε
pair

π
solo

ε
solo

  
Taking the ratio effectively eliminates the invariant C that appears in the BUV equation.  The value of 
BUVR is thus constant at 1.7 representing roughly a 40% advantage for the pairs over the soloist. Note 
that this advantage is independent of time value of money (discount rate), output produced, cut-off time 
(time horizon of the project), and labor cost. Effectively, we obtain a metric that provides an all-round 
comparison. 

Derivation of BUV Ratio 

For those mathematically-inclined readers, we now derive the BUV ratio.  Otherwise, skip right to the 
summary at the end. 

 Marginal Value Earned 
We need to consider Marginal Value Earned (MVE) in order to calculate Incrementally Realized Value 
(IRV), the first component in the NPV formula for the Software Factory.  MVE is the average value earned 
per additional unit of elapsed time (measured in $/year; elapsed time refers to compressed time). Given a 

completion or cut-off time of τ, MVE equals:   
 

 := MVE  = 
EV

τ
V ω

τ  
 

Representing output ω in terms of elapsed time eliminates the variable τ, allowing MVE to be expressed in 

terms of productivity π and efficiency ε. Let the constant hy denote the total number of labor hours in a 
calendar year. Then MVE can be rewritten as:    
 

:= MVE V π ε h
y

N  

 
 

Incrementally Realized Value 
Incrementally Realized Value (IRV) is the total value earned within a given time period. Value realized is 

discounted as earned. If τ is the time to project completion or the cut-off time, then IRV is given by: 
 

 := IRV d
⌠
⌡


0

τ

MVE e
( )−δ t

t

 
 

Here δ denotes the continuously compounded annual discount rate. (Using continuous compounding, the 

present value of a future cash flow X that occurs in t years is given by Xe–δt.) Expressed in terms of 

efficiency ε and productivity π, IRV equals: 
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 := IRV −
V π ε h

y
N ( ) − e

( )−δ τ
1

δ
 

 

Marginal Cost 
Marginal Cost ( mC∞

) is the expected incremental cost of initial development and rework per additional 

unit of elapsed time. Since in the Software Factory model, initial development and rework are intertwined, 
marginal cost can be written as: 
 

 := mC∞

 + E ε C
pre

E ( ) − 1 ε C
post

τ  
 

where E is the total effort. When pre- and post-deployment costs are equal (i.e., Cpost = Cpre = C), marginal 
cost is simply: 
 

 = mC∞ h
y

N C
 

Total Discounted Cost 
In the Software Factory, labor costs are discounted as they are incurred to calculate the Total Discounted 

Cost, the second component of the NPV formula: 
 

 := TDC ∞ d
⌠

⌡


0

τ

mC∞ e
( )−δ t

t

 
 

After substituting the marginal cost with the corresponding term, the above definite integral reduces to: 
 

 := TDC ∞ −
h

y
N C ( ) − e

( )−δ τ
1

δ  
 

  

BUV in the Software Factory 

BUV under the Software Factory model is obtained by solving the equation NPV∞ = IRV – TDC∞ = 0 for 
the unknown V. This yields:  
  

 := BUV∞

C

π ε  

The formula for the BUV Ratio immediately follows from the above expression.  
 

Summary 

The results of our analyses demonstrate the potential of pair programming as an economically viable 
alternative to individual programming.   Using the empirical results that demonstrated that pairs produce 
higher quality code in 15% more time that individuals, we showed that pairs have a higher efficiency and 
overall productivity rate.  Additionally, considering a more complex economic model, which considered 
Net Present Value, we demonstrated that pairs increase the business value of a project by significantly 
reducing the minimum marginal benefit required for a project to break even.  
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