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Knowledge Representation and Reasoning
in Norm-Parameterized
Fuzzy Description Logics

Jidi Zhao1, Harold Boley2

Abstract The Semantic Web is an evolving extension of the World Wide Web
in which the semantics of the available information are formally described,
making it more machine-interpretable. The current W3C standard for Seman-
tic Web ontology languages, OWL, is based on the knowledge representation
formalism of Description Logics (DLs). Although standard DLs provide con-
siderable expressive power, they cannot express various kinds of imprecise or
vague knowledge and thus cannot deal with uncertainty, an intrinsic feature
of the real world and our knowledge. To overcome this deficiency, this pa-
per extends a standard Description Logic to a family of norm-parameterized
Fuzzy Description Logics. The syntax to represent uncertain knowledge and
the semantics to interpret fuzzy concept descriptions and knowledge bases are
addressed in detail. The paper then focuses on a procedure for reasoning with
knowledge bases in the proposed Fuzzy Description Logics. Finally, we prove
the soundness, completeness, and termination of the reasoning procedure.

1 Introduction

The Semantic Web is an evolving extension of the World Wide Web in which
the semantics of the available information are formally described by logic-
based standards and technologies, making it possible for machines to under-
stand the information on the Web [3].
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Uncertainty is an intrinsic feature of real-world knowledge, which is also
reflected in the World Wide Web and the Semantic Web. Many concepts
needed in knowledge modeling lack well-defined boundaries or, precisely de-
fined criteria. Examples are the concepts of young, tall, and cold. The Uncer-
tainty Reasoning for the World Wide Web (URW3) Incubator Group defined
the challenge of representing and reasoning with uncertain information on
the Web. According to the latest URW3 draft report, uncertainty is a term
intended to encompass different forms of uncertain knowledge, including in-
completeness, inconclusiveness, vagueness, ambiguity, and others [18]. The
need to model and reason with uncertainty has been found in many different
Semantic Web contexts, such as matchmaking in Web services [20], classifica-
tion of genes in bioinformatics [28], multimedia annotation [27], and ontology
learning [6]. Therefore, a key research direction in the Semantic Web is to
handle uncertainty.

The current W3C standard for Semantic Web ontology languages, OWL
Web Ontology Language, is designed for use by applications that need to
process the content of information instead of just presenting information to
humans [21, 23]. It facilitates greater machine interpretability of Web content
than that supported by other Web languages such as XML, RDF, and RDF
Schema (RDFS). This ability of OWL is enabled by its underlying knowledge
representation formalism Description Logics (DLs). Description Logics (DLs)
[2][1][12] are a family of logic-based knowledge representation formalisms de-
signed to represent and reason about the conceptual knowledge of arbitrary
domains. Elementary descriptions of DL are atomic concepts (classes) and
atomic roles (properties or relations). Complex concept descriptions and role
descriptions can be built from elementary descriptions according to construc-
tion rules. Different Description Logics are distinguished by the kinds of con-
cept and role constructors allowed in the Description Logic and the kinds
of axioms allowed in the terminology box (TBox). The basic propositionally
closed DL is ALC in which the letters AL stand for attributive language and
the letter C for complement (negation of arbitrary concepts). Besides ALC,
other letters are used to indicate various DL extensions. More pecisely, S
is often used for ALC extended with transitive roles (R+), H for role hier-
archies, O for nominals, I for inverse roles, N for number restrictions, Q
for qualified number restrictions, and F for functional properties. OWL1 has
three increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL
Full. If we omit the annotation properties of OWL, the OWL-Lite sublan-
guage is a syntactic variant of the Description Logic SHIF(D) where (D)
means data values or data types, while OWL-DL is almost equivalent to the
SHOIN (D) DL [13]. OWL-Full is the union of OWL syntax and RDF, and
known to be undecidable mainly because it does not impose restrictions on the
use of transitive properties. Accordingly, an OWL-Lite ontology corresponds

1 In the following, OWL refers to OWL 1. Similar sublanguages exist for OWL 2.
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to a SHIF(D) knowledge base, and an OWL-DL ontology corresponds to a
SHOIN (D) knowledge base.

Although standard DLs provide considerable expressive power, they are
limited to dealing with crisp, well-defined concepts and roles, and cannot
express vague or uncertain knowledge. To overcome this deficiency, consider-
able work has been carried out in integrating uncertain knowledge into DLs
in the last decade. One important theory for such integration is Fuzzy Sets
and Fuzzy Logic. Yen [33] is the first who combines fuzzy logic with term
subsumption languages and proposes a fuzzy extension to a very restricted
DL, called FT SL−. The corresponding standard DL FL−, as defined in
[5], is actually a sublanguage of ALC, and only allows primitive concepts,
primitive roles, defined concepts formed from concept intersection, value re-
striction and existential quantification. Semantically, the min function is used
to interpret the intersection between two FT SL− concepts. The knowledge
base in FT SL− includes only fuzzy terminological knowledge in the form of
C ⊑ D, where C and D are two fuzzy concepts. The inference problem Yen
is interested in is testing subsumption relationships between fuzzy concepts.
A concept D subsumes a concept C if and only if D is a fuzzy superset of
C, i.e., given two concepts C, D defined in the fuzzy DL, C ⊑ D is viewed as
∀x.C(x) ≤ D(x). Thus, the subsumption relationship itself is a crisp Yes/No
test. A structural subsumption algorithm is given in his work. Tresp and
Molitor [32] consider a more general extension of ALC to many-valued logics,
called ALCFM. The language ALCFM allows constructors including conjunc-
tion, disjunction, manipulator, value restriction, and existential qualification
in the definition of complex concepts. They define the semantics of a value
restriction differently from Yen’s work. This work also starts addressing the
issue of a fuzzy semantics of modifiers M , such as mostly, more or less, and
very, which are unary operators that can be applied to concepts. An example
is (very)TallPerson(John), which means that ”John is a very tall person”.
In both of the work by [33] and [32], knowledge bases include only fuzzy
terminological knowledge. But different from Yen’s work, Tresp and Molitor
are interested in determining fuzzy subsumption between fuzzy concepts, i.e.,
given concepts C, D, they want to know to which degree C is a subset of D.
Such a problem is reduced to the problem of determining an adequate evalu-
ation for an extended ABox which corresponds to a solution for a system of
inequations. The degree of subsumption between concepts is then determined
as the minimum of all values obtained for some specific variable. [32] presents
a sound and complete reasoning algorithm for ALCFM which basically is an
extension of each completion rule in the classical tableau algorithm for stan-
dard ALC. Another fuzzy extension of ALC is due to [30]. In this work, the
interpretation of the Boolean operators and the quantifiers is based on the min
and max functions, and the knowledge base includes both fuzzy terminological
and fuzzy assertional knowledge. That is, the ABox assertions are equipped
with a degree from [0,1]. Thus in this context, one may also want to find out
to which degree other assertions follow from the ABox, which is called a fuzzy
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entailment problem. A decision algorithm for such fuzzy entailment problems
in this fuzzy extension of ALC is presented. Similar to Yen, [30] is interested
in crisp subsumption of fuzzy concepts, with the result being a crisp Yes
or No, instead of a fuzzy subsumption relationship. Although [31] addresses
the syntax and semantics for more expressive fuzzy DLs, no reasoning algo-
rithm for the fuzzy subsumption between fuzzy concepts is given in his work.
[25] consider modifiers in a fuzzy extension of the Description Logic ALCQ,
but the knowledge base in their work only consists of the TBox. They also
present an algorithm which calculates the satisfiability interval for a fuzzy
concept in fuzzy ALCQ. The recent work in [29] presents an expressive fuzzy
DL language with the underlying standard DL SHIN . As we will explain in
the following section, Fuzzy Logic is in fact a family of multi-valued logics
derived from Fuzzy Set Theory. Identified by the specific fuzzy operations
applied in the logic, the Fuzzy Logic family consists of Zadeh Logic, Product
Logic, Gödel Logic, and more. Generally speaking, all existing work uses the
basic fuzzy logic known as Zadeh Logic. Surprisingly enough, little work uses
other logics with the exception of [4], which considers concrete domains and
provide an algorithm for fuzzy ALC(D) under product semantics, and the
work by Hájek [8, 9], which considers a fuzzy DL under arbitrary t-norms
with ALC as the underlying DL language.

In this paper, in order to extend standard DLs with Fuzzy Logic in a
broad sense, we propose a generalized form of norm-parameterized Fuzzy
Description Logics. The main contributions of this paper can be explained as
follows. First, unlike other approaches except [31], which only deal with crisp
subsumption of fuzzy concepts, our Fuzzy Description Logic deals with fuzzy
subsumption of fuzzy concepts and addresses its semantics. We argue that
fuzzy subsumption of fuzzy concepts permits more adequate modeling of the
uncertain knowledge existing in real world applications. Second, almost all
of the existing work employs a single set of fuzzy operations, which limits
their applicability in various real-world system and knowledge requirements.
We propose a set of t-norms and s-norms in the semantics of our norm-
parameterized Fuzzy Description Logics, so that the interpretation of complex
concept descriptions can cover different logics in the Fuzzy Logic family, such
as Zadeh Logic, Lukasiewicz Logic, Product Logic, Gödel Logic, and Yager
Logic. Most importantly, Product Logic interprets fuzzy intersection as the
inner product of the truth degrees between fuzzy concepts and fuzzy union
as the product-sum operation. It thus broadens Fuzzy Logic and sets up a
connection between Fuzzy Logic in the narrow sense and Probability Theory
[22]. Third, the notion of fuzzy subsumption was first proposed in [31] and
used in the forms ≥ n and ≤ n, where n ∈ [0,1], but it was left unsolved how
to do reasoning on fuzzy knowledge bases. In this paper, we define a Fuzzy
Description Logic with a unified uncertainty intervals of the form [l, u], where
l, u ∈ [0,1] and l ≤ u, and present its reasoning procedure.

Besides the work based on Fuzzy Sets and Fuzzy Logic, there is also some
work based on other approaches. Probabilistic Description Logics [16][17][19]
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are built on Probability Theory; [11, 27] follows Possibility Theory; and [15]
proposes a framework called ALCu, which extends the standard DL ALC
with a combination of different uncertainties. Due to space limitation, we
point readers to our work in [35] for an in-depth review of various uncertainty
extensions to Description Logics.

The current paper presents the whole methodology of our proposed Fuzzy
Description Logic, including the underlying Fuzzy Logics, the syntax, the se-
mantics, the knowledge bases, the reasoning procedure, and its decidability.
The rest of the paper is organized as follows. Section 2 briefly introduces
the syntax and semantics of the standard Description Logic ALCN . Section
3 reviews Fuzzy Logic and Fuzzy Set Theory. Section 4 presents the syntax
and semantics of the expressive Fuzzy Description Logic fALCN , as well as
the components of knowledge bases using this knowledge representation for-
malism. Section 5 explains different reasoning tasks on the knowledge base.
Section 6 addresses General Concept Inclusion (GCI) axioms, the fALCN
concept Negation Normal Form (NNF), and the ABox augmentation. In Sec-
tion 7, we put forward the reasoning procedure for the consistency checking
problem of an fALCN knowledge base and illustrate fuzzy completion rules.
Section 8 proves the decidability of the reasoning procedure by addressing
its soundness, completeness, and termination. Finally, in the last section, we
summarize our main results and give an outlook on future research .

2 Preliminaries

We briefly introduce Description Logics (DLs) in the current section. Their
syntax and semantics in terms of classical First Order Logic are also pre-
sented. As a notational convention, we will use a, b, x for individuals, A for
an atomic concept, C and D for concept descriptions, R for atomic roles.

Concept descriptions in ALCN are of the form:
C → ⊤|⊥|A|¬A|¬C|C ⊓ D|C ⊔ D|∃R.C|∀R.C| ≥ nR| ≤ nR
The special concept names ⊤ (top) and ⊥ (bottom) represent the most

general and least general concepts, respectively.
DLs have a model theoretic semantics, which is defined by interpreting

concepts as sets of individuals and roles as sets of pairs of individuals. An
interpretation I is a pair I = (∆I , ·I) consisting of a domain ∆I which is a
non-empty set and an interpretation function ·I which maps each individual
x into an element of ∆I (xI ∈ ∆I), each concept C into a subset of ∆I

(CI ⊆ ∆I) and each atomic role R into a subset of ∆I ×∆I (RI ⊆ ∆I ×∆I).
The semantic interpretations of complex concept descriptions are shown in
Table 1. In the at-most restriction and the at-least restriction, ♯{·} denotes
the cardinality of a set.

A knowledge base in DLs consists of two parts: the terminological box
(TBox T ) and the assertional box (ABox A). There are two kinds of assertions
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Table 1 Syntax and Semantics of ALCN constructors

DL Constructor DL Syntax Semantics
top concept ⊤ △I

bottom concept ⊥ ∅
atomic concept A AI ⊆ △I

concept C CI ⊆ △I

atomic negation ¬A △I \ AI

concept negation ¬C △I \ CI

concept conjunction C ⊓ D CI ∩ DI

concept disjunction C ⊔ D CI ∪ DI

exists restriction ∃R.C {x ∈ △I |∃y. < x, y >∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x ∈ △I |∀y. < x, y >∈ RI → y ∈ CI}
at-most restriction ≤ nR {x ∈ △I |♯{y ∈ △I |RI(x, y)} ≤ n}
at-least restriction ≥ nR {x ∈ △I |♯{y ∈ △I |RI(x, y)} ≥ n}

in the ABox of a DL knowledge bas: concept individual and role individual.
A concept individual assertion has the form C(a) while a role individual
assertion is R(a, b). The semantics of assertions is interpreted as the assertion
C(a) (resp. R(a, b)) is satisfied by I iff a ∈ CI (resp. (a, b) ∈ RI).

The TBox of a DL knowledge base has several kinds of axioms. A concept
inclusion axiom is an expression of subsumption of the form C ⊑ D. The
semantics of a concept inclusion axiom is interpreted as the axiom is satisfied
by I iff ∀x ∈ ∆I , x ∈ CI → x ∈ DI . A concept equivalence axiom is an
expression of the form C ≡ D. Its semantics is that the axiom is satisfied by
I iff ∀x ∈ ∆I , x ∈ CI → x ∈ DI and x ∈ DI → x ∈ CI .

3 Fuzzy Set Theory and Fuzzy Logic

Fuzzy Set Theory was first introduced by Zadeh [34] as an extension to the
classical notion of a set to capture the inherent vagueness (the lack of crisp
boundaries of sets). Fuzzy Logic is a form of multi-valued logic derived from
Fuzzy Set Theory to deal with reasoning that is approximate rather than
precise. Just as in Fuzzy Set Theory the set membership values can range
between 0 and 1, in Fuzzy Logic the degree of truth of a statement can range
between 0 and 1 and is not constrained to the two truth values {false, true}
as in classical predicate logic [24]. Formally, a fuzzy set X is characterized
by a membership function µ(x) which assigns a value in the real unit inter-
val [0,1] to each element x ∈ X, mathematically notated as µ : X → [0, 1].
µ(x) gives us a degree of an element x belonging to a set X. Such degrees
can be computed based on some specific membership functions which can be
linear or non-linear. Figure 1 shows the most general form of linear member-
ship functions, also known as a trapezoidal membership function. Formally,
we define it as trapezoidal(a,b,c,d) with the range of the membership func-
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tion being [k1, k2]. Other linear membership functions can be regarded as
its special forms. Specifically, if a=b and c=d, it defines a crisp membership
function, crisp(a,c). If a=b=0, it defines a left-shoulder membership function
leftshoulder(c,d). Similarly, it defines a right-shoulder membership function
rightshoulder(a,b) when c=d=∞. It defines a triangular membership function
triangular(a,b,d) if b=c.

Fig. 1 Fuzzy Membership Function

For example, as shown in Figure 2, the fuzzy set Young is defined by
a left shoulder membership function leftshoulder(30,50), while the fuzzy set
Old is defined by a right shoulder membership function rightshoulder(40,70).
Assume we know, John is 45 years old. Therefore, we have Y oung(John) =
0.25 which means the statement ”John is young” has a truth value of 0.25.
We also have Old(John) = 0.17 which means the statement ”John is old” has
a truth value of 0.17. But more often, we want to make vaguer statements,
saying that ”John is old” has a truth value of greater than or equal to 0.17.
Such a statement can be written as Old(John) ≥ 0.17. Another kind of
often-used statement is less than or equal to, e.g., the truth degree for ”John
is young” is less than or equal to 0.25 (Y oung(John) ≤ 0.25). In order to
describe all of the above statements in a uniform form, we employ an interval
syntax [l, u] with 0 ≤ l ≤ u ≤ 1. Then Y oung(John) = 0.25 can be written
as Y oung(John) [0, 0.25], Y oung(John) ≤ 0.25 as Y oung(John) (0, 0.25],
Old(John) ≥ 0.17 as Old(John) [0.17, 1].

A fuzzy relation R over two fuzzy sets X1 and X2 is defined by a function
R : X1×X2 → [0, 1]. For example, the statement that ”John drives 150” has a
truth value of greater than or equal to 0.6 can be defined as drives(John, 150)
[0.6, 1].

In the context of fuzzy sets and fuzzy relations, Fuzzy Logic extends the
Boolean operations complement, union, and intersection defined on crisp sets
and relations. The fuzzy operations in Fuzzy Logic are interpreted as math-
ematical functions over the unit interval [0,1]. The mathematical functions
for fuzzy intersection are usually called t-norms (t(x, y)) and those for fuzzy
union are called s-norms (s(x, y)). All mathematical functions satisfying cer-
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Fig. 2 A membership function for the concept Young

tain mathematical properties can serve as t-norms and s-norms. For example,
in particular, a binary operation t(x,y) on the interval [0,1] is a t-norm if it
is commutative, associative, non-decreasing and 1 is its unit element. The
most well-known fuzzy operations for t-norms and s-norms include Zadeh
Logic, Lukasiewicz Logic, Product Logic, Gödel Logic, and Yager Logic, as
summarized in Table 22.

Table 2 Fuzzy Operations

Zadeh
Logic

Lukasiewicz
Logic

Product
Logic

Gödel
Logic

Yager Logic

t-norm
(t(x, y))

min(x, y)max(x + y −
1, 0)

x · y min(x, y) min(1, (xw + yw)
1

w )

s-norm
(s(x, y))

max(x, y)min(x + y, 1) x+y−x·y max(x, y) 1−min(1, ((1−x)w +

(1 − y)w)
1

w )

Mathematical functions for fuzzy negation (¬x) have to be non-increasing,
and assign 0 to 1 and vice versa. There are at least two fuzzy complement
operations satisfying the requirements. One is Lukasiewicz negation (¬x =

1 − x) and the other is Gödel negation (¬x =

{

1 if x = 0

0 else
).

Fuzzy implication (x⇒y) is also of fundamental importance for Fuzzy Logic
but is sometimes disregarded, as we can use a straightforward way to define
implication from fuzzy union and fuzzy negation using the corresponding
tautology of classical logic; such implications are called S-implications (also
known as the Kleene-Dienes implication). That is, denoting the s-norm as
s(x,y) and the negation as ¬x, we have x ⇒ y ≡ s(¬x, y).

Another way to define implication is R-implications [10]: an R-implication
is defined as a residuum of a t-norm; denoting the t-norm t(x,y) and the

2 w satisfies 0 < w < ∞, w = 2 is mostly used.
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residuum ⇒, we have x ⇒ y ≡ max{z|t(x, z) ≤ y}. This is well-defined only
if the t-norm is left-continuous.

4 Fuzzy Description Logic

In this section, we present the syntax and semantics of fALCN , as well as
fALCN knowledge bases.

4.1 Syntax of fALCN

Definition 1 Let NC be a set of concept names. Let R be a set of role
names. The set of fALCN roles only consists of atomic roles. The set of
fALCN concepts is the smallest set such that

1. every concept name is a concept and
2. if C and D are fALCN concepts and R is a fALCN role, then (¬C),

(C ⊓ D), (C ⊔ D), (∃R.C), (∀R.C), (≥ R), and (≤ R) are concepts.

We can see that the syntax of this Fuzzy Description Logic is identical to
that of the standard Description Logic ALCN . But in fALCN , the concepts
and roles are defined as fuzzy concepts (i.e. fuzzy sets) and fuzzy roles (i.e.
fuzzy relations), respectively. A fuzzy concept here can be either a primitive
concept defined by a membership function, or a defined concept constructed
using the above fuzzy concept constructors.

4.2 Semantics of fALCN

Similar to standard DL, the semantics of fALCN is based on the notion of
interpretation. Classical interpretations are extended to the notion of fuzzy
interpretations by using membership functions that range over the interval
[0,1].

Definition 2 A fuzzy interpretation I is a pair I = (∆I , ·I) consisting of
a domain ∆I , which is a non-empty set, and a fuzzy interpretation function
·I , which maps each individual x into an element of ∆I (x ∈ ∆I), each
concept C into a membership function CI : ∆I → [0, 1], and each atomic role
R into a membership function RI : ∆I × ∆I → [0, 1].

Next we define the semantics of fALCN constructors, including the top
concept (⊤), the bottom concept (⊥), concept negation (¬), concept conjunc-
tion (⊓), concept disjunction (⊔), exists restriction (∃), value restriction (∀),
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and number restrictions (≤,≥). We explain how to apply the Fuzzy Logic
operations of Table 2 to fALCN with some examples.

The semantics of the top concept ⊤ is the greatest element in the domain
∆I , that is, ⊤I = 1. Note that, in standard DL, the top concept ⊤ ≡ A⊔¬A,
while in fALCN , such an equivalence is not always true. After applying the
s-norms s(x,¬x) of different logics in Table 2 on A ⊔ ¬A, only the result in
Lukasiewicz Logic is still equal to 1. Thus, in fALCN , we have to explicitly
define the top concept, stating that the truth degree of x in ⊤ is 1. Similarly,
the bottom concept ⊥ is the least element in the domain, defined as ⊥I = 0.

Concept negation (also known as concept complement) ¬C is interpreted
with a mathematical function which satisfies

1. ¬⊤I(x) = 0,¬⊥I(x) = 1.
2. self-inverse, i.e., (¬¬C)I(x) = CI(x).

As we have discussed in Section 3, both Lukasiewicz negation and Gödel
negation satisfy these properties. In our approach, we adopt Lukasiewicz
negation (¬x = 1 − x) as it reflects human being’s intuitively understand-
ing of the meaning of concept negation. For example, if we have that the
statement ”John is young” has a truth value of greater than or equal to 0.8
(Y oung(John) [0.8, 1]), and after applying Lukasiewicz negation operator to
the statement ”John is not young”, we have ¬Y oung(John) = ¬[0.8, 1] =
[0, 0.2].

The interpretation of concept conjunction (also called concept intersec-
tion) is defined by a t-norm as (C ⊓ D)I(x) = t(CI(x), DI(x)) (∀x ∈ ∆I),
that is, under the fuzzy interpretation I, the truth degree of x being an el-
ement of the concept (C ⊓ D) is equal to the result of applying a t-norm
function on the truth degree of x being an element of the concept C and
the truth degree of x being an element of the concept D. For example, if we
have Y oung(John) [0.8, 1] and Tall(John) [0.7, 1], and assume the minimum
function in Zadeh Logic or Gödel Logic is chosen as the t-norm, then the
truth degree that John is both young and tall is

(Y oung ⊓ Tall)(John) = tZ([0.8, 1], [0.7, 1]) = [0.7, 1].
If the multiplication function in Product Logic is chosen as the t-norm,

then the degree of truth that John is both young and tall is
(Y oung ⊓ Tall)(John) = tP ([0.8, 1], [0.7, 1]) = [0.56, 1].
Under Lukasiewicz Logic, the truth degree is tL([0.8, 1], [0.7, 1]) = [0.5, 1],

while under Yager Logic with w = 2, the truth degree is tY ([0.8, 1], [0.7, 1]) =
[1, 1] as min((0.82 + 0.72)1/2, 1) = 1 and min((12 + 12)1/2, 1) = 1.

The interpretation of concept disjunction (union) is defined by a s-norm
as (C ⊔ D)I(x) = s(CI(x), DI(x)) (∀x ∈ ∆I), that is, under the fuzzy inter-
pretation I, the truth degree of x being an element of the concept (C ⊔D) is
equal to the result of applying an s-norm function on the truth degree of x
being an element of the concept C and the truth degree of x being an element
of the concept D.



Norm-Parameterized Fuzzy Description Logics 11

For example, if we have Y oung(John) [0.8, 1] and Tall(John) [0.7, 1],
then under Zadeh Logic, the degree of truth that John is young or tall
is (Y oung ⊔ Tall)(John) = sZ([0.8, 1], [0.7, 1]) = [0.8, 1]. Under Product
Logic, it is (Y oung ⊔ Tall)(John) = sP ([0.8, 1], [0.7, 1]) = [0.94, 1]. Under
Lukasiewicz Logic, the truth degree is SL([0.8, 1], [0.7, 1]) = [1, 1], while un-
der Yager Logic with w = 2, the truth degree is sY ([0.8, 1], [0.7, 1]) = [0.64, 1].

The semantics of exists restriction ∃R.C is the result of viewing ∃R.C as
the open first order formula ∃y.R(x, y) ∧ C(y) and the existential quantifier
∃ is viewed as a disjunction over the elements of the domain, defined as sup
(supremum or least upper bound). Therefore, we define

(∃R.C)I(x) = supy∈∆I{t(RI(x, y), CI(y))}
Suppose in an ABox A1, we have
hasDisease(P001, Cancer) [0.2, 1], V italDisease(Cancer) [0.5, 1],
hasDisease(P001, Cold) [0.6, 1], V italDisease(Cold) [0.1, 1].
Further we assume the minimum function in Zadeh Logic is chosen as the

t-norm, then
(∃R.C)I(x) = sup{tZ(hasDisease(P001, Cancer), V italDisease(Cancer)),

tZ(hasDisease(P001, Cold), V italDisease(Cold))}
= sup{tZ([0.2, 1], [0.5, 1]), tZ([0.6, 1], [0.1, 1])}
= sup{[0.2, 1], [0.1, 1]} = [0.1, 1]

That is, the truth degree for the complex concept assertion (∃ hasDis-
ease.VitalDisease) (P001 ) is greater than or equal to 0.1. Similarly, we can
get the results under other logics.

A value restriction ∀R.C is viewed as an implication of the form ∀y ∈
∆I , RI(x, y) → CI(x). As explained in Section 3, both Kleene-Dienes impli-
cation and R-implication can be applied in the context of fuzzy logic. Follow-
ing the semantics proposed by Hajek [7], we interpret ∀ as inf (infimum or
greatest lower bound). Furthermore, in classical logic, a → b is a shorthand
for ¬a ∨ b; we can thus interpret → as the Kleene-Dienes implication and
finally get its semantics as (∀R.C)I(x) = infy∈∆I{s(¬RI(x, y), CI(y))}.

For example, with the ABox A1 and Product Logic, we have
(∀R.C)I(x) = inf{sP (¬hasDisease(P001, Cancer), V italDisease(Cancer)),

sP (¬hasDisease(P001, Cold), V italDisease(Cold))}
= inf{sP ([0, 0.8], [0.5, 1]), sP ([0, 0.4], [0.1, 1])}
= inf{[0.5, 1], [0.1, 1]} = [0.5, 1]

Similarly, we can get the results under other logics.
A fuzzy at-least restriction is of the form ≥ nR, whose semantics
(≥ nR)I(x) = supy1,...,yn∈∆I ,yi 6=yj ,1≤i<j≤n tni=1{R

I(x, yi)}
is derived from its first order reformulation
∃y1, . . . , yn. ∧n

i=1 R(x, yi)
∧

∧1≤i<j≤nyi 6= yj .
The semantics states that there are at least n distinct individuals (y1, . . . , yn)

all of which satisfy RI(x, yi) to some given degree.
Furthermore, we define the semantics of a fuzzy at-most restriction as
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(≤ nR)I(x) = ¬(≥ (n + 1)R)I(x)
= ¬ supy1,...,yn+1∈∆I ,yi 6=yj ,1≤i<j≤n+1 tn+1

i=1 {R
I(x, yi)}

= infy1,...,yn+1∈∆I ,yi 6=yj ,1≤i<j≤n+1 sn+1
i=1 {¬RI(x, yi)}

The semantics states that for n+1 role assertions RI(x, yi) (1 ≤ i ≤ n+1)
that can be formed, at least one satisfies ¬RI(x, yi) to some given degree.

Note that, the semantics of fuzzy at-least restriction (respectively, fuzzy
at-most restriction) in [31] and [29] is a special case of our fuzzy at-least
restriction (respectively, fuzzy at-most restriction).

An alternative view of the semantics of a fuzzy at-most number re-
striction is that there are at most n unique individuals (y1, . . . , yn) that
satisfy RI(x, yi) to some given degree. For example, ≤ 2R [0.8,1] means
that there are at most two role instance assertions about any individual
a: R(a, b1) and R(a, b2). Moreover, assuming xR(a,b1) is the truth degree of
R(a, b1) and xR(a,b2) is the truth degree of R(a, b2), both xR(a,b1)=[0.8,1] and
xR(a,b2)=[0.8,1] hold, but b1 6= b2 does not necessarily hold. Furthermore, for
≤ nR [l, u], if we find there are n + 1 assertions satisfying the truth degree
constraints, we have to find some individuals that can be merged, similar
to the case in standard DL [1]. If we find there are more than n different
individuals after merging, we say the concept ≤ 2R [0.8,1] is unsatisfiable. It
is easy to see that these fuzzy semantics generalize the crisp case of standard
DL where the truth degree of all assertions is [1,1].

The semantics of the complex concept descriptions axioms for fALCN are
summarized in Table 3.

Table 3 Syntax and Semantics of fALCN constructors

Constructor Syntax Semantics
top concept ⊤ ⊤I = 1
bottom concept ⊥ ⊥I = 0
atomic negation ¬A (¬A)I(x) = ¬AI(x)
atomic negation ¬C (¬C)I(x) = ¬CI(x)
concept C ⊓ D (C ⊓ D)I = t(CI(x), DI(x))
conjunction
concept C ⊔ D (C ⊔ D)I = s(CI(x), DI(x))
disjunction
exists restriction ∃R.C (∃R.C)I(x) = supy∈∆I{t(RI(x, y), CI(y))}
disjunction
value restriction ∀R.C (∀R.C)I(x) = infy∈∆I{s(¬RI(x, y), CI(y))}
at-least ≥ nR (≥ nR)I(x) = supy1,...,yn∈∆I ,yi 6=yj,1≤i<j≤n tn

i=1{R
I(x, yi)}

restriction
at-most ≤ nR (≤ nR)Ix ≡ ¬(≥ (n + 1)R)I(x)
restriction



Norm-Parameterized Fuzzy Description Logics 13

4.3 Knowledge Bases in fALCN

A fuzzy knowledge base in fALCN consists of two parts: the fuzzy termino-
logical box (TBox T ) and the fuzzy assertional box (ABox A). The TBox
contains several kinds of axioms. A fuzzy concept inclusion axiom has the
form of C ⊑ D [l, u] with 0 ≤ l ≤ u ≤ 1, which describes that the subsump-
tion degree of truth between concepts C and D is from l to u.

For example, the axiom
Professor ⊑ (∃publishes.Journalpaper⊓∃teaches.Graduatecourse) [0.8, 1]

states that the concept professor is subsumed by entities that publish journal
papers and teach graduate courses with a truth degree of at least 0.8.

In order to simplify the reasoning task of subsumption checking, some
work on DL restricts a terminological box to introduction axioms of the
form A ⊑ C where A is an atomic concept and C is a concept description.
In this research, we permit general concept inclusion axioms (GCIs). The
FOL translation of a general concept inclusion axiom C ⊑ D has the form
∀x.C(x) → D(x); therefore, its semantics is defined as

(C ⊑ D)I(x) = infx∈∆I CI(x) → DI(x) = infx∈∆I{s(¬CI(x), DI(x))}.
That is, for a fuzzy interpretation I, I satisfies C ⊑ D [l, u] iff ∀x ∈

∆I , l ≤ infx∈∆I{s(¬CI(x), DI(x))} ≤ u. For the above example, it means
under every fuzzy interpretation I of the knowledge base, we have

0.8 ≤ s(x¬Professor, x(∃publishes.Journalpaper⊓∃teaches.Graduatecourse)) ≤ 1.
We also permit a fuzzy concept equivalence axioms of the form C ≡ D

with the semantics CI = DI .
There are three kinds of assertions in the ABox: concept individual, role

individual, and individual inequality. A fuzzy concept assertion and a fuzzy
role assertion are of the form C(a) [l, u] and R(a, b) [l, u], respectively. An
individual inequality in the fALCN ABox is identical to standard DLs and
has the form a 6= b for a pair of individuals a and b. Given a fuzzy Interpre-
tation I, I satisfies C(a) [l, u] iff l ≤ CI(a) ≤ u, I satisfies R(a, b) [l, u] iff
l ≤ RI(a, b) ≤ u, and I satisfies a 6= b iff a 6= b under I.

5 Reasoning Tasks

We are interested in several reasoning tasks for an fALCN knowledge base.
First, consistency checking refers to the reasoning task of determining
whether the knowledge base is consistent.

In order to define what it means for a knowledge base to be consistent, we
first explain the general idea of how the fALCN reasoning procedure works
and then give several formal definitions. The reasoning procedure derives new
assertions through applying completion rules (cf. Table 4) in an arbitrary or-
der, adds derived assertions to an extended ABox Aε

i , and at the same time
adds corresponding constraints that incorporate the semantics of the asser-
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tions to a constraint set Cj in the form of (linear or non-linear) inequations.
The reasoning procedure stops when either Aε

i contains a clash or no further
rule can be applied to Aε

i .

Definition 3 Let Aε
i be an extended ABox obtained by applications of the

completion rules. Let Ci be a constraint set obtained by applications of the
completion rules. An extended ABox Aε

i is called complete if no more com-
pletion rule can be applied to Aε

i .

Definition 4 For a constraint set Ci with respect to a complete ABox Aε
i , let

V ar(Ci) be the set of variables occurring in Ci. If the system of inequations in
Ci is solvable, the result of the constraint set, i.e., the mapping Φ : V ar(C) →
[0, 1] , is called a solution.

Definition 5 We say there is a clash in the extended ABox Aε
i iff one of

the following situations occurs:

1. {⊥(a) [l, u]} ⊆ Aε
i and 0 < l ≤ u

2. {⊤(a) [l, u]} ⊆ Aε
i and l ≤ u < 1

3. {A(a) [l1, u1], A(a) [l2, u2]} ⊆ Aε
i and (u1 < l2 or u2 < l1)

4. {(≤ nR)(a) [l, u]} ∪ {R(a, bi) [li, ui]|1 ≤ i ≤ n + 1} ∪ {bi 6= bj |1 ≤ i < j ≤
n + 1} ⊆ Aε

i and {[li, ui] ⊆ [l, u]|1 ≤ i ≤ n + 1}

For example, if a knowledge base contains both assertions Tall(John)
[0,0.2] and Tall(John) [0.7,1], since 0.2<0.7, the third clash will be triggered.

Note that we do not make the unique names assumption for individuals in
the ABox. Since number restrictions may lead to the identification of different
individual names, we therefore define explicit inequality assertions of the
form: bi 6= bj for two individuals bi and bj , as in clash 4.

The following is our definition of a model of an fALCN knowledge base.

Definition 6 Let Aε
i be the extended ABox obtained by applications of the

completion rules. Let I = (∆I , ·I) be a fuzzy interpretation, Φ : V ar(C) →
[0, 1] be a solution, xα be the variable representing the truth degree of assertion
α. For each concept assertion C(a), CI(a) = Φ(xC(a)). For each role assertion
R(a, b), RI(a, b) = Φ(xR(a,b)). The pair < I,Φ > is a model of the extended
ABox Aε

i if the following properties hold:
∀a, b ∈ ∆I ,

1. if {(¬C)(a)} ∈ Aε
i , then Φ(x(¬C)(a)) = 1 − Φ(xC(a)),

2. if {(C ⊓ D)(a)} ∈ Aε
i , then Φ(x(C⊓D)(a)) = t(Φ(xC(a)), Φ(xD(a))),

3. if {(C ⊔ D)(a)} ∈ Aε
i , then Φ(x(C⊔D)(a)) = s(Φ(xC(a)), Φ(xD(a))),

4. if {(∃R.C)(a)} ∈ Aε
i , then Φ(x(∃R.C)(a)) = supb∈∆I{t(Φ(xR(a,b)), Φ(xC(a)))},

5. if {(∀R.C)(a)} ∈ Aε
i , then Φ(x(∀R.C)(a)) = infb∈∆I{s(1−Φ(xR(a,b)), Φ(xC(a)))},

6. if {(≥ nR)(a)} ∈ Aε
i , then there are at least n distinct individuals

(y1, . . . , yn) all of which satisfy Φ(xRI(x,yi), and
7. if {(≤ nR)(a)} ∈ Aε

i , then there are at most n distinct individuals
(y1, . . . , yn) all of which satisfy Φ(xRI(x,yi).
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Definition 7 Let KB =< T,A > be a fALCN knowledge base where T
is the fuzzy TBox and A is the fuzzy ABox. Let I = (∆I , ·I) be a fuzzy
interpretation, and Φ : V ar(C) → [0, 1] be a solution. If there exists a model
< I,Φ > for the extended ABox resulting from KB =< T,A >, we say the
knowledge base KB =< T, A > is consistent. If there is no such model, we
call the knowledge base inconsistent.

The second reasoning task is instance checking, which determines the
degree to which an assertion is true. That is, let α be an assertion C(a). We
want to check whether KB |= α and to what degree the entailment is true.
Such a problem can be reduced to the consistency problem. We first check
whether KB ∪{¬C(a) (0, 1]} is consistent, and then solve the corresponding
constraint set.

The third reasoning task is subsumption checking, which determines
the subsumption degree between concepts C and D. That is, let α be an
assertion C ⊑ D. We want to check whether KB |= α and its truth degree.
Such a problem can also be reduced to the consistency problem. We first check
whether KB∪{C⊓¬D (0, 1]} is consistent, and then solve the corresponding
constraint set.

Another interesting reasoning task is the classification of fALCN knowl-
edge base, i.e. computing all fuzzy subsumptions between concepts in a given
knowledge base. An intuitive way is to choose each pair of concepts and
check their subsumption. Classification problem can thus be further reduced
to consistency checking. There are some ways to optimize such a reasoning
procedure for classification, but we do not consider this issue in this paper.

6 GCI, NNF, and ABox Augmentation

For the following note that, since GCI is the general form of concept sub-
sumption, and concept equation is the general form of concept definition, we
only use the general forms here. Let C and D be concept descriptions, R
be roles, a and b be individuals. In this section we discuss how to deal with
General Concept Inclusion (GCI) axioms, get the fALCN concept Negation
Normal Form (NNF), and augment the Extended ABox step by step.

First, every GCI axiom in the TBox is transformed into its normal form.
That is, replace each axiom of the form C ⊑ D [l,u] with ⊤ ⊑ ¬C ⊔ D [l,u].
As mentioned in the previous section, we consider GCIs in knowledge bases.
In standard DL, we have the identity C ⊑ D ⇐⇒ ⊥ ≡ C⊓¬D [12]. Negating
both sides of this equality gives ⊤ ≡ ¬C ⊔ D. Accordingly, in fuzzy DL, we
have C ⊑ D [l, u] ⇐⇒ ⊤ ⊑ ¬C ⊔ D [l, u].

Second, transform every concept description (in the TBox and the ABox)
into its Negation Normal Form (NNF). The NNF of a concept can be obtained
by applying the following equivalence rules:

∀a, b ∈ ∆I ,



16 Jidi Zhao1, Harold Boley2

¬¬C [l, u] ≡ C [l, u] , (1)

¬(C ⊔ D) [l, u] ≡ ¬C ⊓ ¬D [l, u] , (2)

¬(C ⊓ D) [l, u] ≡ ¬C ⊔ ¬D [l, u] , (3)

¬∃R.C [l, u] ≡ ∀R.¬C [l, u] , (4)

¬∀R.C [l, u] ≡ ∃R.¬C [l, u] , (5)

¬(≤ nR) [l, u] ≡≥ (n + 1)R [l, u] , (6)

¬(≥ nR) [l, u] ≡

{

≤ (n − 1)R [l, u] n > 1

⊥ n = 1
, (7)

Note that all of the above equivalence rules can be proved for the different
logics in Table 2 as a consequence of choosing Lukasiewicz negation and
Kleene-Dienes implication in explaining the semantics of fALCN concepts.
If we use R-implication and/or Gödel negation, such equivalence rules do not
necessarily hold. Here we only show the equivalence of rule 2.

Proof : Besides applying Lukasiewicz negation, by applying the min t-
norm and the max s-norm in Zadeh Logic, we have that the left side of rule
2 is equal to 1 − max(x, y) where x is the truth degree of C(a) and y is the
truth degree of D(a), and the right side of rule 2 is equal to min(1−x, 1−y).
Since 1 − max(x, y) = min(1 − x, 1 − y), rule 2 holds under Zadeh Logic.

By applying the t-norm and the s-norm in Lukasiewicz Logic, we have that
the left side of rule 2 is equal to 1 − min(x + y, 1) and the right side of rule
2 is equal to max(1− x− y, 0). Since 1−min(x + y, 1) = max(1− x− y, 0),
rule 2 holds under Lukasiewicz Logic.

By applying the t-norm and the s-norm in Product Logic, we have that
the left side of rule 2 is equal to 1 − (x + y − xy) and the right side of rule
2 is equal to (1 − x)(1 − y). Since 1 − (x + y − xy) = (1 − x)(1 − y), rule 2
holds under Product Logic.

By applying the t-norm and the s-norm in Yager Logic with w = 2, we
have that the left side of rule 2 is equal to min(1, ((1 − x)2 + (1 − y)2)1/2)
and the right side of rule 2 is also equal to min(1, ((1 − x)2 + (1 − y)2)1/2).
So rule 2 holds under Yager Logic.

When applying Lukasiewicz negation as the fuzzy complement operation,
Zadeh Logic and Gödel Logic have the same t-norm and s-norm. So rule 2
holds under Gödel Logic.

Therefore, rule 2 holds under the different logics in Table 2.

�

Third, augment the ABox A with respect to the TBox T . This step is also
called eliminating the TBox. That is, for each individual a in A and each
axiom ⊤ ⊑ ¬C ⊔ D [l,u] in T , add (¬C ⊔ D)(a) [l,u] to A. The resulting
ABox after finishing this step is called the initial extended ABox, denoted by
Aε

0.
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Now for a fALCN KB =< T ,A >, by following the above steps, we
eliminate the TBox by augmenting the ABox and get an extended ABox
A in which all concepts occurring are in NNF. Next, we initialize the set
of constraints C0 and get ready for apply the reasoning procedure for the
consistency checking problems. C0 is initialized as follows: For each concept
assertion {C(a) [l, u]} ∈ Aε

0, add {l ≤ xC(a) ≤ u} into C0; for each role
assertion {R(a, b) [l, u]} ∈ Aε

0, add {l ≤ xR(a,b) ≤ u} into C0.
Finally, the reasoning procedure continues to check whether Aε

i contains a
clash. If it detects clashes in all of the or-branches, it returns the result that
the knowledge base is inconsistent. If the complete ABox does not contain
an obvious clash, the reasoning procedure continues to solve the inequations
in the constraint set Cj . If the system of these inequations is unsolvable, the
knowledge base is inconsistent, and consistent otherwise.

As for the other reasoning problems, including instance checking and sub-
sumption checking, the values returned from the system of inequations, if
solvable, serve as the truth degrees of these entailment problems.

7 Reasoning Procedure

The main component of the fALCN reasoning procedure consists of a set of
completion rules. Like standard DL tableau algorithms, the reasoning pro-
cedure for fALCN consistency checking problem tries to prove the consis-
tency of an extended ABox A by constructing a model of A, which, in the
context of Fuzzy Description Logic, is a fuzzy interpretation I = (△I , ·I)
with respect to a solution Φ. Such a model has the shape of a forest, a
collection of trees with nodes corresponding to individuals, root nodes cor-
responding to named individuals, and edges corresponding to roles between
individuals. Each node is associated with a node label, L(individual). But
unlike in standard DL where a node is labeled only with concepts, each
node in fALCN is associated with a label that consists of a pair of elements
〈concept, constraint〉, to show the concept assertions for this individual and
its corresponding constraints. Furthermore, each edge is associated with an
edge label, L(individual1, individual2) which consists of a pair of elements
〈role, constraint〉, instead of simply being labeled with roles as in standard
DL.

Let λ be the constraint attached to an assertion α. The variable xα denotes
the truth degree of an assertion α. After getting the initial extended ABox
Aε

0 and the initial set of constraints C0, the reasoning procedure expands
the ABox and the constraint set by repeatedly applying the completion rules
defined in Table 4. Such an expansion in the reasoning procedure is completed
when (1) Aε

i contains a clash or (2) none of the completion rules is applicable.
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Table 4 Completion Rules of the Tableau Procedure

The concept negation rule

Condition: Aε
i contains ¬A(a) λ, but does not contain A(a) ¬λ.

Action: If λ is not the variable x¬A(a), Cj+1 = Cj ∪{x¬A(a) = [l, u]}∪{xA(a) = [1−
u, 1−l]}, Aε

i+1 = Aε
i∪{A(a) [1−u, 1−l]}. Otherwise, Cj+1 = Cj∪{x¬A(a) = 1−xA(a)},

Aε
i+1 = Aε

i ∪ {A(a) xA(a)}
The concept conjunction rule

Condition: Aε
i contains (C ⊓ D)(a) λ, but Cj does not contain t(xC(a), xD(a)) = λ.

Action: Cj+1 = Cj ∪{t(xC(a), xD(a)) = λ}. If λ is not the variable x(C⊓D)(a), Cj+1 =
Cj+1∪{x(C⊓D)(a) = λ}. If Ai does not contain C(a) xC(a), A

ε
i+1 = Aε

i∪{C(a) xC(a)}.
If Ai does not contain D(a) xD(a), A

ε
i+1 = Aε

i ∪ {D(a) xD(a)}.
The concept disjunction rule

Condition: Aε
i contains (C ⊔ D)(a) λ, but Cj does not contain s(xC(a), xD(a)) = λ.

Action: Cj+1 = Cj ∪{s(xC(a), xD(a)) = λ}. If λ is not the variable x(C⊔D)(a), Cj+1 =
Cj+1∪{x(C⊔D)(a) = λ}. If Ai does not contain C(a) xC(a), A

ε
i+1 = Aε

i∪{C(a) xC(a)}.
If Ai does not contain D(a) xD(a), A

ε
i+1 = Aε

i ∪ {D(a) xD(a)}.
The exists restriction rule

Condition: Aε
i contains (∃R.C)(a) λ, and a is not blocked.

Action: If there is no individual name b such that Cj contains t(xC(b), xR(a,b)) =
x(∃R.C)(a), then Cj+1 = Cj∪{t(xC(b), xR(a,b)) = λ}. If Ai does not contain C(b) xC(b),
Aε

i+1 = Aε
i ∪ {C(b) xC(b)}. If Ai does not contain R(a, b) xR(a,b), Aε

i+1 = Aε
i ∪

{R(a, b) xR(a,b)}. For each axiom ⊤ ⊑ ¬C ⊔ D [l, u] in the TBox, add Aε
i+1 = Aε

i+1 ∪
{(¬C ⊔ D)(b) [l, u]}.
If λ is not the variable x(∃R.C)(a), then if there exists x(∃R.C)(a) = λ

′

in Cj , then

Cj+1 = Cj+1\{x(∃R.C)(a) = λ
′

} ∪ {x(∃R.C)(a) = sup(λ, λ
′

)}, else add Cj+1 = Cj+1 ∪
{x(∃R.C)(a) = λ}.
The value restriction rule

Condition: Aε
i contains (∀R.C)(a) λ and R(a, b) λ

′

.
Action: Aε

i+1 = Aε
i ∪ {C(b) xC(b)}, Cj+1 = Cj ∪ {s(xC(b), x¬R(a,b)) = x(∀R.C)(a)}.

If λ is not the variable x(∀R.C)(a), then if there exists x(∀R.C)(a) = λ
′′

in Cj , add

Cj+1 = Cj+1\{x(∀R.C)(a) = λ
′′

} ∪ {x(∀R.C)(a) = inf(λ, λ
′′

)}, otherwise, add Cj+1 =
Cj+1 ∪ {x(∀R.C)(a) = λ}.
The at-least rule

Condition: Aε
i contains (≥ nR)(a) λ, a is not blocked, and there are no individual

names b1, . . . , bn such that R(a, bi) λi (1 ≤ i ≤ n) are contained in Aε
i .

Action: Aε
i+1 = Aε

i ∪ {R(a, bi) λ|1 ≤ i ≤ n} ∪ {bi 6= bj |1 ≤ i ≤ n}, Cj+1 = Cj ∪
{t(xR(a,b1), . . . , xR(a,bn)) = λ}.
The at-most rule

Condition: Aε
i contains n + 1 distinguished individual names b1, . . . , bn+1 such that

(≤ nR)(a) λ, R(a, bi) λi (1 ≤ i ≤ n + 1) are contained in Aε
i and bi 6= bj is not in Aε

i

for some i 6= j, and if λ is not the variable x≤nR(a) and for any i (1 ≤ i ≤ n + 1), λi

is not the variable xR(a,bi), λi ⊆ λ holds.
Action: For each pair bi, bj such that j > i and bi 6= bj is not in Aε

i , the ABox Aε
i+1

is obtained from Aε
i and the constraint set Cj+1 is obtained from Cj by replacing each

occurrence of bj by bi, and if λi is the variable xR(a,bi), Cj+1 = Cj+1∪{xR(a,bi) = λ}.

Here we give some examples to explain some of the completion rules. Ex-
amples for explaining the reasoning procedure in detail are omitted here for
space reasons. Interested readers can refer to [37].
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For example, if the extended ABox Aε
i contains ¬Y oung(John) [0.8, 1].

The reasoning procedure adds Y oung(John) [0, 0.2] into Aε
i and x¬Y oung(John)

= [0.8, 1] and xY oung(John) = [0, 0.2] into the constraint set.
Assume the user specifies Zadeh Logic. If the extended ABox Aε

i contains
(Y oung ⊓ Tall)(John) [0.8, 1], by applying the concept conjunction rule,
the reasoning procedure adds Y oung(John) xY oung(John) and Tall(John)
xTall(John) into Aε

i , and adds min(xY oung(John), xTall(John)) = [0.8, 1] into
the constraint set. If the user specifies Product Logic, then the reasoning
procedure instead adds the constraint xY oung(John) ∗ xTall(John) = [0.8, 1]
into the constraint set.

If the extended ABox Aε
i contains (Y oung⊔Tall)(John) [0.8, 1], by apply-

ing the concept disjunction rule, the reasoning procedure adds Y oung(John)
xY oung(John) and Tall(John) xTall(John) into Aε

i , and adds max(xY oung(John)

, xTall(John)) = [0.8, 1] into the constraint set if Zadeh Logic is chosen. If the
user specifies Product Logic, then the reasoning procedure adds the con-
straint xY oung(John) + xTall(John) − xY oung(John) ∗ xTall(John) = [0.8, 1] into
the constraint set instead.

Assume the user specifies Zadeh Logic. If the extended ABox Aε
i contains

(∀hasDisease.Disease)(P001) [0.8, 1] and hasDisease(P001, Cancer) [0, 0.6],
by applying the value restriction rule, the reasoning procedure adds Disease
(Cancer) xDisease(Cancer) into Aε

i , and adds max(x¬hasDisease(P001,Cancer)

, xDisease(Cancer)) = x(∀hasDisease.Disease)(P001) and x(∀hasDisease.Disease)(P001)

= [0.8, 1] into the constraint set. Now assume the extended ABox Aε
i con-

tains another assertion (∀hasDisease.Disease)(P001) [0.7, 1]; the reasoning
procedure will replace x(∀hasDisease.Disease)(P001) = [0.8, 1] in the constraint
set with x(∀hasDisease.Disease)(P001) = [0.7, 1].

If the extended ABox Aε
i contains (≤ 2hasDisease)(P001) [0.6, 1],

hasDisease(P001, Disease1) [0.6, 1], hasDisease(P001, Disease2) [0.6, 1],
hasDisease(P001, Disease3) [0.7, 1], Disease1 6= Disease2 and Disease1 6=
Disease3, by applying the at-most number restriction rule, the reasoning pro-
cedure replaces hasDisease(P001, Disease3) [0.7, 1] with hasDisease(P001,
Disease2) [0.7, 1], Disease1 6= Disease3 with Disease1 6= Disease2 in the
extended ABox Aε

i , and replaces replace xhasDisease(P001,Disease3) = [0.7, 1]
in the constraint set with xhasDisease(P001,Disease2) = [0.7, 1].

The completion rules in Table 4 are a set of consistency-preserving trans-
formation rules. Each time the reasoning procedure applies a completion rule,
it either detects a clash or derives one or more assertions and constraints. In
the reasoning procedure, the application of some completion rules, including
the role existential restrictions and at-least number restrictions, may lead to
nontermination. Therefore, we have to find some blocking strategy to ensure
the termination of the reasoning procedure.

Definition 8 Let a, b be anonymous individuals in the extended ABox Aε
i ;

let Aε
i (a) (respectively, Aε

i (b)) be all the assertions in Aε
i that are related

to the individual a (respectively, b); let Cj(a) (respectively, Cj(b)) be all the
constraints in Cj that are related to a (respectively, b), L(a) = {Aε

i (a), Cj(a)}
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and L(b) = {Aε
i (b), Cj(b)} be the node labels for a and b. An individual b is

said to be blocked by a if L(b) ⊆ L(a).

8 Soundness, Completeness, and Termination of the

Reasoning Procedure for fALCN

Extending results for standard DL [2][1], the following lemmas show that
the reasoning procedure for fALCN is sound and complete. Together with
the proof of termination, it is shown that the consistency of an fALCN
knowledge base is decidable. Note that our proof can be viewed as a norm-
parameterized version of the soundness, completeness, and termination of the
algorithm presented in [30] for fALC as well as the fALCN counterpart in
[29].

Lemma 1 Soundness Assume that Aε
i+1 is obtained from the extended

fALCN ABox Aε
i by application of a completion rule, then Aε

i+1 is consistent
iff Aε

i is consistent.

Proof:
=⇒ This is straightforward. Let Ci and Ci+1 be the constraint set asso-

ciated with the extended ABox Aε
i and Aε

i+1, respectively. Let I = (∆I , ·I)
be a fuzzy interpretation, and Φ : V ar(C) → [0, 1] be a solution. From the
definition of consistency, we know if Aε

i+1 is consistent, there should exist a
model < I, Φ >. Since Aε

i ⊆ Aε
i+1 and Ci ⊆ Ci+1, < I, Φ > is also a model of

Aε
i , therefore, Aε

i is consistent.
⇐= This is a consequence of the definition of the completion rules. Let C

and D be concept descriptions, a and b be individual names, and R be an
atomic role. Let < I, Φ > be a model of Aε

i . Now we show the interpretation I
also satisfies the new assertions when any of the completion rules is triggered.
Hereafter, let λ denote a variable for a truth degree.

Case: When Aε
i contains (¬C)(a) λ, we apply the conjunction rule and

obtain the extended ABox Aε
i+1 = Aε

i ∪ {C(a) xC(a)} and the constraint set
Ci+1 = Ci∪{1−xC(a) = x¬C(a) = λ}. As < I, Φ > is a model of Aε

i , I satisfies
{(¬C)(a) λ}, that is, {(¬C)I(a) = λ}. Based on the semantics of concept
negation, we know that (C)I(a) = 1− (¬C)I(a). Therefore, (C)I(a)) = 1−λ
holds under the interpretation I. Let v1 be a value in 1−λ, we have CI(a) =
v1. Hence, I also satisfies {C(a) v1}.

Case: When Aε
i contains (C ⊓D)(a) λ, we apply the conjunction rule and

obtain the extended ABox Aε
i+1 = Aε

i ∪ {C(a) xC(a), D(a) xD(a)} and the
constraint set Ci+1 = Ci ∪ {t(xC(a), xD(a)) = λ}. As < I,Φ > is a model of
Aε

i , I satisfies {(C ⊓ D)(a) λ}, that is, {(C ⊓ D)I(a) = λ}. Based on the se-
mantics of concept conjunction, we know that (C⊓D)I(a) = t(CI(a), DI(a)).
Therefore, t(CI(a), DI(a)) = λ holds under the interpretation I. It is easily
verified that there are values v1, v2 (v1, v2 ∈ [0, 1]) which satisfy t(v1, v2) = λ
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3. Therefore, we have CI(a) = v1 and DI(a) = v2. Hence, I also satisfies
both {C(a) v1} and {D(a) v2}.

Case: When Aε
i contains (C ⊔D)(a) λ, the disjunction rule is applied and

we obtain either the extended ABox Aε
i+1 = Aε

i ∪ {C(a) xC(a), D(a) xD(a)}
in the cases of Product Logic and Yager Logic, or, two extended ABoxes:
Aε

i+1 = Aε
i ∪ {C(a) xC(a)} and Aε′

i+1 = Aε
i ∪ {D(a) xD(a)} in the cases

of other logics in Table 2. We also obtain the constraint set Ci+1 = Ci ∪
{s(xC(a), xD(a)) = λ}. As < I, Φ > is a model of Aε

i , I satisfies {(C⊔D)(a) λ},
that is, {(C ⊔ D)I(a) = λ}. Based on the semantics of concept conjunction,
we know that (C⊔D)I(a) = s(CI(a), DI(a)). Therefore, s(CI(a), DI(a)) = λ
holds under the interpretation I. It is easily verified that there are values v1, v2

(v1, v2 ∈ [0, 1]) which satisfy s(v1, v2) = λ 4. Therefore, we have CI(a) = v1

or DI(a) = v2. Hence, I also satisfies either {C(a) v1} or {D(a) v2}, or both.
Case: When Aε

i contains (∃R.C)(a) λ, the role exists restriction rule is
applied. There are two possible augmentations.

(1)If there exists an individual name b such that C(b) xC(b) and R(a, b) xR(a,b)

are in Aε
i , but Ci does not contain t(xC(b), xR(a,b)) = x(∃R.C)(a), then

Ci+1 = Ci∪{t(xC(b), xR(a,b)) = x(∃R.C)(a)}; If λ is not the variable x((∃R.C)(a),

then if there exists x((∃R.C)(a) = λ
′

in Ci, then Ci+1 = Ci+1\{x((∃R.C)(a) =

λ
′

} ∪ {x((∃R.C)(a) = sup(λ, λ
′

)}, else add Ci+1 = Ci+1 ∪ {x(∃R.C)(a) = λ}.
There is no new assertion, thus it is straightforward that if Aε

i+1 is consis-
tent, then Aε

i is consistent.
(2) If there is no individual name b such that C(b) xC(b) and R(a, b) xR(a,b)

are in Aε
i , and Cj does not contain t(xC(b), xR(a,b)) = x(∃R.C)(a), then

we obtain the extended ABox Aε
i+1 = Aε

i ∪ {C(b) xC(b), R(a, b) xR(a,b)}
and the constraint set Ci+1 = Ci ∪ {t(xC(b), xR(a,b)) = x(∃R.C)(a)}. In
this case, we want to show I also satisfies both R(a, b) to some degree
and C(b) to some degree. As < I, Φ > is a model of Aε

i , I satisfies
(∃R.C)(a) λ, that is, (∃R.C)I(a) λ. Based on the semantics of role exists re-
striction, we know that (∃R.C)I(a, b) = supb∈∆I{t(RI(a, b), CI(b))}. There-
fore, supb∈∆I{t(RI(a, b), CI(b))} = λ holds under the interpretation I. It
is easily verified that there are an individual b and values v1, v2 (v1, v2 ∈
[0, 1]) which satisfy t(RI(a, b), CI(b)). Therefore, we have RI(a, b) = v1 and
CI(b) = v2. Hence, I also satisfies {R(a, b) v1} and {C(b) v2}.

Case: When Aε
i contains (∀R.C)(a) λ, the role value restriction rule is

applied. Then, for every individual b that is an R-successor of individual a, we
obtain Aε

i+1 = Aε
i∪{C(b) xC(b)}, Ci+1 = Ci∪{s(xC(b), x¬R(a,b)) = x(∀R.C)(a)}.

If λ is not the variable x((∀R.C)(a), then if there exists x((∀R.C)(a) = λ
′

in Ci,

3 For different t-norms in Fuzzy Logic (the minimum function, the maximum function,
the product function, and the Yager-and function), it is easy to show that we can
always find such a pair of values.
4 For different s-norms in Fuzzy Logic (the minimum function, the maximum function,
the product-sum function, and the yager-or function), it is again easy to show that
we can always find such a pair of values.
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add Ci+1 = Ci+1\{x((∀R.C)(a) = λ
′

} ∪ {x((∀R.C)(a) = inf(λ, λ
′

)}, otherwise,
add Ci+1 = Ci+1 ∪ {x(∀R.C)(a) = λ}.

As < I, Φ > is a model of Aε
i , I satisfies (∀R.C)(a) λ, that is, (∀R.C)I(a) =

λ. For every individual b that is an R-successor of a, I satisfies R(a, b) λ′, that
is, RI(a, b) = λ′. Based on the semantics of role value restriction, we know
that, (∀R.C)I(a) = infb∈∆I{s(¬RI(a, b), CI(b))}. Therefore,infb∈∆I{s(¬RI(a, b), CI(b))} =
λ. Therefore, for every individual b that is an R-successor of a, s(¬λ′, CI(b)) =
λ holds under the interpretation I. Hence, for each of these individuals b, we
can find a value v1 (v1 ∈ [0, 1]) which satisfies s(¬λ′, CI(b)) = λ. Therefore,
we have CI(b) = v1. Hence, I also satisfies {C(b) v1}.

Case: When Aε
i contains (≥ nR)(a) λ, the at-least number restriction

rule is applied. We obtain Aε
i+1 = Aε

i ∪ {R(a, bi) λ|1 ≤ i ≤ n} ∪ {bi 6=
bj |1 ≤ i < j ≤ n)} and Ci+1 = Ci ∪ {xR(a,bi) = λ|1 ≤ i ≤ n)}. Based on
the semantics of at-least number restriction, we know that (≥ nR)I(x) =
supy1,...,yn∈∆I ,yi 6=yj ,1≤i<j≤n tni=1{R

I(x, yi)}. Since it is easy to see from the
application of the at-least number restriction rule, we can form at least n pairs
(a, bi) for which R(a, bi)

I = λi and supy1,...,yn∈∆I ,yi 6=yj ,1≤i<j≤n tni=1{λi} = λ.

Hence, (≥ nR)I(a) = λ and I satisfies (≥ nR)(a) λ.
Case: When n + 1 distinguished individual names b1, . . . , bn+1 such that

(≤ nR)(a) λ and R(a, bi) λi (1 ≤ i ≤ n + 1) are contained in Aε
i , bi 6= bj

is not in Aε
i for some i 6= j, the at-most number restriction rule is applied.

For each pair bi, bj such that j > i and bi 6= bj is not in Aε
i , the ABox

Aε
i+1 is obtained from Aε

i and the constraint set Ci+1 is obtained from Ci

by replacing each occurrence of bj by bi, and if λi is the variable xR(a,bi),
Ci+1 = Ci+1 ∪ {xR(a,bi) = λ}.

As < I, Φ > is a model of Aε
i , I satisfies (≤ nR)(a) λ, that is (≤ nR)I(a) =

λ. Based on the semantics of at-most number restriction, we know that if
there are n + 1 R-role assertions R(a, bi) (i ∈ {1, 2, ldots, n + 1}) that can
be formed from Aε

i+1, for which R(a, bi)
I = λi, there would be at least one

pair (a, bk) for which λk = ¬λ holds. Applying negation on both side of
the equation, we thus have ¬R(a, bi)

I = ¬¬λ = λ holds. This is equal to
infy1,...,yn+1∈∆I ,yi 6=yj ,1≤i<j≤n+1 sn+1

i=1 {¬RI(x, yi)} = λ. Therefore, we finally

have that (≤ nR)I(x) = λ, and I also satisfies (≤ nR)(a) λ.

�

Lemma 2 Completeness Any complete and clash-free fALCN ABox A
with a solvable constraints set C has a model.

Proof:

Let A be a complete and clash-free ABox and C be the constraint set
associated with A. Since A is clash-free and complete, and the constraint set
C is solvable, there exists a solution Φ : V ar(C) → [0, 1] to the constraint set
C.

Let’s define the fuzzy interpretation I of the ABox A as follows:
(1) the domain △I consists of all the individual names occurring in A;
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(2) for all atomic concepts A, we define AI(a) = Φ(xA(a)) where a is an
individual name in A and Φ(xA(a)) denotes the truth degree of the variable
xA(a).

(3) for all atomic roles R0 we define RI
0(a, b) = Φ(xR0(a,b)) where a and

b are individual names in A and Φ(xR(a,b)) denotes the truth degree of the
variable xR(a,b).

To show that the pair < I, Φ > is a model of A, we need to prove all the
concept and role assertions in A can be interpreted by I, using induction
techniques on the structure of an fALCN concept C.

If C is an atomic concept, then we have CI according to its definition.
If C is of the form C = ¬A, A contains {¬A(a) λ}. Since A is complete, we

know the concept negation rule has been applied, thus A contains {A(a) ¬λ}
and C contains xA(a) = ¬λ and x¬A(a) = λ. By the induction hypothesis
we know that I can interpret A(a) ¬λ, that is, AI(a) = ¬λ. Based on the
semantics of concept negation, we have (¬A)I(a) = ¬AI(a). Therefore, we
obtain (¬A)I(a) = ¬(¬λ) = λ; thus concept assertions of the form {¬A(a) λ}
are correctly interpreted by I.

If C is of the form C ⊓D, A contains {(C ⊓D)(a) λ}. Since A is complete,
we know the concept conjunction rule has been applied, thus A contains
{C(a) xC(a)} and {D(a) xD(a)} and C contains t(xC(a), xD(a)) = λ. By the
induction hypothesis we know that I can interpret C(a) xC(a) and D(a) xD(a),
that is, CI(a) = Φ(xC(a)) and DI(a) = Φ(xD(a)) where Φ(xC(a)) and Φ(xD(a))
denote the truth degrees of the variables xC(a) and xD(a), respectively. As Φ is
a solution to the constraint set C, t(Φ(xC(a)), Φ(xD(a))) = λ holds. Therefore,
t(CI(a), DI(a)) = λ. On the other hand, based on the semantics of concept
conjunction, we have (C ⊓ D)I(a) = t(CI(a), DI(a)). Therefore, we obtain
(C⊓D)I(a) = λ; thus concept assertions of the form (C⊓D)(a) λ are correctly
interpreted by I.

If C is of the form C ⊔ D, A contains {(C ⊔ D)(a) λ}. Since A is com-
plete, we know the concept disjunction rule has been applied; thus A con-
tains {C(a) xC(a)} or {D(a) xD(a)} and C contains s(xC(a), xD(a)) = λ.
By the induction hypothesis we know that I can interpret C(a) x(a) and
D(a) xD(a), that is, CI(a) = Φ(xC(a)) and DI(a) = Φ(xD(a)) where Φ(xC(a))
and Φ(xD(a)) denote the truth degrees of the variables xC(a) and xD(a), re-
spectively. Note that for a concept assertion C(a), CI(a) = Φ(xC(a)) = 0
still means I can interpret C(a). As Φ is a solution to the constraint set
C, s(Φ(xC(a)), Φ(xD(a))) = λ holds. Therefore, s(CI(a), DI(a)) = λ. On
the other hand, based on the semantics of concept conjunction, we have
(C ⊔ D)I(a) = s(CI(a), DI(a)). Therefore, we obtain (C ⊔ D)I(a) = λ; thus
concept assertions of the form (C ⊔ D)(a) λ are correctly interpreted by I.

If R is an atomic role, then we have RI according to its definition.
If C is of the form ∃R.C, A contains {(∃R.C)(a) λ}. Since A is com-

plete, we know the role exists restriction rule has been applied. There could
be three cases when applying the role exists restriction rule. (1) A new in-
dividual b was generated. A contains {R(a, b) xR(a,b)} and {C(b) xC(b)},
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C contains t(xR(a,b), xC(b)) = λ; (2) An individual b and R(a, b) λ′ al-
ready exist in A. Then we have A contains {C(b) xC(b)} and C contains
t(xR(a,b), xC(b)) = λ as well as xR(a,b) = λ′ if λ′ is not the variable xR(a,b);
(3) a was blocked by some ancestor. In all these cases, we can find at
least one individual b such that C(b) xC(b) and R(a, b) xR(a,b) is in A, and
t(xR(a,b), xC(b)) = λ is in C. By the induction hypothesis, we know that I
can interpret C(b) xC(b) and R(a, b) xR(a,b), that is, CI(b) = Φ(xC(b)) and
RI(a, b) = Φ(xR(a,b)) where Φ(xC(b)) and Φ(xR(a,b)) denote the truth de-
grees of the variables xC(b) and xR(a,b), respectively. As Φ is a solution to
the constraint set C, supb∈∆I{t(xΦ(C(b)), xΦ(R(a,b)))} = λ holds. Therefore,
supb∈∆I{t(xCI(b), xRI(a,b))} = λ. On the other hand, based on the semantics

of concept conjunction, we have (∃R.C)I(a) = supb∈∆I{t(xCI(b), xRI(a,b))}.

Therefore, we obtain (∃R.C)I(a) = λ; thus concept assertions of the form
(∃R.C)(a) λ are correctly interpreted by I.

If C is of the form ∀R.C, A contains {(∀R.C)(a) λ}. Since A is complete,
we know the value restriction rule has been applied. Thus {C(b) xC(b)} is in A
and s(¬xR(a,b), xC(b)) = λ is in C for every individual b with {R(a, b) λ′} in A.
C also contains xR(a,b) = λ′ if λ′ is not a variable. By the induction hypothesis,
we know that I can interpret C(b) xC(b) for each b, that is, CI(b) = Φ(xC(b))
for each b where Φ(xC(b)) denote the truth degree of the variable xC(b). As Φ is
a solution to the constraint set C, infb∈∆I{s(xΦ(C(b)),¬xΦ(R(a,b)))} = λ holds.
Therefore, infb∈∆I{s(xCI(b),¬xRI(a,b))} = λ. On the other hand, based on the

semantics of value restriction, we have (∀R.C)I(a) = infb∈∆I{s(xCI(b),¬xRI(a,b))}.

Therefore, we obtain (∀R.C)I(a) = λ; thus concept assertions of the form
(∀R.C)(a) λ are correctly interpreted by I.

If C is of the form ≥ nR, A contains {≥ nR(a) λ}. Since A is com-
plete, we know the at-least number restriction rule has been applied. Thus
{R(a, bi) λ|1 ≤ i ≤ n} is in A. By the induction hypothesis, we know that
I satisfies R(a, bi) λ with 1 ≤ i ≤ n, that is, RI(a, bi) = λ. Thus we
can form at least n pairs (a, bi) for which R(a, bi)

I = λ holds. Therefore,
supb1,...,bn∈∆I ,bi 6=bj ,1≤i<j≤n tni=1{R

I(a, bi)} = λ. On the other hand, based

on the semantics of at-least number restriction, we have (≥ nR)I(a) =
supb1,...,bn∈∆I ,bi 6=bj ,1≤i<j≤n tni=1{R

I(a, bi)}. Therefore, we obtain (≥ nR)I(a) =
λ; thus the interpretation I satisfies concept assertions of the form (≥
nR)(a) λ.

If C is of the form ≤ nR, A contains {≤ nR(a) λ}. Since A is complete,
we know the at-most number restriction rule has been applied. Thus for each
pair bi, bj with j > i, the inequality bi 6= bj is not in Aε

i , the ABox Aε
i is

obtained and the constraint set Ci is obtained by replacing each occurrence
of bj by bi, and if λi is the variable xR(a,bi), add {xR(a,bi) = λ} to Ci. By the
induction hypothesis, we know that I can interpret the resultiing n assertions
R(a, bi) xR(a,bi) with 1 ≤ i ≤ n, that is, RI(a, bi) = Φ(xR(a,bi)), where Φ
denote the truth degrees of the variables R(a, bi) xR(a,bi) for (1 ≤ i ≤ n). As
Φ is a solution to the constraint set C, we have Φ(xR(a,bi)) ⊆ λ for 1 ≤ i ≤ n.
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Therefore, xRI(a,bi) = λ holds for (1 ≤ i ≤ n). On the other hand, based on
the semantics of at-most number restriction, we know if there are at most n
pairs (a, bi) for which R(a, bi)

I = λ holds, we have (≤ nR)I(a) = λ. Thus,
concept assertions of the form (≤ nR)(a) λ are correctly interpreted by I.

�

In order to prove the termination of the fALCN reasoning procedure, we
first review the definition of sub(D) given in [12]:

1. if D is an atomic concept, then sub(D) = {D};
2. if D is of the form C ⊓ D, then sub(D) = {C ⊓ D} ∪ sub(C) ∪ sub(D);
3. if D is of the form C ⊔ D, then sub(D) = {C ⊔ D} ∪ sub(C) ∪ sub(D);
4. if D is of the form ∃R.C, then sub(D) = {∃R.C} ∪ sub(C);
5. if D is of the form ∀R.C, then sub(D) = {∀R.C} ∪ sub(C);
6. if D is of the form ≥ R, then sub(D) = {≥ R};
7. if D is of the form ≤ R, then sub(D) = {≤ R};

From the definition, we know that sub(D) is the closure of subexpressions
of D. When testing the consistency of an extended ABox A, the concepts
derived from the tableau procedure are restricted to subsets of any concept
D (i.e., sub(D)) in A. Therefore, we have sub(A) = ∪∀D∈Asub(D).

Lemma 3 Termination Let A be an fALCN ABox. The tableaux procedure
for fALCN always terminates when started from A.

Proof: Let RA be the set of roles occurring in A. Let CA = |sub(A)|, nmax =
max{n| ≥ nR ∈ sub(A)}. The termination of our tableau procedure is a
consequence of the same properties that ensure termination in the case of
the standard ALCN DL. These properties are shown as follows [14]:

1. The only completion rule that remove assertions from the extended
ABox is the at-most number restriction rule, which merges the assertions of
an individual b with one of its ancestors a and thus individual b is blocked.

2. New individuals are only generated by the role exists restriction rule
and the at-least number restriction rule. For each individual in the extended
ABox, the rules can only be applied once. sub(A) contains at most s role exists
restrictions which generates at most s successors. Each of these successors can
further have nmax edges due to the at-least number restrictions. Therefore,
the out-degree of the tree generated from the tableau procedure is bounded
by CA ∗ nmax.

3. There is a finite number of possible labels for a pair of nodes and an
edge, since concepts are taken from sub(A). Thus, there are at most 2CA∗nmax

possible labels for a pair of nodes and an edge. Hence, if a path is of length at
least 2CA∗nmax , there must exist two nodes along the path that have the same
node labels, and hence blocking occurs. Since a path cannot grow longer once
a blocking takes place, paths are of length at most 2CA∗nmax .

�
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9 Conclusion and Future Work

In this paper we propose an extension to Description Logics based on Fuzzy
Set Theory and Fuzzy Logic. The syntax and semantics of the proposed De-
scription Logic fALCN are explained in detail. We further address different
reasoning tasks on fALCN knowledge bases. We present a sound and com-
plete reasoning procedure that always terminates and its completion rules.

The fALCN DL adopts a norm-parameterized way to cover different logics
in the Fuzzy Logic family, currently Zadeh Logic, Lukasiewicz Logic, Product
Logic, Gödel Logic, and Yager Logic. Such an approach allows the interpreta-
tion of different kinds of uncertain knowledge existing in real world applica-
tions. Furthermore, fALCN knowledge bases can express fuzzy subsumption
of fuzzy concepts of the form C ⊑ D [l, u], which allows generalized modeling
of uncertain knowledge.

Description Logics constitute a family of descriptive languages with differ-
ent expressiveness and decidability/efficiency. For reasons of simplicity, our
fuzzy Description Logic fALCN does not yet include transitive roles, inverse
roles and other non-ALC constructors. We have also considered ALCHIN
as a super language of ALCN and introduced a fuzzy version fALCHIN
[36]. Part of our ongoing work considers further fuzzy extensions to more
expressive S-style (i.e., ALCR+) Description Logics.

One of the main practical directions for future work is the implementation
of the fuzzy reasoner, which involves a lot of technical designing decisions.
We are implementing an fALCN reasoner using SWI-Prolog. Our prototype
reasoner is based on the ALC reasoner ALCAS [26] which supports ALC DL
reasoning with an OWL abstract syntax. Our extensions to ALCAS provides
functionalities to check consistency as well as fuzzy concept and subsumption
entailments of a fALCN knowledge base.
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9. Hájek, P.: What does mathematical fuzzy logic offer to description logic?, pp.

91–100. Fuzzy Logic and the Semantic Web, Capturing Intelligence. Elsevier
(2006)

10. Hajek, P.: Fuzzy logic. In: The Stanford Encyclopedia of Philosophy. Standford
University (2009). URL http://plato.stanford.edu/archives/spr2009/

entries/logic-fuzzy/

11. Hollunder, B.: An alternative proof method for possibilistic logic and its appli-
cation to terminological logics. International Journal of Approximate Reasoning
12(2), 85–109 (1995)

12. Horrocks, I.: Optimising tableaux decision procedures for description logics
(1997). ANNOTE: AKA: Horrocks97b

13. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26
(2003)

14. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive de-
scription logics. Logic Journal of the IGPL 8(3), 239–264 (2000)

15. Hsueh-Ieng, P.: Uncertainty management for description logic-based ontologies.
Ph.D. thesis, University of Concordia (2008)

16. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proc. of the 4th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR94),
pp. 305–316 (1994)

17. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description
logic. In: Proceedings of the Fourteenth National Conference on Artificial Intel-
ligence (AAAI-97), pp. 390–397 (1997)

18. Laskey, K.J., Laskey, K.B., Costa, P.C.G., Kokar, M.M., Mar-
tin, T., Lukasiewicz, T.: W3c incubator group report. Tech. Rep.
http://www.w3.org/2005/Incubator/urw3/wiki/DraftFinalReport, W3C (05
March, 2008)

19. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence
172(6/7), 852–883 (2008)

20. Martin-Recuerda, F., Robertson, D.: Discovery and uncertainty in semantic web
services. In: Proceedings of Uncertainty Reasoning for the Semantic Web, p. 188
(2005)

21. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview
(2004). URL http://www.w3.org/TR/owl-features/

22. Montagna, F., Marini, C., Simi, G.: Product logic and probabilistic ulam games.
Fuzzy Sets Syst. 158(6), 639–651 (2007). DOI http://dx.doi.org/10.1016/j.fss.
2006.11.007

23. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: Owl 2 web ontol-
ogy language profiles (2009). URL http://www.w3.org/TR/owl2-profiles/

#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

24. Novák, V., Perfilieva, I., Mockor, J.: Mathematical principles of fuzzy logic. Do-
drecht: Kluwer Academic (1999)

25. Sánchez, D., Tettamanzi, A.G.: Fuzzy quantification in fuzzy description logics,
pp. 135–160. Fuzzy Logic and the Semantic Web, Capturing Intelligence. Elsevier
(2006)

26. Spencer, B.: ALCAS: An ALC Reasoner for CAS.
http://www.cs.unb.ca/ bspencer/cs6795swt/alcas.prolog (2006). URL
http://www.cs.unb.ca/˜bspencer/cs6795swt/alcas.prolog



28 Jidi Zhao1, Harold Boley2

27. Stamou, G., van Ossenbruggen, J., Pan, J.Z., Schreiber, G.: Multimedia an-
notations on the semantic web. IEEE MultiMedia 13, 86–90 (2006). DOI
http://doi.ieeecomputersociety.org/10.1109/MMUL.2006.15

28. Stevens, R., Aranguren, M.E., Wolstencroft, K., Sattlera, U., Drummond, N.,
Horridge, M., Rectora, A.: Using owl to model biological knowledge. International
Journal of Human-Computer Studies 65(7), 583–594 (2007)

29. Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with
very expressive fuzzy description logics. Journal of Artificial Intelligence Research
30, 273–320 (2007)

30. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial In-
telligence Research 14, 137–166 (2001)

31. Straccia, U.: Towards a fuzzy description logic for the semantic web (preliminary
report). In: 2nd European Semantic Web Conference (ESWC-05), Lecture Notes
in Computer Science, pp. 167–181. Springer Verlag (2005)

32. Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proc. of
the 13th Eur. Conf. on Artificial Intelligence (ECAI’98), pp. 361–365 (1998)

33. Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proc. of the
12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pp. 472–477 (1991)

34. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
35. Zhao, J.: Uncertainty and Rule Extensions to Description Logics and Semantic

Web Ontologies, chap. 1, p. 22. Advances in Semantic Computing. Technomath-
ematics Research Foundation (2010). Accepted

36. Zhao, J., Boley, H.: A Reasoning Procedure for the Fuzzy Description Logic
fALCHIN. In: Proc. Second Canadian Semantic Web Working Symposium,
Kelowna, pp. 46–59 (2009)

37. Zhao, J., Boley, H., Du, W.: Knowledge Representation and Consistency Checking
in a Norm-Parameterized Fuzzy Description Logic. In: D.S. Huang, K.H. Jo,
H.H. Lee, H.J. Kang, V. Bevilacqua (eds.) ICIC (2), Lecture Notes in Computer

Science, vol. 5755, pp. 111–123. Springer (2009). URL http://dx.doi.org/

10.1007/978-3-642-04020-7


