

NRC Publications Archive Archives des publications du CNRC

Estimating energy savings from reinsulating houses

Quirouette, R. L.; Scheuneman, E. C.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.4224/20386493 Building Practice Note, 1981-05-01

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=1d7f67b6-eec0-40aa-8cca-8e4d4d29f535 https://publications-cnrc.canada.ca/fra/voir/objet/?id=1d7f67b6-eec0-40aa-8cca-8e4d4d29f535

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

ISSN 0701-5216

Ref Ser THI N21b8 no. 20 BLDG TRC PUB BUILDING PRACTICE NOTE 09883 4 ESTIMATING ENERGY SAVINGS FROM REINSULATING HOUSES by R.L. Quirouette and E.C. Scheuneman ANALYZED Division of Building Research, National Research Council of Canada BLDG. RES. 14 LIBRARY 81-01-24 Ottawa, May 1981

BIBLIOTHEQUE Rech. Batim.

Preface

This paper presents a method for estimating energy savings from reinsulating houses. The method uses the previous year's fuel bill and is aimed at existing houses; it is not intended for use in the design of new houses. As further information becomes available, some of the factors and tables may be revised. The Division of Building Research welcomes comments.

TABLE OF CONTENTS

Introduction	1
Equations For Determining Minimum(S_1) and Maximum (S_2) Savings	1
Equations For Determining Probable Savings (S _p)	3
(a) Total $S_2 \leq F_B$	3
(b) Total $S_2 > F_B$	3
Energy Savings Chart	4
F _B (Fuel Bill for Space Heating)	4
Q's (Heat Flows)	4
ADD (Actual Degree-Days)	7 7 7 8 8
Heating System Factors (i) K1 (Cost per Unit of Fuel)	7
(ii) K ₂ (Heat Content per Unit of Fuel)	7
(iii) K ₃ (Seasonal Efficiency of Heating System)	8
Air Change Rate (AC/h)	
Cost and Payback	9
Example 1 - Basic Data, Calculations and #1 Retrofit	9
Example 2 - #2 Retrofit	14
Example 3 - Effects of High/Low Air Change Rates	15
Example 4 - Air Change Reduction by Retrofitting	15
Concluding Remarks	19
Appendix A Conversions from and to Metric (S.I.)	
Table A-1. Metric (SI) to Imperial Conversions Table A-2. Imperial to Metric (SI) Conversion	
Appendix B Thermal Resistances	
Table B-1. Thermal Resistance of Some Common	
Building Materials	
Table B-2. Provisional Thermal Resistance Values for Below-Grade Construction in Canada	
101 Berow-Grade Construction in Canada	
Appendix C Thermal Bridging in Walls and Ceilings	
Appendix D Degree-Days (DD) and Actual Degree-Days (ADD)	
Appendix E Seasonal Efficiency of Heating Systems (K ₃)	

ESTIMATING ENERGY SAVINGS FROM REINSULATING HOUSES

by

R.L. Quirouette and E.C. Scheuneman

INTRODUCTION

This Note presents a method of estimating the savings from adding more insulation (reinsulating) to an existing house as well as a means for determining the payback period of particular retrofit measures. It is a development of the methodology originated by R.L. Quirouette for the Division of Building Research 1978 Seminar/ Workshop - Insulating Existing Houses.

The most common way to estimate energy savings due to reinsulation is termed the "degree-day (DD) method." It uses a single coefficient to account for the effect of occupancy-generated heat gains, solar heat gains through windows, and thermal storage effect. Because the combined effects of these conditions can vary so widely even in identical houses, the prediction of energy consumption can and does vary widely from actual fuel records. Hence, savings predicted by this method are subject to important uncertainties.

The energy saved by reinsulating a particular house can be determined with greater confidence by using the previous year's fuel bill and an estimate of the "actual degree-days (ADD)" to calculate a range of energy savings by identifying the minimum and maximum values that may be obtained from particular retrofit measures. Since the actual savings will lie between the minimum and maximum limits, a further calculation termed "probable savings" is introduced to facilitate the economic analysis that follows.

The application of this method is explained in detail in this Note; the theory is left for another paper to be published as a DBR Building Research Note. A companion publication to this paper will provide the user with a computer program for hand-held computers.

EQUATIONS FOR DETERMINING MINIMUM (S1) AND MAXIMUM (S2) SAVINGS

The minimum and maximum savings are firm theoretical limits although the accuracy of the predictions depends on the accuracy of the information obtained. The following formulae apply to both metric SI and imperial units except as noted for maximum savings, S₂. The following equation is used to calculate $\underline{S_1}$, the minimum savings.

$$S_1 = F_B \times \frac{(Q_1 - Q_2)}{\text{Total } Q_1}$$
(1)

where S₁ = minimum savings in dollars per heating season for each upgraded building component

 F_{R} = the previous year's fuel bill for space heating

 Q_1 = original heat flow through each building component

Q₂ = new heat flow through each building component being upgraded

Total Q_1 = the sum of all the Q_1 's

The following equation is used to calculate S_2 , the maximum savings.

$$S_2 = 86,400 \text{ x ADD x } \frac{K_1}{K_2 \times K_3} \times (Q_1 - Q_2) \text{ (metric SI units)} (2)$$

or

$$S_2 = 24 \text{ x ADD x } \frac{K_1}{K_2 \times K_3} \text{ x } (Q_1 - Q_2) \qquad (imperial units) \quad (3)$$

where S_2 = maximum savings in dollars per heating season

86,400 = number of seconds in a day to correspond to Joule/second

24 = number of hours in a day to correspond to Btu/hour

ADD = actual degree-days

 $K_1 = \text{cost of fuel per unit at same price as used for fuel bill,} F_B$

 K_2 = heat content of fuel per unit

 K_z = seasonal efficiency of heating plant

Q1 = original heat flow through each building component

Q₂ = new heat flow through each building component being upgraded

EQUATIONS FOR DETERMINING PROBABLE SAVINGS (S_D)

For those users wanting an estimate of probable savings a further calculation is provided which is subject to two conditional equations. These equations estimate where the savings lie between the minimum and maximum limits. This technique is a new theoretical treatment and, therefore, may be subject to modification after further experience.

(a) Total $S_2 \leq F_B$

When the total of the maximum savings $(S_2's)$ is less than or equal to the previous year's fuel bill (F_B) , use

$$S_p = S_1 + 0.75 (S_2 - S_1)$$
 (4)

to calculate the component probable savings (S_p's).

(b) Total $S_2 > F_B$

When the Total of the S_2 's is greater than F_B , there are two ways to proceed:

(i) If all the retrofit options from this Total S₂ package are going to be done, use the formula

Total
$$S_p = Total S_1 + 0.75 (F_B - Total S_1)$$
 (5)

and do not calculate the component S_p 's which are not required since it is the savings of the entire retrofit package that is of interest.

(ii) If only certain retrofit options from this Total S_2 package are going to be done, calculate the new lower Total S_2 for these options and compare the Total S_2 to F_B .

If Total $S_2 \le F_B$, use procedure (a) above. If Total $S_2 > F_B$, use procedure (b) (i) above.

Note: The condition of section (b), Total $S_2 > F_B$, will not occur often. However, it could happen when making major retrofits on buildings that have a high proportion of internal and free heat gains relative to their total heat loss. Highly insulated and passive-solar heated buildings could fall into this category. Further explanations will be given in the theoretical paper.

ENERGY SAVINGS CHART

The chart on the following two pages (charts 1A and 1B) has been developed to facilitate the presentation of the house characteristics and the analysis of the data and results for use in energy audit work. One is for metric SI units and the other for imperial units. The different parts of the S_1 and S_2 equations and this chart

are discussed in general terms before an example calculation and analysis is carried out for a particular house. The calculations in this paper use metric SI units. For calculations in imperial units conversion tables are given in Appendix A.

F_R (Fuel Bill for Space Heating)

This cost should be determined from the previous year's fuel bills over a 12-month period, usually spring-to-spring or fall-to-fall. In cases where the same fuel is used for space heating and other uses such as appliances and water heating, it will be necessary to separate out the non-space heating costs. This is done by taking the average of the monthly fuel bills during the non-heating months (usually June through September), multiplying by 12, and subtracting this amount from the total twelve-month fuel bill.

Q's (Heat Flows)

This is the amount of heat per unit of time per degree of temperature difference that flows through a building component. It is defined and calculated by the equation

$$Q = \frac{A}{R}$$

where A = area of the component R = thermal resistance of the component

Both of these quantities, A and R, must be measured and/or calculated first before Q can be calculated.

The heat flow (loss) due to air change is calculated by using the formula

 $Q = 0.361 \times AC/h \times Vol (Q = 0.0183 \times AC/h \times Vol for imperial units)$

where AC/h (air change per hour) is explained in a following section; Vol is the volume of heated space in the house.

(i) A (area of component)

Areas are measured and calculated from the external house dimensions. Window and door opening areas are determined from the gross openings (the component plus its frame). HART NO. 1A

ENERGY SAVINGS CHART

(metric SI units)

AME		TYPE OF HOUSE	INTERIOR TEMP. (T.)
DDRESS		VOLUME OF HEATED SPACE	DEGREE-DAYS (DD) AIR CHANGE/h (No.)
ITY	PROV	HOT WATER HEATING	AIK CHANGE/h (No.)
		FUEL BILL, F =	κ ₂ =
		к , =	K_3 =

		PR	EVIOUS	YEAR	RETROFIT						
NO.	BUILDING COMPONENT	A	R 1	$Q_1 = \frac{A}{R_1}$	R 2	$Q_2 = \frac{A}{R_2}$	s ₁	s ₂	S P	с	C/S
1											
2											
3						-					
4											-
5											
6											
7		_									
8											
9											
10											
11	AIR CHANGE, Q = 0.361 x Vol. x No.		No.		No.						
12	TOTAL		And a state of the								

$$S_{1} = F_{B} \times \frac{(Q_{1} - Q_{2})}{TOTAL Q_{1}}$$
(a)

$$ADD = DD + (T_{1} - 18) \times b =$$

$$S_{2} = 86,400 \times ADD \times \frac{K_{1}}{K_{2} \times K_{3}} \times (Q_{1} - Q_{2})$$
(b)

$$\frac{TOTAL S_{2} \leq F_{B}}{S_{p} = S_{1} + 0.75 (S_{2} - S_{1})}$$
(c)

$$\frac{TOTAL S_{2} > F_{B}}{TOTAL S_{p} = TOTAL S_{1} + 0.75 (F_{B} - TOTAL S_{1})}$$

p5

HART NO.IB

ENERGY SAVINGS CHART

(imperial units)

AME		TYPE OF HOUSE	INTERIOR TEMP. (T_)	
D D R E S S		VOLUME OF HEATED SPACE	DEGREE-DAYS (DD)	
ITY	PROV	HOT WATER HEATING	AIR CHANGE/h (No.)	
		FUEL BILL, F =	K ₂ =	
		к,=	K ₃ =	

	PREVIOUS YEAR			YEAR	RETROFIT						
NO.	BUILDING COMPONENT	A	R 1	$Q_1 = \frac{A}{R_1}$	R ₂	$Q_2 = \frac{A}{R_2}$	s 1	s 2	s p	с	C/S
1											
2											
3											
4											
5											
6											
7											
8											
9											
10						-					
11	AIR CHANGE, Q=0.0183 x Voi. x No.		No.		No.						
12	TOTAL										

(a)

$$s_{1} = F_{B} \times \frac{(Q_{1} - Q_{2})}{TOTAL Q_{1}}$$

$$ADD = DD + (T_{1} - 65) \times b =$$

$$s_{2} = 24 \times ADD \times \frac{\kappa_{1}}{\kappa_{2} \times \kappa_{3}} \times (Q_{1} - Q_{2})$$
$$= \underline{\qquad} \times (Q_{1} - Q_{2})$$

$$\frac{\text{TOTAL } s_2 \leq F_B}{s_p = s_1 + 0.75 (s_2 - s_1)}$$

(b)
$$\frac{\text{TOTAL S}_2 > F_B}{\text{TOTAL S}_1 = \text{TOTAL S}_1 + 0.75 (F_B - \text{TOTAL S}_1)$$

 $\mathbf{p}_{\mathbf{0}}$

(ii) R-values (Thermal Resistances)

To determine nominal R-values for building components such as walls, ceilings and windows, the individual R-values of the materials making up the building component (including the appropriate R-values for an interior and exterior air film) are added up. A list of thermal resistances, R-values, for building materials and air films/spaces is given in Table B-1 (Appendix B).

Below-grade construction such as basements require special treatment. This is explained in Appendix B with Table B-2 providing R-values for typical constructions.

For improved accuracy of R-value calculations, the "thermal bridging effect" described in Appendix C should be taken into account.

ADD (Actual Degree-Days)

This method uses ADD (actual degree-days) to calculate savings. ADD is a measure of the actual temperature difference between the interior house temperature (T_i) and the outdoor temperature. This is

different from standard DD (degree-days) which are computed from a base interior temperature of 18°C (65°F). The concept and calculation of ADD are given in Appendix D.

Heating System Factors

The determination of maximum savings, S₂, requires certain heating system factors. These factors which characterize the performance of the heating system are the cost of fuel (K_1) , the heat content of fuel (K_2) , and the seasonal efficiency (K_3) .

(i) K1 (Cost per Unit of Fuel)

This constant is the price in dollars per unit of fuel used. The price used should be the same as that used for the fuel bill. The normal units would be as follows:

Fuel oil (domestic)	\$/litre	(\$/ga1)
Natural gas	\$/m3	$(\$/ft^3)$
Electricity	\$/kW·h	(\$/kW•h)

(ii) K₂ (Heat Content per Unit of Fuel)

TABLE 1. HEATING VALUE OF SOME COMMON HEATING FUELS

Fue1	SI (Joule)	Imperial (Btu)			
Fuel oil (domestic)	38 757 000 per litre	167 000 per gal			
Natural gas	37 300 000 per m ³	1 000 per ft ³			
Electricity	3 600 000 per kW·h	3 413 per kW·h			

(iii) K₃ (Seasonal Efficiency of Heating System)

This is the factor that determines the useful heat delivered to the kouse from the potential amount of heat in the fuel used during the heating season. A further explanation will be found in Appendix E.

Air Change Rate (air change/hour, AC/h)

Estimating the air leakage rate is a complicated task that involves an analysis of the effect of wind conditions and the stack effect pressures on the leakage openings of a house. Even then the results of this analysis are often too simplistic since the actual air leakage patterns and rates are altered by operational characteristics such as the opening and closing of windows and doors, and the operation of fireplaces, fuel-burning appliances, and exhaust fans.

It is generally accepted that there is a relationship between the indoor relative humidity during the heating season and the air leakage rate of a small house if it is occupied and no mechanical humidification is used. If the information in the paragraph that follows is not available, the value 1.00 air change/hour may be used as a "default" or "best guess" value.

The January and February indoor relative humidity (R.H.) can be approximately correlated to air change rates as follows:

- 15 to 25% R.H. as measured or indicated by dryness in the occupant's nose and throat or "shocks" from static electricity would suggest an air change rate of 1.50/h or higher.

- 25 to 35% R.H. as measured or indicated by slight condensation on double-glazed windows would suggest an air change rate of 0.75/h.

- <u>35% and higher R.H.</u> as measured or indicated by frost on windows for long periods and mildew/fungus growth on organic materials would suggest an air change rate of 0.25/h or less. (This may occur in some electrically-heated homes because the absence of chimneys makes them generally tighter than houses with fuel-fired heating systems.)

Since there is uncertainty in estimating an air change rate, it may be preferable to estimate a high and low rate to give a range of values. This range is calculated by adding to and subtracting 50% from the value selected above. This provides a reasonable margin of error and can be used to illustrate the influence of air change rates on the predicted savings.

Applying the high/low range to these values would yield the following:

1.00/h transforms to 1.50 and 0.50
1.50/h transforms to 2.25 and 0.75
0.75/h transforms to 1.13 and 0.38
0.25/h transforms to 0.38 and 0.13

Cost and Payback

The cost for each retrofit action may vary considerably depending on who is doing the work (homeowner or contractor). Also, some material costs may be significantly reduced by government grant programs.

This simplified payback calculation,

Payback =
$$\frac{Costs}{Savings} = \frac{C}{S}$$
 (years)

assumes that the fuel price escalation is approximately the same as the interest rate on savings. Any significant cost reductions, as in the preceding paragraph, would provide shorter payback periods.

EXAMPLE 1. - BASIC DATA CALCULATIONS AND #1 RETROFIT

Location:	Ottawa
Type of House:	two-storey, detached
Volume of Heated Space:	481.4 m ³
Heating System:	oil-fired, forced warm air
llot Water Heating:	electric
Fuel Bill, $F_{B} =$	\$1239 (for 5682 litre)
Cost per Unit of Fuel, $K_1 =$	\$0.218/litre

Step 1 - Basic House Data

- The basic data from above is entered on to the top of chart 2 (next page).

Step 2 - Climate and Air Change

- The climate and air change section at the top of chart 2 is filled in as follows:

- T_i is 21⁰C.

- DD for Ottawa is 4674
- Air change/hour was chosen to be the default value of 1.00/h since we had no further information
- K2 for oil from Table 1 is 38 757 000
- K₃ is chosen to be the default value of 0.55 (from Appendix E)

CHART NO. 2

ENERGY SAVINGS CHART

(metric SI units)

NAME			TYPE OF HOUSE 2-storey, detached	INTERIOR TEMP. (T.) 21°C
DDRE	5 S		HEATING SYSTEM oil-fired forced air	
LITY_	OTTAWA	PROV <u>ONT.</u>	HOT WATER HEATING electric. FUEL BILL, F = \$ 1239	AIR CHANGE/h (No.) 1.00
			К, = _ \$ 0. 218/litre	κ ₃ = <u>0.55</u>

	1	PI	REVIOUS YI	EAR	-	#(RETRO	FIT		
NO.	BUILDING COMPONENT	A	R 1	$Q_1 = \frac{A}{R_1}$	^R 2	$Q_2 = \frac{A}{R_2}$	s 1	s ₂	S p	с	C/S
1	Ceiling	65.0	2.11	31	5.64	12	46	87	77	280	3.6
2	Frame walls	143.1	1.76	81	2.29	62	46	87	77	1100	14.3
3	Header joists	14.8	0.60	25							
4	Basement walls, A.G.	19.5	0.26	75	2.47	8	163	305	270	900	2.0
5	Basement walls, B.G.	49.2	0.8	62	3.2	15	115	214	1897		
6	Basement floor	65.0	4.6	14					5		
7	Windows	13.9	0.35	40							
8	Doors	3.7	0.70	5							
9											
10				1							1
11	AIR CHANGE, Q = 0.361 x Vol. x No.		No. 1.00	174	No.						
12	TOTAL			507			370	693	613	2280	3.7

$$S_{1} = F_{B} \times \frac{(Q_{1} - Q_{2})}{TOTAL Q_{1}}$$

ADD = DD + (T_{1} - 18) × b = 4674 + (21 - 18) × 161 = 5157

$$S_{2} = 86,400 \times ADD \times \frac{K_{1}}{K_{2} \times K_{3}} \times (Q_{1} - Q_{2})$$

= 4.557 × (Q_{1} - Q_{2})

(a)
$$\frac{\text{TOTAL } S_2 \leq F_B}{S_p = S_1 + 0.75 \ (S_2 - S_1)}$$

(b)
$$\frac{\text{TOTAL S}_2 > F_B}{\text{TOTAL S}_p = \text{TOTAL S}_1 + 0.75 (F_B - \text{TOTAL S}_1)$$

Step 3 - Building Components and Areas

- List all the building components that make up the building envelope, e.g. ceiling, frame walls, header joists, basement walls above grade (A.G.) and below grade (B.G.), basement floor, windows, exterior doors.

- The area of each component is entered in column A of Chart 2. Note that the areas of the windows and doors should be subtracted from the appropriate gross wall areas to give the net wall areas.

Step 4 - R₁ Values

- Each building component has an R-value. Calculate the R-values of materials from Table B-1 (Appendix B) and then sum these up for the component R-value.

- For the basement walls below grade and basement floor one uses Table B-2 (Appendix B).

- Exterior doors constructed of solid-core wood with a storm door have an R of 0.70.

- R-values are written in the R1 column of chart 2.

- AC/h (No.) is written in the R1 column of row 11.

Step 5 - Heat Flow, Q1

- The Q_1 column of chart 2 is filled by dividing each A by its respective $\mathsf{R}_1.$

- The Q_1 for air change is calculated by using the formula

 $Q_1 = 0.361 \text{ x AC/h x Vol}$

- Q1 values are rounded to the nearest unit.

- The total Q_1 is calculated by adding up the individual Q_1 's. This result is entered in the Total row of the Q_1 column.

Step 6 - Selection of Retrofit Options

By examining the figures in column Q_1 , one notes the relative importance of each building component regarding heat loss (Q_1) . The larger the number, the greater the heat loss. In this case, air change contributes the greatest heat loss followed by frame walls, basement walls above grade, basement walls below grade, windows, ceiling, header joists, basement floor, and doors. One usually concentrates on the areas or components of greatest heat loss since these present the greatest potential for overall savings. Sometimes the areas of smaller heat loss will be the easiest and cheapest to retrofit. There are other factors to consider including the physical feasibility of each retrofit action. As the purpose of this paper is to assist one in estimating the savings and payback for different retrofit options, the following retrofit actions have been evaluated:

> Ceiling, from $R_1 = 2.11$ to $R_2 = 5.64$, Cost (C) = \$280 Frame walls, from $R_1 = 1.76$ to $R_2 = 2.29$, Cost (C) = \$1100 Basement walls A.G., from $R_1 = 0.26$ to $R_2 = 2.47$ Basement walls B.G., from $R_1 = 0.8$ to $R_2 = 3.2$ Cost (C) = \$900

Step 7 - R₂ Values and Cost (C)

- The R₂'s from Step 6 are the combined R-value of the original R plus the added insulation and are written in the appropriate rows in the R₂ column of chart 2 while leaving the remaining rows blank. This section should be labelled #1 Retrofit to avoid confusion with different calculations that may be done later for the same house.

- The C's from Step 7 are written in the appropriate rows in the C column of the #1 Retrofit section, and added up to give the Total C.

Step 8 - Q2's

- The Q_2 for each R_2 of chart 2 is calculated by dividing each A by its R_2 and rounding to the nearest unit.

Step 9 - Calculation of Minimum Savings, S1

- The S_1 's are calculated for each upgraded component of chart 2 by using the formula:

$$S_1 = F_B \times \frac{(Q_1 - Q_2)}{\text{Total } Q_1}$$

- The S1's are added and the result entered in the Total row.

Step 10 - Calculation of Maximum Savings, S2

- The S_2 's are calculated for each upgraded component of chart 2 by using the formula

$$S_2 = 86\ 400\ x\ ADD\ x\ \frac{K_1}{K_2\ x\ K_3}\ x\ (Q_1 - Q_2)$$

We know all the values in the S_2 equation except for ADD. The value for ADD is calculated as

ADD) = $4674 + (21 - 18) \times 161 = 5157$ where b = 161 from Figure D-1 (app. D), and entered on to chart 2 (bottom left). - Since 86 400 x ADD x $\xrightarrow{K_1}$ remains the same for each particular K2 x K3

house if no change occurs to the heating system, it is convenient to calculate this constant once as follows

86 400 x 5157 x $\frac{0.218}{38,757,000} = 4.557$

and write it into the blank of the S_2 equation on chart 2 (bottom left).

This simplified form, $S_2 = 4.557 \times (Q_1 - Q_2)$, can be used to calculate all the various S2's.

- the S2's are calculated for the upgraded Q2's.

- the S2's are added and the result entered in the Total row.

Step 11 - Calculation of Probable Savings, Sp

Since the total S₂ of chart 2 is \$693 which is less than the F_B of \$1239, Total $S_2 < F_B$, the (a) formula is used to calculate the individual Sp's, that is,

$$S_p = S_1 + 0.75 (S_2 - S_1)$$

- Calculate the S_p 's for the appropriate Q_2 's. - Add up the S_p 's to get Total S_p .

Step 12 - Calculation of Payback, C/S

Depending on whether the minimum/maximum limits of payback or the probable payback is desired, one can use any or all of S1, S2, and Sp to calculate the payback time period(s). For this example of chart 2 we will use Sp.

The paybacks are calculated for each upgrading measure by dividing the upgrading cost (C) by each S_p (C/ S_p). Note that there is a combined payback for basement walls above and below grade because the price quotation of \$900 covers the entire basement wall area.

- The total payback is calculated by dividing total C by total Sp.

Step 13 - Calculation of Minimum/Maximum Payback

To further illustrate this method, the minimum and maximum payback is calculated below for each Q_2 (R_2).

	Minimum Payback	Maximum Payback
	(C/S ₂), years	(C/S_1) , years
Ceiling	$\frac{280}{87} = 3.2$	$\frac{280}{46} = 6.1$
Frame Walls	$\frac{1100}{87} = 12.6$	$\frac{1100}{46} = 23.9$
Basement Walls A.G. & B.G.	$\frac{900}{519} = 1.7$	$\frac{900}{278} = 3.2$
Total	$\frac{2280}{693} = 3.3$	$\frac{2280}{370} = 6.2$

Example 2. - #2 Retrofit

This example illustrates the estimated savings and paybacks resulting from going to higher insulation levels for the following components. Frame walls have been left out because the #1 retrofit filled the remainder (36 mm) of the cavity (100 mm total) and so higher R-values cannot be achieved from the cavity since additional insulation cannot be added.

Ceiling, from $R_1 = 2.11$ to $R_2 = 10.57$, Cost (C) = \$700 Basement Walls A.G., from $R_1 = 0.26$ to $R_2 = 3.70$ Basement Walls B.G., from $R_1 = 0.8$ to $R_2 = 3.9$ Cost (C) = \$1100

Step 1 - R₂'s and C's

The R2's and C's are entered into the appropriate rows and columns in the Retrofit section which is labelled #2 Retrofit. (See chart 3.)

Step 2 - Calculations of Q2, S1, S2, Sp

- The calculations are carried out for $\text{Q}_2,\ \text{S}_1,\ \text{S}_2,\ \text{and}\ \text{S}_p$ and the quantities entered in the appropriate boxes in the #2 Retrofit section of chart 3.

Step 3 - Payback, C/S

- The desired savings from S_1 , S_2 , and S_p are chosen to calculate the payback. For this example we will again choose S_p which gives a payback of 6.9 years for the ceiling, 2.3 years for the basement walls, and 3.1 years total for both. (See chart 3.) These payback periods are reasonably short.

These results can be compared with the #1 Retrofit (chart 2) results to aid in choosing levels of insulation.

HART NO. 3

ENERGY SAVINGS CHART

(metric SI units)

AME	_ TYPE OF HOUSE 2 - storey, detached_	INTERIOR TEMP. (T.) 21°C
DDRESS	VOLUME OF HEATED SPACE 481.4 m3	DEPART DAVE DON 111 711
ITY DTTAWA PROV ONT.	HEATING SYSTEM oil-fired, forced air HOT WATER HEATING electric	AIR CHANGE/h (No.) _/. OO
	FUEL BILL, F = 41239	K2 = <u>38,757,000</u>
	K1 = <u>\$ 0.218/litre</u>	к ₃ = <u>0.55</u>

		PR	EVIOUS YE	AR		#2		RETRO	FIT		
NO.	BUILDING COMPONENT	A	R 1	$Q_1 = \frac{A}{R_1}$	R 2	$Q_2 = \frac{A}{R_2}$	s ₁	⁵ 2	S p	с	C/S
1	Ceiling	65.0	2.11	31	10.57	6	61	114	101	700	6.9
2	Frame Walls	143.1	1.76	81							
3	Header joists	14.8	0.60	25							
4	Basement walls, A.G.	19.5	0.26	75	3.70	5	171	319	282	1100	2.3
and the second se	Basement walls, B.G.	49.2	0.8	62	3.9	13	120	223	197)		
6	Basement floor	65.0	4.6	14							
7	Windows	13.9	0.35	40							
8	Doors	3.7	0.70	5							
9											
10											
11	AIR CHANGE, $Q = 0.361 \times Vol. \times No.$		No. 1.00	174	No.						
12	TOTAL			507			352	656	580	1800	3.1

$$S_{1} = F_{B} \times \frac{(Q_{1} - Q_{2})}{TOTAL Q_{1}}$$
(a)

$$ADD = DD + (T_{1} - 18) \times b = \underline{4674} + (\underline{a1 - 18}) \times \underline{161} = \underline{5157}$$

$$S_{2} = 86,400 \times ADD \times \frac{\kappa_{1}}{\kappa_{2} \times \kappa_{3}} \times (Q_{1} - Q_{2})$$
(b)

$$= \underline{4.557} \times (Q_{1} - Q_{2})$$

$$\frac{\text{TOTAL } s_2 \leq F_B}{s_p = s_1 + 0.75 \ (s_2 - s_1)}$$

EXAMPLE 3 - EFFECTS OF HIGH/LOW AIR CHANGE RATES

The same house from Example 1 is used to show the effects of varying the air change rate. The value of 1.00 AC/h used in Example 1 is increased and decreased by 50% to give the high/low range of 1.50 to 0.50. The same basic data and the same #1 Retrofit R_2 from chart 2 values are used to carry out two sets of calculations using the high (chart 4) and low (chart 5) air change rate.

A comparison of the results from charts 4 and 5 shows the following range of savings for the #1 Retrofit actions:

Air change/hour	S ₁	S ₂	s _p
	$(1.50 \div 0.50)$	$(1.50 \rightarrow 0.50)$	$(1.50 \rightarrow 0.50)$
Ceiling	\$ 40 → \$ 56	\$ 87 → \$ 87	\$ 75 → \$ 79
Frame walls	\$ 40 → \$ 56	\$ 87 → \$ 87	\$ 75 → \$ 79
Basement walls A.G.	\$140 → \$197	\$305 → \$305	\$264 → \$278
Basement walls B.G.	\$ 98 → \$139	\$214 → 214	\$185 → \$195
Total	\$318 → \$448	\$693 → \$693	\$599 → \$631

These results show that the high/low range of air change/hour produces a 41°_{\circ} range for S₁ values; however it should be noted that it makes no difference to S₂ but does affect the S_p's by 5%. An analysis of the effects on the #2 Retrofit actions of Example 2 from chart 3 would show the same per cent ranges.

EXAMPLE 4 - AIR CHANGE REDUCTION BY RETROFITTING

Often the most cost-effective retrofit action is the tightening up of a house by weatherstripping, caulking, or using other means to reduce air leakage and the air change rate. It is difficult, however, to measure or determine the initial and final air change rates for a house. Hence, the following example is an illustration rather than a guarantee of possible savings.

For a "leaky" house with an air change of 1.50/h it is possible to effect a 50% reduction by thorough, careful tightening of the house.

The same house as in Example 1 (chart 2) will be assumed except that the original (R_1) AC/h is 1.50 and the new (R_2) AC/h is 0.75.

Chart 6 shows the data and calculation giving values of

$$S_1 = $273$$

 $S_2 = 597
 $S_p = 516

from this retrofit action. This suggests a large savings that should be very cost-effective.

4
0
Z
1
ar.

T

ENERGY SAVINGS CHART

(metric SI units)

INTERIOR TEMP. (T,) 21°C	00) 40	AIR CHANGE/h (No.) 1. 50	$K_{2} = -38, 757, 200$. K ₃ = 0.55
TYPE OF HOUSE 2 - storey, detached	VOLUME OF HEATED SPACE 481.4 m ³ HEATING SYSTEMMIL-PICEA ANCED AIN	TER HEATING CLOCTOIC	الداد الم	K1 = \$ 0.218/11 fre
		PROV ONT.		
ME	DRESS	IN DTTAWA		

NO. BUILDING COMPONIT A \mathbb{R}_1 $\alpha_1 = \frac{A}{R_1}$ \mathbb{R}_2 $\alpha_2 = \frac{A}{R_2}$ 5_1 5_2 5_p C C/S 1 Ceiling 66.0 2.11 31 5.64 12. 40 87 75 0 0 2 Frame Lualls 143.1 1.76 81 2.347 8 40 87 75 0 0 3 Meader joists 144.8 0.60 26 3.47 8 140 305 3.64 0			Q.	PREVIOUS YEA	AR	HIGH	HIGH AC/A = 1.50 #1	1.50 #	A RETROFIT	FIT		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07		¢	R	"	R 2	$\alpha_2 = \frac{A}{R_2}$	1 _s	5 2	° e	U	C/S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	Ceilina	65.0	2.11	31	5.64	12	ЧD	87	75		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Frame Walls	143.1	1.76	18	2.29	63	40	87	15		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	Header inists	14.8	0.60	25							
Rasement walls, R:G. 49.2 O.S 62 3.2 15 92 214 Basement Floor 65.0 4.6 14 $=$	4	Basement wills A.G.	19.5	0.26	75	2.47	8	041	305	264		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	Rasement walls B.G.	49.2	0.8	62	3.2	15	86	314	185		
Windows 13.4 0.35 4D 1 Doors .3.7 0.70 5 1 1 March .3.7 0.70 5 1 1 1 Alk CHANGE, $Q = 0.361 \times Vol. \times No.$ No. l.50 361 No. 1 1 1 Alk CHANGE, $Q = 0.361 \times Vol. \times No.$ No. l.50 $36l$ No. 1 1 1 1 Alk CHANGE, $Q = 0.361 \times Vol. \times No.$ No. l.50 $36l$ No. 1	9	Basement floor	65.0	4.6	14							
Door5 .3.7 6.70 5 1 1 Alk CHANGE, Q = 0.361 x Vol. xNo. No. l.50 361 No. 8	2	Windows	13.9	0.35	40							
AIR CHANGE, Q = 0.361 x Vol. x No. No. l. 50 361 No. IOTAL 10TAL 318 693	8	Doors	13.7	0.70	S							
AIR CHANGE, Q = 0.361 × Vol. × No. No. 1.50 261 No. IOTAL TOTAL 594 318 693	6											
AIR CHANGE, Q = 0.361 × Vol. × No. 1.50 361 No. 1.50 367 No. 318 693	10											
TOTAL 594 544 318 693	11	AIR CHANGE, Q = 0.361 x Vol. x No.		No. 1.50	361	No.						
	12	TOTAL			594			318	693	599		

 $S_{1} = F_{B} \times \frac{(\alpha_{1} - \alpha_{2})}{TOTAL \ \alpha_{1}}$ ADD = DD + (T_{i} - 18) × b = <u>4b74 + (\alpha_{1} - ig) × 1b1 = 5157</u> S_{2} = 86,400 × ADD × \frac{K_{1}}{K_{2} \times K_{3}} × (\alpha_{1} - \alpha_{2})

 $= \frac{4.557}{100} \times (\alpha_1 - \alpha_2)$

(a) $\frac{\text{TOTAL } S_2 \leq F_B}{S_p = S_1 + 0.75 (S_2 - S_1)}$ TOTAL S > F

(b) $\frac{\text{TOTAL S}_2 > F_B}{\text{TOTAL S}_p = \text{TOTAL S}_1 + 0.75 (F_B - \text{TOTAL S}_1)$

BR 6085-1 d

HART NO. 5

ENERGY SAVINGS CHART

(metric SI units)

AME	TYPE OF HOUSE 2-storey, detached	INTERIOR TEMP. (T.) 21°C
DDRESS	VOLUME OF HEATED SPACE 481.4 m3	And a second sec
ITY OTTAWA PROV ONT	HOT WATER HEATING electric	AIR CHANGE/h (No.) 0.50
	FUEL BILL, F = \$1239	
	K, = _ = 0.218/litre	к, =0.55

		PR	EVIOUS YE	AR	Low	Ac/h =	0.50, #	I RETRO	FIT		
NO.	BUILDING COMPONENT	A	R 1	$Q_1 = \frac{A}{R_1}$	R ₂	$Q_2 = \frac{A}{R_2}$	s 1	s ₂	Sp	С	C/S
1	Ceiling	65.0	2.11	3(5.64	12	56	87	79		
2	Frame walls	143,1	1.76	81	2.29	62	56	87	79		
3	Header joists	14.8	0.60	25							
4	Basement walls, A.G.	19.5	0.26	75	2.47	8	197	305	278		
5	Basement walls, B.G.	49.2	0.8	62	3.2	15	139	214	195		
6	Basement floor	65.0	4.6	14							
7	Windows	13.9	0.35	40							
8	Doors	3.7	0.70	5							
9											-
10										1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
11	AIR CHANGE, $Q = 0.361 \times Vol. \times No.$		No.0.50	87	No.						
12	TOTAL	1		HZD			448	693	631		

$$S_{1} = F_{B} \times \frac{(Q_{1} - Q_{2})}{TOTAL Q_{1}}$$
(a)
ADD = DD + (T_{1} - 18) × b = 4674 + (21-18) × 161 = 5157

$$S_{2} = 86,400 \times ADD \times \frac{K_{1}}{K_{2} \times K_{3}} \times (Q_{1} - Q_{2})$$
(b)
= 4.557 × (Q_{1} - Q_{2})
(c)

$$S_{p} = S_{1} + 0.75 (S_{2} - S_{1})$$

$$TOTAL S_{2} \ge F_{B}$$

HART NO. 6

ENERGY SAVINGS CHART

(metric SI units)

4 M E		_ TYPE OF HOUSE 2-storey, detached_	INTERIOR TEMP. (T.) 21°C
DDRESS		VOLUME OF HEATED SPACE 491.4 m3	
TY OTTAWA	PROV DNT.	HEATING SYSTEM oil-fired, forced air HOT WATER HEATING electric	AIR CHANGE/h (No.) 1.50
		FUEL BILL, F = 5 1239	K2 = <u>38,757,000</u>
		к, = <u>\$ 0,218/litre</u>	к ₃ = <u>0.55</u>

		PR	EVIOUS YE	AR	AIR C	HANGE	REDUCT	TION RETRO	FIT		
10.	BUILDING COMPONENT	A	R	$Q_1 = \frac{A}{R_1}$	R 2	$Q_2 = \frac{A}{R_2}$	5 1	s 2	s p	c	C/S
1	Ceiling	65.0	2.11	31							
2	Frame walls	143.1	1.76	81							
3	Header joists	14.8	0.60	25							
4	Basement walls, A.G.	19.5	0.26	75							
5	Basement walls, B.G.	49.2	0.8	62							
6	Basement floor	65.0	4.6	14							-
7	Windows	13.9	D.35	40							
8	Doors	3.7	0.70	5							
9											
10											
11	AIR CHANGE, Q = 0.361 x Vol. x No.		No. 1. 50	261	No. 0.75	130	273	597	516		
12	TOTAL			594							

$$S_{1} = F_{B} \times \frac{(Q_{1} - Q_{2})}{TOTAL Q_{1}}$$

ADD = DD + (T_{1} - 18) × b = 4674 + (21-18) × 161 = 5157

$$S_{2} = 86,400 \times ADD \times \frac{K_{1}}{K_{2} \times K_{3}} \times (Q_{1} - Q_{2})$$

= 4.557 × (Q_{1} - Q_{2})

(a)
$$\frac{\text{TOTAL } S_2 \leq F_B}{S_p = S_1 + 0.75 (S_2 - S_1)}$$

(b)
$$\frac{\text{TOTAL S}_2 > F_B}{\text{TOTAL S}_p = \text{TOTAL S}_1 + 0.75 (F_B - \text{TOTAL S}_1)$$

CONCLUDING REMARKS

This paper has presented a methodology to estimate heating-season energy savings from reinsulation of houses. Further savings would be achieved if a house had a cooling or air-conditioning system. Although the minimum (S_1) and maximum (S_2) savings are theoretically correct, the actual results can vary considerably since S_1 depends on the values selected for Q_1 (or R_1) and Q_2 (or R_2) while S_2 additionally depends on ADD (or T_1) and K_3 .

Some factors influencing these parameters are as follows:

 Q_1 and Q_2 (R₁ and R₂). - Failure to include thermal bridging effects in the calculation of R-values can result in the predicted S₁, S₂, and S_p being considerably higher than actual.

ADD (or T_i). - The S₂ calculations are affected by the accuracy of ADD which is dependent on the variable factor, T_i . Some houses, especially older ones, may have lower interior temperatures (T_i 's) than realized (and used in calculations) because of high heat loss rates and nonuniform heating. This would result in the calculations predicting greaterthan-actual S₂ and S_p values.

 K_3 . - The S₂ calculations depend on the seasonal efficiency of the heating system and assume that it is constant before and after reinsulation.

If the ratio of furnace rated output to building heat loss is increased by reinsulating (K₃ becomes smaller), the actual savings can decrease or even disappear. It is very important, therefore, to downsize the furnace where required.

ACKNOWLEDGEMENT

The authors wish to thank C. J. Shirtliffe for the numerous ideas and constructive discussion during the conceptual development of this method.

APPENDIX A

CONVERSIONS FROM AND TO SI

TABLE A1 - CONVERSIONS FROM METRIC (SI) TO IMPERIAL

(Multiply the metric (SI) unit by the factor given in the equation to convert to imperial.)

Length	1 m = 3.281 ft
	1 mm = 0.0394 in.
Area	$1 m^2 = 10.76 ft^2$
Volume	$1 m^3 = 1000 litre$
	$= 35.31 \text{ ft}^3$
	1 litre = 0.220 gallon
Mass	1 kg = 2.205 1b
Density	$1 \text{ kg/m}^3 = 0.0624 \text{ lb/ft}^3$
Temperature	9/5 °C + 32 = °F
Energy	$1 J = 9.48 \times 10^{-4}$ Btu
	1 kJ = 0.948 Btu
Power	1 W = 1 J/s
	= 3.412 Btu/hr
R-Value	$1 \text{ m}^2 \text{ °C/W} = 5.678 \text{ hr ft}^2 \text{ °F/Btu}$
R/unit thickness	1 RSI/mm = 144.2 R/in.

TABLE A2 - IMPERIAL TO METRIC (SI) CONVERSIONS

(Multiply the imperial unit by the factor given in the equation to convert to metric (S1).)

Length	1 ft = 0.3048 m
	1 in. = 25.4 mm
Area	$1 \text{ ft}^2 = 0.0929 \text{ m}^2$
Volume	$1 \text{ litre} = 0.001 \text{ m}^3$
	l gallon = 4.55 litre
	$1 \text{ ft}^3 = 0.0283 \text{ m}^3$
Mass	$1 \ 1b = 0.454 \ kg$
Density	$1 \ 1b/ft^3 = 16.03 \ kg/m^3$
Temperature	5/9 (°F - 32) = °C
Energy	1 Btu = 1.05×10^3 J
	1 Btu = 1.05 kJ
Power	1 J/s = 1 W
	1 Btu = 0.293 W
<u>R-Value</u>	1 hr ft ² °F/Btu = 0.1761 m ² °C/W
R/unit thickness	1 R/in. = 0.00693 RSI/mm

A-2

APPENDIX B

THERMAL RESISTANCES

TABLE B1 - THERMAL RESISTANCE OF SOME COMMON BUILDING MATERIALS *

Thermal Resistance

Building Material	S.	Ι.	imp	erial
or Component	R/mm	For Thickness Listed	R/in.	For Thickness Listed
Insulation				
Fibreglass Batt	0.022		3.17	
Rockwool Batt	0.023		3.32	
Fibreglass Loose Fill (Blown-In)	0.015		2.16	
Fibreglass Loose Fill (Poured)	0.021		3.03	
Rockwool Loose Fill (Blown-In)	0.019		2.74	
Rockwool Loose Fill (Poured)	0.021		3.03	
Cellulose Fibre (Blown)	0.025		3.61	
Cellulose Fibre (Poured)	0.024		3.46	
Expanded Mica				
(Vermiculite, Zonolite, etc.)	0.016		2.31	
Polystyrene Loose Fill	0.020		2.88	
Expanded Polystyrene (Rigid)	0.027		3.89	
Extruded Polystyrene (Rigid)	0.035		5.05	
Polyurethane (Rigid)	0.042		6.06	
Polyurethane (Foamed in Place)	0.042		6.06	
Fibreglass Sheathing	0.031		4.47	
Urea Formaldehyde (Foamed in				
Place, After Curing)	0.018		2.60	
Wood Fibre	0.023		3.32	
Wood Shavings	0.017		2.45	
Cork	0.026		3.75	
Glass Fibre Roof Board	0.028		4.04	
Mineral Aggregate Board	0.018		2.60	
Compressed Straw Board	0.014		2.02	
Fibreboard	0.019		2.74	
Structural Materials				
Softwood Lumber (except Cedar)	0.0087		1.25	
Cedar Logs and Lumber	0.0092		1.33	
Concrete 2400 kg/m ³ (150 lb/ft ³)	0.00045		0.06	
Concrete 1760 kg/m ³ (110 1b/ft ³)	0.0013		0.19	
Concrete 480 kg/m ³ (30 lb/ft ³)	0.0069		1.00	

Handbook on Insulating Homes for Energy Conservation, E. Scheuneman, S. Moffatt and M. Adelaar, Canadian General Standards Board, CGSB 51-GP-42MP, Ottawa, July 1980.

TABLE BI - THERMAL RESISTANCE OF	SOME COMMON	BUILDING MA	TERIALS (Lont'd)			
	Thermal Resistance						
Building Material	s.	I.	impo	erial			
or Component	R/mm	For Thickness Listed	R/in.	For Thickness Listed			
Structural Materials (Cont'd)							
Concrete Block (3 Oval Core)							
Sand and Gravel Aggregate		0.12		0.68			
100 mm (4") 200 mm (8")		0.20		1.14			
300 mm (12")		0.22		1.25			
Cinder Aggregate		0.22	10000	1.25			
100 mm (4")		0.20		1.14			
200 mm (8'')		0.30		1.70			
300 mm (12")		0.33	Lee -	1.87			
Lightweight Aggregate							
100 mm (4")		0.26		1.48			
200 mm (8")		0.35		1.99			
300 mm (12")		0.40		2.27			
Common Brick, Clay, 100 mm (4")		0.07		0.40			
Common Brick, Concrete, 100 mm (4")		0.05		0.28			
Stone (Lime or Sand)	0.00060		0.09				
Steel	0.000022		0.0032				
Aluminum	0.0000049		0.0007				
Glass (No Air Films) 3 - 6 mm (1/8" - 1/4")	1000) 1	0.01		0.06			
Air							
Enclosed Air Space (Non-Reflective) Heat Flow Up, 25 - 100 mm							
(1" - 4") Heat Flow Down, 25 - 100 mm		0.15		0.85			
(1" - 4") Heat Flow Horizontal, 25 - 100 mm		0.18		1.02			
(1" - 4") Air Surface Films		0.17		0.97			
Outside Air Film (Moving Air) Inside Air Film (Still Air)		0.03		0.17			
Horizontal, Heat Flow Up		0.11		0.62			
Sloping 45°, Heat Flow Up		0.11		0.62			
Vertical Heat Flow Horizontal		0.12		0.68			

0.68

0.91

0.45

0.12

0.16

0.08

Vertical, Heat Flow Horizontal

Horizontal, Heat Flow Down

Attic Air Film

TABLE B1 - THERMAL RESISTANCE OF SOME COMMON BUILDING MATERIALS (Cont'd)

B-2

		Thermal R	hermal Resistance		
Building Material	S.1		imperial		
or Component	R/mm	For Thickness Listed	R/in.	For Thickness Listed	
Roofing					
Asphalt Roll Roofing Asphalt Shingles Wood Shingles (Cedar Shakes) Built-Up Membrane (Not Mopped) Crushed Stone (Not Dried)	0.00055	0.03 0.08 0.17 0.06	0.08	0.17 0.45 0.97 0.34	
Sheathing Materials					
Softwood Plywood Mat-Formed Particle Board Insulating Fibreboard Sheathing Gypsum Sheathing Sheathing Paper Asphalt-Coated Kraft Paper Polyethylene Vapour Barrier	0.0087 0.0087 0.017 0.0062 0.00040 Negli. Negli.		1.25 1.25 2.45 0.89 0.06 Negli. Negli.		
Cladding Materials					
Fibreboard Siding Medium Density Hardboard, 11 mm (7/16") High Density Hardboard,		0.10		0.57	
11 mm (7/16") Softwood Siding (Lapped)		0.08		0.45	
Drop, 18 × 184 mm (3/4" × 7 1/4") Bevel, 12 × 184 mm		0.14		0.79	
$(1/2'' \times 7 1/4'')$ Bevel, 18 × 235 mm		0.14		0.79	
$(3/4'' \times 9 1/4'')$		0.18		1.02	
Plywood, 9 mm (3/8")		0.10		0.57	
Wood Shingles		0.17		0.97	
Brick (Clay or Shale) 100 mm (4")		0.08		0.45	
Brick (Concrete, Sand-Lime)		0.05		0 20	
100 mm (4") Stucco 25 mm (1")	0.0014	0.05 0.03	0.20	0.28 0.17	
Stucco, 25 mm (1")	0.0014	0.05	0.20	0.17	

TABLE B1 - THERMAL RESISTANCE OF SOME COMMON BUILDING MATERIALS (Cont'd)

Thermal Resistance

	Thermal Resistance				
Building Material	s.	I.	imp	crial	
or Component	R/mm	For Thickness Listed	R/in.	For Thickness Listed	
Cladding Materials (Cont'd)					
Metal Siding Horizontal Clapboard Profile Horizontal Clapboard with Backing Vertical V-Groove Profile Vertical Board and Batten Profile		0.12 0.25 0.12 Negli.		0.68 1.42 0.68 Negli.	
Interior Finishes					
Gypsum Board, Gypsum Lath, Drywall, 13 mm (1/2") Gypsum Plaster	0.0062	0.08	0.89	0.45	
Sand Aggregate, 13 mm (1/2") Lightweight Aggregate, 13 mm (1/2") Plywood, 7.5 mm (5/16") Hardboard, (Standard), 6 mm (1/4") Insulating Fibreboard, 25 mm (1")	0.0014 0.0044 0.0093 0.0053 0.017	0.02 0.06 0.07 0.03 0.42	0.20 0.63 1.34 0.76 2.45	0.11 0.34 0.40 0.17 2.38	
Flooring					
<pre>Maple or Oak (hardwood), 19 mm (3/4") Pine or Fir (softwood), 19 mm (3/4") Plywood, 16 mm (5/8") Mat-formed Particle Board, 16 mm (5/8") Wood Dibes Tibes 17 mm (1(20))</pre>	0.0063 0.0089 0.0088 0.0088	0.12 0.17 0.14 0.14	0.91 1.28 1.27 1.27	0.68 0.97 0.79 0.79	
<pre>Wood Fibre Tiles, 13 mm (1/2") Linoleum, Tile (resilient), 3 mm (1/8") Terrazzo, 25 mm (1") Carpet, Typical Thickness</pre>	0.016	0.21 0.01 0.01	2.31	1.19 0.06 0.06	
with Fibrous Underlay with Rubber Underlay		0.37 0.23		2.10 1.31	

TABLE B1 - THERMAL RESISTANCE OF SOME COMMON BUILDING MATERIALS (Cont'd)

B-4

		Thermal Resistance				
Building Material	s.	Ι.	imp	erial		
or Component	R/mm	For Thickness Listed	R/in.	For Thickness Listed		
Windows (including inside and outside air film	s)					
Single Glass Insulated Glass (Double Pane)		0.15		0.85		
5 mm (3/16") Air Space		0.25		1.42		
6 mm (1/4") Air Space		0.27		1.53		
13 mm (1/2") Air Space		0.30		1.70		
19 mm (3/4") Air Space		0.33		1.87		
Insulated Glass (Triple Pane)						
6 mm (1/4") Air Space		0.38	~~~	2.16		
13 mm (1/2") Air Space		0.49		2.78		
19 mm (3/4") Air Space		0.50		2.84		
Storm Windows Single Pane + 25 - 100 mm						
(1" - 4") Air Space 19 mm (3/4") Sealed Unit +		0.35		1.99		
25 - 100 mm (1" - 4") Air Space		0.49		2.78		

TABLE B1 - THERMAL RESISTANCE OF SOME COMMON BUILDING MATERIALS (Cont'd)

Thermal Resistance Values for Basements

The basement wall above grade and the basement wall and floor below grade are treated separately. The foundation wall above grade is exposed to outside air temperatures and behaves in much the same way as other above-grade construction. The below-grade portion requires special consideration, however, because other factors must be taken into account to obtain the thermal resistance values shown in Table B2. These values were obtained from measured results and will be revised as more information about below-grade heat losses becomes available.

If the desired insulation requirements do not exactly match those shown in Table B2, the one that most clearly approximates the desired value should be chosen. As the R-values for various construction types are not linear functions, they should not be interpolated from these values.

TABLE B-2 - PROVISIONAL THERMAL RESISTANCE VALUES FOR BELOW-GRADE CONSTRUCTION IN CANADA

For 200 mm (8 in.) concrete foundation wall

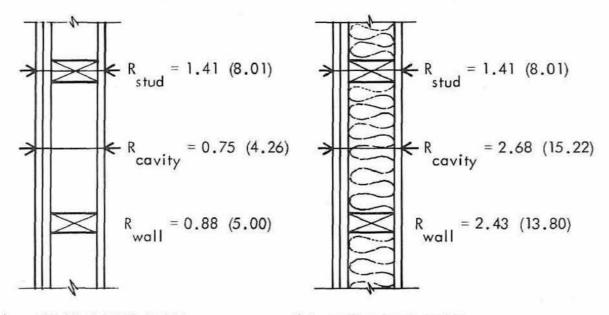
	Thermal	Resistance
	S.I.	(imperial)
Without insulation	0.8	(4.5)
With insulation 610 mm (24") below grade and 1220 mm (48") uninsulated		
R 0.70 (R4) insulation	0.9	(5.1)
R 1.41 (R8) insulation	1.1	(6.2)
R 2.11 (R12) insulation	1.2	(6.8)
R 3.52 (R20) insulation	1.3	(7.5)
With insulation down to footing		
R 0.70 (R4) insulation	1.8	(10)
R 1.41 (R8) insulation	2.5	(14)
R 2.11 (R12) insulation	3.2	(18)
R 3.52 (R20) insulation	3.9	(22)
Concrete floor	4.6	(26)

B-6

APPENDIX C

THERMAL BRIDGING IN WALLS AND CEILINGS

Thermal bridging refers to the effect of heat flowing at different rates through a building component due to different materials in the component. The most common example in housing is the presence of wall studs and ceiling joists which have a different heat flow or heat resistance (R-value) from the rest of the wall and ceiling area. Thermal bridging alters the nominal resistance (R) values of walls and ceilings and should be considered when calculating the thermal resistance of a building component, both before and after upgrading.


For example, in most houses the wall studs comprise about 20% of the net wall area and ceiling joists about 10% of the ceiling area. The formulae to calculate the R values for these houses would be:

R wall = 0.80 R cavity + 0.20 R stud R ceiling = 0.90 R cavity + 0.10 R joist

This is referred to as a parallel heat flow calculation.

Example 1

The example of a wall, shown in Figure C-1, illustrates the effects on R-values and savings.

(a) UNINSULATED WALL (BEFORE REINSULATION)

(b) INSULATED WALL (AFTER REINSULATION)

Fig. C-1 Thermal Bridging Effect of Wall Studs

It can be seen for: (a) that the thermal bridging increases the over-all R-value by 17%, (0.88 - 0.75) \div 0.75 × 100 and for (b) it decreases the over-all R-value by 9%, (2.68 - 2.43) \div 2.68 × 100.

Using $F_B = 1239 and A = 143.1 values from the text example, we can examine the effects on the savings as follows:

- Using R-values without accounting for thermal bridging: Total Q₁ = 511 + 191 - 81 = 621
- (ii) Using R-values accounting for thermal bridging: Total Q₁ = 511 + 163 - 81 = 593

		A	$\frac{R_1}{1}$	$\frac{Q_1}{2}$	R ₂	Q ₂	$\frac{s_1}{1}$	$\frac{s_2}{2}$	s p
Walls	(i)	143.1	0.75	191	2.68	53	\$275	\$629	\$541
	(ii)	143.1	0.88	163	2.43	59	\$217	\$474	\$410

Case (i) gives results for S_1 , S_2 and S_p that are high by 27%, 33%, and 32% respectively. This demonstrates the importance of accounting for thermal bridging effects.

The percent error will vary for different situations as shown by Example 2.

Example 2

Using the wall from the example in the main text (assuming these are nominal values only) and the R stud value from Figure C-1, one can use the parallel heat flow calculation to obtain corrected R-values as follows:

> $R_{I} = 0.80 (1.76) + 0.20 (1.41) = 1.69$ $R_{2} = 0.80 (2.29) + 0.20 (1.41) = 2.11$

(i) Nominal calculation: Total $Q_1 = 511 + 81 - 81 = 511$

(ii) Parallel heat flow calculation: Total $Q_1 = 511 + 85 - 81 = 515$

		<u>A</u>	$\frac{R_1}{1}$	$\frac{Q_1}{2}$	$\frac{R_2}{2}$	Q ₂	$\frac{s_1}{1}$	<u>S</u> 2	s _p
Walls	(i)	143.1	1.76	81	2.29	62	\$46	\$87	\$77
	(ii)	143.1	1.69	85	2.11	68	\$41	\$77	\$68

Case (i) again gives results for S_1 , S_2 and S_p that are high by 12%, 13%, and 13% respectively.

APPENDIX D

DEGREE-DAYS (DD) AND ACTUAL DEGREE-DAYS (ADD)

Degree-Days (DD)

Heating degree-days is a measure used to estimate heating energy consumed. Past measurements revealed that the fuel consumed in small buildings was roughly proportional to the difference between an indoor temperature of 65°F ($\approx 18^{\circ}$ C) and the outdoor temperature; consequently degree days (DD) were tabulated using a base of 65°F ($\approx 18^{\circ}$ C). This empirical correlation has served well but, because of changes to insulation levels in buildings and particularly the increased use of electrical appliances, this relation is no longer adequate.

Actual Degree-Days (ADD)

Many houses today seem to require heating only when the outdoor temperature is below freezing. It was decided, therefore, that the actual indoor/outdoor temperature difference would provide a more useful measure for computation. The true thermal load on a house could be determined using actual degree-days (ADD); the contribution of the internal heat gains would be reconsidered in some other way.

Table D1 is a list of actual degree-day (ADD) values based on an indoor temperature (T_i) of 21°C (70°F). The values were computed using an approximation method and are believed to be within a 5% accuracy.

For values not listed in Table D1 or for an interior temperature, T₁, other than 21°C (70°F), the ADD may be computed from the following formula:

ADD = DD + $(T_i - 18) \times b$ (Imperial: ADD = DD + $(T_i - 65) \times b$)

where DD = degree-days for location*

 $T_i = interior temperature$

b = constant factor from location on map in Figure D-1

^{*} This value can be obtained from the local weather office, CMHC office, electric utility office, library, The Supplement to the National Building Code of Canada, 1980, pp. 11-21, NRCC No. 17724 or Atmospheric Environmental Service, 4905 Dufferin Street, Downsview, Ontario, M3H 5T4, Phone: 416-667-4917.

The temperature, T_i , may be measured or approximated as the thermostat setting. For example, a house in Winnipeg has a constant thermostat setting of 22°C; hence, $T_i = 22°C$ (72°F) and DD = 5887 (10679). From Figure D-1 the b for Winnipeg is 161 (290) which gives

$$ADD = 5887 + (22 - 18) \times 161 = 6531$$

(ADD = 10679 + (72 - 65) × 290 = 12709)

Many occupants, however, are practicing thermostat setback, i.e., the thermostat setting is turned down at night or other times. For these situations the following formula can be used to estimate an average T_i :

$$T_{i} = \frac{h_{1}}{24} T_{1} + \frac{h_{2}}{24} T_{2}$$

where h_1 = number of hours/day at temperature T_1 h_2 = number of hours/day at temperature T_2

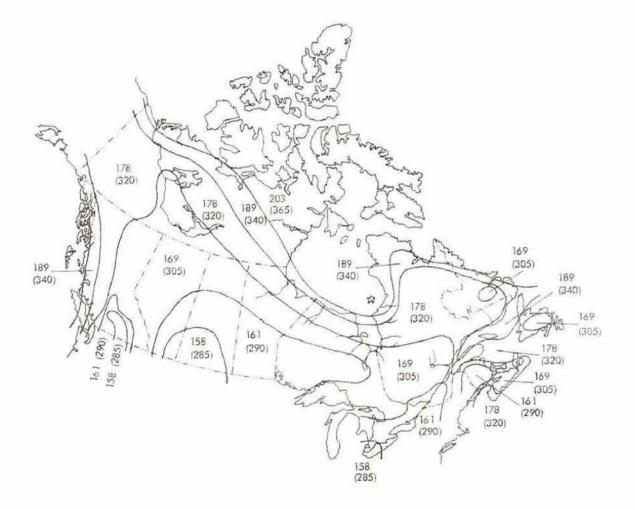
For example, a house has thermostat settings as follows:

$$T_1 = 21^{\circ}C$$
 (70°F) from 8 am to 10 pm (i.e., $h_1 = 14$)
 $T_2 = 16^{\circ}C$ (61°F) from 10 pm to 8 am (i.e., $h_2 = 10$)

Therefore,

$$T_{i} = \frac{14}{24} (21) + \frac{10}{24} (16) = 19^{\circ}C$$
$$(T_{i} = \frac{14}{24} (70) + \frac{10}{24} (61) = 66^{\circ}F)$$

and hence for a house in Winnipeg


ADD = DD +
$$(T_i - 18) \times b$$

= 5887 + (19 - 18) × 161 = 6048
(ADD = 10679 + (66 - 65) × 290 = 10969)

TABLE D1 - ACTUAL DEGREE-DAYS (ADD) BELOW 21°C (70°F) FOR SELECTED LOCATIONS IN CANADA*

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Location	°C (ADD)	(°F)	Location	°C ^(ADD)	(°F)
Frobisher Bay Yellowknife 10453 9125 19701 17234 Ottawa 5157 10143 12925 Yukon 9125 17234 Timmins 6695 12925 North Bay 5825 11202 Kenora 6413 12246 Dawson 8806 16667 London 4541 8774 Susson 8806 16667 Sault Ste Marie 5596 11025 Whitehorse 7412 14075 Thunder Bay 6251 11930 Newfoundland St. John's 5336 10591 Manitoba Grand Falls 5440 10877 Winnipeg 6370 12129 Corner Brook 5312 10578 Morden 6086 11518 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan Saskatoon 6551 12281 Sydney 4966 9574 Regina 6395 12507 New Brunswick North Battleford	Northwest Territories			Ontario		
Frobisher Bay Yellowknife 10453 9125 19701 17234 Ottawa 5157 10143 12925 Yukon 9125 17234 Timmins 6695 12925 North Bay 5825 11202 Kenora 6413 12246 Dawson 8806 16667 London 4541 8774 Susson 8806 16667 Sault Ste Marie 5596 11025 Whitehorse 7412 14075 Thunder Bay 6251 11930 Newfoundland St. John's 5336 10591 Manitoba Grand Falls 5440 10877 Winnipeg 6370 12129 Corner Brook 5312 10578 Morden 6086 11518 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan Saskatoon 6551 12281 Sydney 4966 9574 Regina 6395 12507 New Brunswick North Battleford	Alert	13727	25313	Toronto	4565	8277
Yellowknife 9125 17234 Timmins 6695 12925 Yukon Kenora 6413 12246 Dawson 8806 16667 Londoon 4541 8774 Whitehorse 7412 14075 Sault Ste Marie 5596 11025 NewFoundland St. John's 5336 10591 Manitoba 11930 NewFound Falls 5440 10877 Winnipeg 6370 12129 Corner Brook 5312 10578 Morden 6086 11518 Prince Edward Island Churchill 9781 18428 1682 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan 5130 10011 The Pas 7358 12251 Yarmouth 4558 8940 Maple Creek 5408 10925 North Battleford 6549 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 North B						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Yukon Kenora 6413 12246 Dawson 8806 16667 London 4541 8774 Dawson 7412 14075 Sault Ste Marie 5596 11025 Mitehorse 7412 14075 Sault Ste Marie 5596 11025 Newfoundland St. John's 5336 10591 Manitoba 6370 12129 Grand Falls 5440 10877 Winnipeg 6370 12129 Corner Brook 5312 10578 Morden 6086 11518 Prince Edward Island Kenora 6086 11518 Churchill 9781 18428 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 North Battleford 6549 12507 North Battleford 6549 12507 New Brunswick Koncton 5	, or rounder o	0100	27201			
Dawson 8806 16667 London 4541 8774 Whitehorse 7412 14075 Sault Ste Marie 5596 11025 Newfoandland 5336 10591 Manitoba 6251 11930 Newfoand Falls 5440 10877 Winnipeg 6370 12129 Corner Brook 5312 10578 Morden 6086 11518 Prince Edward Island Korden 6086 11518 Churchill 9781 18428 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan 5395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 North Battleford 6549 12231 North Battleford 6549 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 North Battleford 6549 12507 12261 12281 Yarmouth 4558 10236 <t< td=""><td>Yukon</td><td></td><td></td><td></td><td></td><td></td></t<>	Yukon					
Dawson 8806 16667 Sault Ste Marie 5596 11025 Whitehorse 7412 14075 Sault Ste Marie 5596 11025 Newfoundland		0000				
Whitehorse 7412 14075 Thunder Bay 6251 11930 Newfoundland St. John's 5336 10591 Manitoba 10877 10970 12129 Grand Falls 5440 10877 Winnipeg 6370 12129 Corner Brook 5312 10578 Morden 6086 11518 Prince Edward Island Morden 6086 11518 Churchill 9781 18428 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan						
Newfoundland St. John's 5336 10591 Manitoba Grand Falls 5440 10877 Winnipeg 6370 12129 Corner Brook 5312 10578 Morden 6086 11518 Prince Edward Island Churchill 9781 18428 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan 5130 10011 The Pas 7358 12281 Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 North Battleford 6549 12507 New Brunswick Moncton 5214 10236 Alberta Edmundston 5767 11246 Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793	Whitehorse	7412	14075			
Grand Falls Corner Brook 5440 5312 10877 10578 Winnipeg Thompson 6370 8437 12129 15425 Prince Edward Island Charlottetown 5130 10011 Thompson Churchill 8437 15425 Morden 6086 11518 1011 9781 18428 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan 12281 12281 12281 Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick 5767 11246 Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793	Newfound land					
Grand Falls Corner Brook 5440 5312 10877 10578 Winnipeg Thompson 6370 8437 12129 15425 Prince Edward Island Charlottetown 5130 10011 Thompson Churchill 8437 15425 Morden 6086 11518 1011 9781 18428 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan 12281 12281 12281 Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick 5767 11246 Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793	St. John's	5336	10591	Manitoba		
Corner Brook 5312 10578 Winnipeg Thompson 6370 12129 Prince Edward Island Morden 6086 11518 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan 6551 12281 Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick Fredericton 5182 10121 Edmonton 6097 11793	Grand Falls	5440				
Prince Edward Island Thompson 8437 15425 Prince Edward Island Morden 6086 11518 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan Saskatoon 6551 12281 Ilalifax 4630 8886 Saskatoon 6551 12281 Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick Alberta Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793	Corner Brook					
Prince Edward Island Churchill 9781 18428 Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan Saskatchewan 5130 12281 Ilalifax 4630 8886 Saskatoon 6551 12281 Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 Now Brunswick North Battleford 6549 12507 New Brunswick Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793						
Charlottetown 5130 10011 The Pas 7358 13806 Nova Scotia Saskatchewan Saskatchewan <th< td=""><td>Prince Edward Island</td><td></td><td></td><td></td><td></td><td></td></th<>	Prince Edward Island					
Nova Scotia Saskatchewan Halifax 4630 8886 Saskatoon 6551 12281 Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick Alberta Alberta Alberta Fredericton 5182 10121 Edmonton 6097 11793		5170	10011	standig and the second second		
Halifax 4630 8886 Saskatoon 6551 12281 Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick 5214 10236 Alberta Edmundston 5767 11246 Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793	Charlottetown	5130	10011	The Pas	1358	13806
Sydney 4966 9574 Regina 6395 12231 Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick 5214 10236 Alberta Edmundston 5767 11246 Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793	Nova Scotia			Saskatchewan		
Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick Moncton 5214 10236 Alberta Edmundston 5767 11246 Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793	Halifax	4630	8886	Saskatoon	6551	12281
Yarmouth 4558 8940 Maple Creek 5408 10925 New Brunswick North Battleford 6549 12507 New Brunswick 5214 10236 Alberta 11228 Moncton 5767 11246 Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793	Sydney	4966	9574	Regina	6395	12231
New Brunswick Moncton 5214 10236 Alberta Edmundston 5767 11246 Calgary 5851 11228 Fredericton 5182 10121 Edmonton 6097 11793		4558	8940		5408	10925
Moncton521410236AlbertaEdmundston576711246Calgary585111228Fredericton518210121Edmonton609711793				North Battleford	6549	12507
Moncton 5214 10236	New Brunswick					
Edmundston576711246Calgary585111228Fredericton518210121Edmonton609711793	Moncton	5214	10236	Alberta		
Fredericton 5182 10121 Edmonton 6097 11793				Calgary	5851	11228
Jarne Jord Jord 1010 Vermitizion 7004 14030						
Lethbridge 5200 10094	Sature Sound	5210	5570			
Québec	Québec				5200	10004
Montréal 4955 9653 British Columbia	Montréal	4955	9653	British Columbia		
Québec 5587 10462 Vancouver 3539 7115				Vancouver	3539	7115
Sept lles 6703 13027 Victoria 3609 7179						
Gaspé 5906 11400 Kamloops 4229 8224						
Drummondville 5161 10150 Fort Nelson 7571 14302				-		
Schefferville 8761 16480 Prince George 5894 11280						
St. Jean 4997 10025						20021
Trois Rivières 5436 10756						

* These °C and °F values cannot be directly converted from one to the other, as 21°C is not exactly equal to $70^\circ F$

FIGURE D-1 APPROXIMATE DEGREE DAYS PER DEGREE FROM 18°C (65°F) TO 24°C (75°F)

APPENDIX E

SEASONAL EFFICIENCY OF HEATING SYSTEMS (K3)

The steady-state efficiency of the heating system is the efficiency obtained when the system has reached its optimum operating conditions.

The seasonal efficiency, is the efficiency obtained over the heating season as the average of the efficiencies obtained when the system is operating under both optimum and during less than optimum conditions. Hence, the seasonal efficiency is usually lower, often considerably lower, than the steady-state efficiency. The amount of time spent in non-optimum operation relative to optimum operation determines the difference between steady-state and seasonal efficiencies.

This Appendix deals with the heating efficiency of only the following: electricity, gas, and oil. It also includes the numerical determination of seasonal efficiency, K_3 . A system that is 100% seasonally efficient would have a K_3 of 1.00 whereas a system that is 70% seasonally efficient would have a K_3 of 0.70.

Electricity

It is generally accepted that both the seasonal and steady-state efficiencies of electric heating systems are 100%. Hence, for space heating by baseboard heaters or forced-air furnaces, the value of K₃ is 1.00.

Gas and Oil

The steady-state efficiencies of gas and oil furnace heating systems are considerably less (by 20-25%) than 100% because of the combustion process and other factors. Seasonal efficiencies are less than the steadystate efficiencies because gas and oil furnaces require 5-10 minutes after each start-up to reach optimum (steady-state) operating conditions. If a furnace is oversized relative to the house heating load, the furnace ontime of the furnace cycle is shorter. This results in a lower seasonal efficiency because of the higher ratio of non-optimum to optimum operation time. After reinsulating, the house heating load has been reduced and the furnace should be adjusted to reduce its output capacity to match the new reduced load.

Little can be done to reduce the capacity of gas furnaces except by replacing them. The capacity of an oil-fired furnace, however, can be reduced by replacing the oil burner nozzle. At present, the nozzle can only be reduced to one size lower than the CSA rating without voiding certification. If a retention head burner is retrofitted, further reduction is encouraged. Determination of K3 for Gas and Oil Furnaces

The following information and procedure apply to older furnaces and may not apply to newer gas and oil furnaces with features such as electronic ignition, retention head burner, and solenoid valve.

If it is not feasible to determine K_3 by the following technique, the value 0.55 may be used as a "default" or "best guess" value for both gas and oil furnaces.

The first step is to calculate the building heat loss using the following formula:

building heat loss = Total $Q_1 \times (T_i - T_D)$

where Total $Q_1 = \text{sum of } Q_1$'s

- found in row 12 of Column Q_1 in the Energy Savings Chart. (For example, Total $Q_1 = 511$ from Chart 2.)

 $(T_i - T_p)$ = design temperature difference

where T_i is the previously calculated interiour house temperature and T_D is the 2 1/2% January Design Temperature from Table E-1.

The second step is to find the furnace rated output which is usually called bonnet capacity and stamped on a plate on the casing of oil furnaces. For gas furnaces one takes the rated input shown on the furnace plate and multiplies it by 0.75 which yields the furnace rated output. (Remember to convert these values to metric if working with metric units.)

The third step is to calculate the furnace overfiring capacity by putting the foregoing two quantities into the following equation and carrying out the numerical calculation.

furnace overfiring = $\frac{\text{furnace rated output - building heat loss}}{\text{building heat loss}} \ge 100\%$

The fourth step is to measure or calculate the <u>steady-state</u> <u>efficiency</u> of the furnace. This can be measured by having a furnace efficiency test carried out on oil and gas furnaces.* It may be calculated for oil, but not gas, furnaces using the following equation:

steady-state efficiency = $\frac{\text{bonnet capacity}}{\text{firing rate} \times 140,000}$

where

bonnet capacity is read off furnace platefiring rate is read off furnace plate

^{*} For details see The Billpayer's Guide to Furnace Servicing, EMR, 1975, pp. 40-43 and 59-61

Location	Design °C	Temperature (°F)	Location	Design °C	Temperature (°F)
Northwest Territories			Ontario		
Alert	-43	(-45)	Toronto	-18	(0)
Frobisher Bay	-40	(-40)	Ottawa	-25	(-13)
Yellowknife	-43	(-45)	Timmins	-34	(-29)
			North Bay	-28	(-18)
Yukon			Kenora	-33	(-27)
Dawson	-50	(59)	London	-18	(0)
Whitehorse	-41	(-58) (-42)	Sault Ste Marie	-25	(-13)
whitehorse	-41	(~42)	Thunder Bay	-31	(-24)
Newfoundland			Manitoba		
St. John's	-14	(7)			
Grand Falls	-21	(-6)	Winnipeg	-33	(-27)
Corner Brook	-19	(-2)	Thompson	-42	(-44)
			Morden	-31	(-24)
Prince Edward Island			Churchill	-39	(-38)
Charletteterm	-20	(1)	The Pas	-36	(-33)
Charlottetown	-20	(-4)	Saskatchewan		
Nova Scotia			Saskatoon	-35	(-31)
llalifax	-16	(3)	Regina	-34	(-29)
Sydney	-16	(3)	Maple Creek	-31	(-24)
Yarmouth	-13	(9)	North Battleford	-34	(-29)
		(0)			()
New Brunswick			Alberta		
Moncton	-22	(-8)	Calgary	-31	(-24)
Edmundston	-27	(-17)	Edmonton	-32	(-26)
Fredericton	-24	(-11)	Fort Vermilion	-41	(-42)
Saint John	-22	(-8)	Lethbridge	-30	(-22)
Québec			British Columbia		
Montañal	27	(0)	Vanacuuran	-7	(10)
Montréal	-23 -25	(-9)	Vancouver	-7	(19)
Québec Sept lles	-25	(-13) (-22)	Victoria	-25	(23) (-13)
Gaspé	-23	(-22)	Kamloops Fort Nelson	-40	(-40)
Drummondville	-25	(-13)	Prince George	-33	(-27)
Schefferville	-28	(-36)	TITUCE OCOLEC	-00	(2/)
St. Jean	-24	(-11)			
Trois Rivières	-25	(-13)			
A SAN THAT AVA VU		(10)			

TABLE E1 - JANUARY 21% DESIGN TEMPERATURES FOR SELECTED LOCATIONS IN CANADA

For other Canadian locations see "The Supplement to the National Building Code of Canada, 1980," pp. 11-21, NRCC No. 17724. (Price: \$7.30) $\underline{\rm The~final~step}$ is to use the overfiring capacity and steady-state efficiency with Table E2 to find the seasonal efficiency, ${\rm K}_3$

TABLE E2 - APPARENT SEASONAL EFFICIENCY OF OIL- AND GAS-FIRED FURNACE (K3)

Rated Steady State Efficiency of	Overfiring Capacity					
Furnace	0	20	40	60	80	
0.80	0.67	0.64	0.62	0.59	0.57	
0.75	0.63	0.60	0.58	0.56	0.54	
0.70	0.58	0.56	0.54	0.52	0.50	
0.65	0.54	0.52	0.50	0.48	0.46	
0.60	0.50	0.48	0.46	0.44	0.43	