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Optimal Scheduling of Rehabilitation and
Inspection/condition assessment in large buried pipes

Yehuda Kleiner

Institute for Research in Construction
National Research Council of Canada

ABSTRACT

A decision framework is described to assist municipal engineers and planners in optimising the
scheduling of rehabilitation as well as inspection and condition assessment of large buried pipes.
These may include water transmission pipes, trunk sewers or other buried pipes with high costs
of failure and high costs of inspection/condition assessment.

A semi-Markov process is used to model the deterioration of a buried asset. The life of the asset
is discretised into condition states, whereby the waiting times in each state are assumed to be
random variables with known probability distributions. These probability distributions can be
derived in two ways. Initially, when data are scarce the probability distributions can be based on
expert opinion. Over time, as observed deterioration data are collected these probability
distributions are continually updated to reflect the new observations.

Age-dependent transition probability matrices are compiled, using conditional survival
probabilities in the various states. The expected discounted total cost associated with an asset is
computed as a function of time. The time to schedule the next inspection/condition assessment is
when the total expected discounted cost is minimum, while immediate intervention should be
planned if the time of minimum cost is less than a threshold period (2 to 3 years) away.

The proposed framework was implemented for proof of concept in a demonstration computer
application. Although usable in its current form, this paper identifies some issues that require as
yet unavailable data as well as more research in order to develop the framework into a
comprehensive application tool.

Key words: Renewal of large buried pipes, scheduling inspection/condition assessment,
scheduling intervention, semi-Markovian deterioration.



INTRODUCTION

Large buried pipes typically have low failure rates but the consequences can be severe when they
fail. This low rate of failure seems to have contributed to the current situation where most
municipalities lack the data necessary to model the deterioration rates of these assets and
subsequently make rational decisions regarding their renewal.

There are published guidelines e.g., WRc, 1993 and 1994; Edmonton, 1996; and Zhao and
McDonald, 2000, which are very useful for the mapping of distress indicators into condition
states of buried pipes. However, the decision process that these guidelines provide are largely
qualitative and prescriptive, and as such tend to be rather broad and general. Recommendations
are provided depending on the severity of the relevant condition state and on the perceived
impact of failure; economics and deterioration rates are considered only in an implicit and
qualitative manner.

The literature reflects various efforts to provide quantitative decision methods for infrastructure
or other components of the built environment. Examples include: The Factor Method by ISO, to
estimate service life of built components (ISO/CD 16696-1, 1997). The method multiplies the
reference service life of the component by factors affecting it (factors smaller than 1 reduce the
service life and visa versa). The values of these factors can be determined by a Delphi process
(Moser, 1999) or individual experience. The Factor Method can also be applied probabilistically
(Aarseth and Hovde, 1999). Flourentzou et al. (1999) divided the life of every built element into
four condition states, good, fair, poor and need replacement. They used field data to estimate the
age distribution of a component in any condition state, and then conditional probabilities to
estimate the time to replacement and the expected costs. Abraham and Wirahadikusumah (1999)
modelled the deterioration of sanitary sewers as a Markov chain process with four life phases,
where the deterioration in each phase is characterised by a stationary transition matrix. These
transition matrices are compiled using expert opinion. Ariaratnam et al. (1999) proposed a
multinomial logit model to model the likelihood of a sewer being in a deficient state given age
category, material type, effluent transported, diameter category and depth category. The sewers
were then ranked in an ascending order of likelihood, to provide a priority list for inspection.

In this paper an approach is presented to make the decision process more quantitative and
explicit. The deterioration of the asset is modelled as a semi-Markov process, which means that
the condition of the asset is discretised into a finite number of states. The durations of the asset in
each condition state, also called state waiting times, are modelled as random variables with
known probability distributions. The parameters for these distributions can initially be derived
based on expert opinions, but over time these parameters will be continuously updated using
actual survival data. These probability distributions are used to derive the transition probabilities
from one state to the next. The transition probabilities are age-dependent, which means that the
older the asset, the higher the likelihood of deterioration to the next state in a given period of
time. The total expected cost associated with the asset can then be calculated as a function of
time, and a decision made as to whether to rehabilitate or schedule the next inspection/condition
assessment.



MODELLING PIPE DETERIORATION AS A SEMI-MARKOV PROCESS

A Markov process is defined as a stochastic process comprising a series of consecutive
probabilistic trials, in which the outcome of each trial is independent of all previous trials except
the outcome of the immediately preceding trial (Misra, 1992). Asset deterioration can be
modelled as a discrete Markov process, whereby the transition from one deterioration state to the
next corresponds to a probabilistic trial. The asset thus has a known probability of deterioration
from state to state. When the probability of transition from state to state is constant the process is
said to be a homogeneous (or stationary) Markov process. The stationary Markov process with n
states can be represented by

[1] PtAtA )1()( −=
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n} representing the probability mass function (pmf) of the

process in time step t, and P is a transition probability matrix with members pij (i,j = 1,2,..n)
representing the (constant) probability of transition from state i to state j. It is also assumed that
if no intervention (renewal or rehabilitation) is implemented the process is unidirectional, i.e., if
state 1 denotes good as new and state n denotes failure, then the process can move only from
state i to state j where j ≥ i.

It has been observed by others, e.g., Jiang et al. (1989), Madanat et al. (1995, 1997), Guignier
(1999), that infrastructure assets deteriorate in a non-stationary manner. It is thus assumed here
that the transition probabilities pij depend on the age of the asset. This time-dependent Markov
process can be represented by

[2] ttPtAtA ,1)1()( −−=

It is often assumed (e.g., Madanat et al., 1995) that an infrastructure asset can deteriorate only
one state at a time, that is, the asset will deteriorate from state 1 to state 2, then to state 3, and so
on to failure (providing no renewal was implemented). The process therefore cannot jump from
state 1 to state 3, for example, without passing through state 2. This results in a relatively simple
transition probability matrix
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A semi-Markov process is defined as a Markovian process with an additional property of a
sojourn time (or “waiting time”) in each state. These sojourn times in the various states are
random and independently distributed variables (Lawless, 1992). An asset, which is said to



deteriorate in a semi-Markovian manner, will thus sojourn in each deterioration state for a
random time period with an independent probability distribution.

Suppose that T1, T2,…, Tn-1 are random variables denoting the sojourn times in states {1, 2,…, n-

1}, respectively. Their corresponding probability density functions (pdfs), cumulative density
functions (cdfs) and survival functions (sfs) can be denoted by  fi(t), Fi(t), Si(t) respectively.
Suppose further that Ti→k is a random variable denoting the sum of sojourn times in states {i,

i+1,…, k-1} This can be expressed as
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Ti→k is the time it will take the process to go from state i to state k. In addition, fi→k(Ti→k),

Fi→k(Ti→k), Si→k(Ti→k) are the pdf, cdf and sf of Ti→k, respectively.

If the deterioration process is in state 1 at time t, the conditional probability that it will transit to

the next state in the next time step ∆t is given by
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where X(t) denotes the state of the process at time t, and t = 0 is the time at which the process
entered into state 1 (i.e., new asset – in most cases). The formulation in equation (5) corresponds
to discrete time steps that are assumed small enough to exclude a two-state deterioration. In

addition, ∆t is assumed to be one unit (year) and can thus be omitted.

Further, if the process is in state i at time t, the conditional probability that it will transit to the

next state in the next time step ∆t is given by
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where t = 0 is the time when the process entered into state 1. Note that, the denominator in the
rhs expresses the simultaneous condition that T1→i < t and T1→(i-1) < t, which is equivalent to the
condition X(t) = i. Equation (6) thus provides all the transition probabilities pi,i+1(t) to populate
the time-dependent transition probability matrix for the semi-Markov process.

Once the transition probability matrix is established as a function of time, the deterioration
process can be modelled by using the following equation to obtain the probability mass function
(pmf) of the process after any number of time steps k.

[7] kk tttttt PPPtAktA +−++++=+ ,12,11 ...)()( ,



where A(t+k) denotes the pmf of the process k timesteps after time t

If state n is defined as failure and if at time t the asset has a pmf A(t+k)={a1, a2,…, an}, the
probability that the asset will fail at time (t+k) is an.

WAITING TIMES IN THE SEMI-MARKOV PROCESS

As stated earlier, the waiting (or sojourn) times of the semi-Markov process are random variables
with independent probability distribution. There are currently insufficient data to ascertain the
probability distribution of waiting time. It is therefore assume that the waiting time Ti of the
process in any state i could be modelled as a random variable with a two-parameter Weibull
probability distribution.
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The procedure is not limited to any one distribution, and it is possible to use different
distributions for different states in the same deterioration process.

The pdf, cdf and sf,  fi→k(Ti→k), Fi→k(Ti→k), Si→k(Ti→k) of the sum of waiting times
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therefore Monte-Carlo simulations can be used to numerically calculate these functions for sums
of Weibull-distributed random variables Ti→k.

The current lack of pertinent data is also a barrier to deriving parameters λi and βi based on
historical observations and condition assessments of large buried pipes. Consequently, these
parameters will initially have to be derived from expert opinion and perception. The following
process is suggested. An expert or a group of experts (e.g., in a Delphi process) would have to
answer questions pertaining to their beliefs about the likelihood of an asset remaining in a given
state for a certain period of time. For example, the following statement would have to be made: “In
my opinion, the asset has a probability xi,u of being in state i for more than u years”. Since there are
two parameters λi and βi to be estimated for every state i, two such statements have to be made for
every state i, i={1, 2,…, n-1}, with u years and v years, u ≠ v, to produce two quantiles xi,u and xi,v.
Parameters λi and βi could then be easily derived. Once parameters λi and βi are established for
every i = {1,2,…, n-1}, the transition probability matrix could be calculated by substituting
equation (8) into equation (7).



EXAMPLE

Suppose the state space of a large buried pipe comprises 5 states, where state 1 is as good as new
and state 5 is failure. Suppose further that a group of experts have determined that, for this type of
pipe under similar conditions, if it is as good as new at age zero (i.e., it is entering state 1 at age
zero) then the probabilities in Table 1 apply, resulting in the parameters βi and λi calculated
using [8] .

Table 1. Example expert opinion tabulated as probabilities of survival.

State i u (years) xi,u v (years) xi,v βi λi

1 30 50% 40 10% 4.173 0.031

2 20 50% 30 10% 2.961 0.044

3 20 50% 25 10% 5.380 0.047

4 10 50% 15 10% 2.961 0.088

Note: The buried pipe is xi,u% likely to remain in the state i for more than u years, and xi,v% likely to
remain in the state i for more than v years:

Parameters λi and βi describe the probability density function (pdf), for the waiting time Ti in
every state i, as is shown in Figure 1.

Figure 1. Example pdfs of waiting times in all condition states.

Next the sums of waiting times in the various states, Ti→k, can be calculated using Monte-Carlo
simulations. Their respective pdfs, cdfs and sfs can subsequently be found. Figure 2 illustrates the
survival functions (sf) of the sums of waiting times.
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Figure 2. Example survival functions of cumulative waiting times.

In this example, (assuming ‘as good as new at age zero’) the pipe at age 30 years is about 48% likely to
still be in state 1, 50% likely to be in state 2 and 2% likely to have deteriorated to state 3. At this age
the probability of failure (state 5) is virtually zero. This can be expressed in terms of probability mass
function (pmf) as A(30)={0.48, 0.50, 0.02, 0, 0}. It can be seen that at age 60 for example, there already
is an appreciable (about 4%) likelihood of failure with a corresponding pmf of A(60)={0, 0.17, 0.62,
0.17, 0.04}.

Next, the age-dependent transition probabilities pi,i+1(t), can be generated using [6]. Once these
transition probabilities are determined, the deterioration process can be modelled of any buried pipe,
given only the its age and current pmf (without knowing whether it was as good as new at age zero).
In our example for the 30 year old pipe above, by applying [6], the transition probability matrix can
be found:
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It can be seen that if an asset is in state 1 at age 30, during the next year it is about 90% likely to
remain in state 1 and 10% likely to deteriorate to state 2, etc. Equation [7] can then be used to
obtain the pmf of the asset at age 31,
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In general, if the analysis is done at year τ  = 0 (the present) and t0 denotes the pipe age at

present, then its pmf at any time τ  in the future can be found by
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Figure 3 illustrate how the pmf of the example pipe progresses over time from the present to the
future.

Figure 3. Example progression of pipe pmf over time.

CONSIDERATION OF COSTS

Failure cost. Failure is defined as an event where an unplanned emergency intervention is
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social costs are hard to quantify, an effort should be made to provide a rational approximation.
The expected cost of failure at age t is the product of the cost of failure and the probability of
failure at age t, i.e., E[C

F
(t)]=C

F
 a

t
n.

Inspection and condition assessment cost. These may vary with the type, size, depth,
accessibility and functional state of the pipe. This cost is denote by C

I  and is assumed to be
time-independent.

Planned intervention (rehabilitation, renovation) cost. It is assumed that the cost of planned
intervention may vary with with the state of the pipe. Thus, the expected cost of intervention at

age t is Tt

n

ttr

n

rrR aaaccctCE },...,,{},...,,{)]([ 121121 −− ⋅= , where cr
i  is the cost of planned intervention

with a pipe in state i.

The total discounted expected cost that is associated with the pipe at time τ is thus

[12] ( ) ττττ rRIFtot etCECtCEC −++++= )]([)]([)( 00

where r is the (continuous) discount rate and t0 is the age of the pipe at present (τ = 0).

The expected cost of failure tends to increase with time due to the increase in the probability of
failure. On the other hand, the expected cost of intervention as well as inspection and condition
assessment tends to decrease over time due to discounting. The total cost thus typically forms a
convex curve over time as illustrated in Figure 4.

Figure 4. Expected costs variation over the pipe life-time.
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THE DECISION PROCESS

The decision process comprises the following fundamental assumptions:

• An optimal decision strategy will minimise the total expected costs that are associated with
the buried asset throughout its life.

• Upon inspection and condition assessment, the decision alternatives are:

1. no immediate intervention is required, therefore the next inspection/condition assessment
must be scheduled, or,

2. an immediate intervention is required. (note that “immediate” can mean a threshold
period of one to three years - in the realm of large buried pipes, planning, designing
bidding and executing rehabilitation projects require this threshold period).

• A decision is always preceded by an inspection/condition assessment. It is unlikely that an
intervention will be planned more than two to three years (the threshold period) in advance.

Ideally, intervention should be implemented just before failure, thus benefiting from the deepest
possible discount on the cost of intervention, while avoiding high failure costs. In reality the
probability of failure can only be evaluated at any given time, therefore the objective is to defer
intervention as much as possible without taking too high a risk of failure. Thus the optimal age
for intervention is when the marginal benefits of postponing intervention becomes smaller than
the marginal increase in the expected cost of failure. This age corresponds to point t* in Figure 4.

If t* = t0 + τ∗ denotes the optimal age, and t0 denotes the pipe age at the time of analysis, then

the time τ* is the optimal time for intervention.

Recall that one of the fundamental assumptions made was that any intervention must be preceded

by an inspection/condition assessment, which implies that the asset must be inspected at time τ*

before commencing rehabilitation. After assessing the condition of the asset at time τ*, its true
probability mass function (pmf) can be evaluated and compared to the predicted pmf. If the true

pmf is approximately equal to or worse than the predicted pmf, then indeed τ* is the optimal
time for intervention. If, on the other hand, the true pmf is better (less deteriorated) than the
predicted pmf, then it may be too early to intervene and the deterioration model should be re-

applied with the new pmf in order to find a later optimal time τ**.

It should be noted that if the observed pmf is significantly better or worse than predicted, it may
be necessary to update some or all the parameters λi and βi in light of the newly obtained data.

The decision process is illustrated using the example presented in the previous sections, where
the sfs of the cumulative waiting times in the various states are shown in Figure 2. The following
costs are assumed: Cost of failure, CF

 = $200,000. Cost of inspection and condition assessment,
C

I
 = $5000. Discount rate, r = 3%.



State 1 2 3 4
Cost of intervention at various states, CR

 =
Cost ($) 10,000 10,000 15,000 20,000

A few scenarios are examined:

Scenario #1: Suppose the pipe is as good as new (entering state 1) at age zero. The discounted
costs associated with it as a function of age [12] are depicted in Figure 5. The total discounted
costs associated with the pipe appear to be minimum at t* = 52 years. That means that if post-
installation inspection/condition assessment determine that the pipe is in perfect condition, then
the next inspection and condition assessment should be scheduled about 52 years after
installation, based on expert opinion (as expressed in the parameter derivation procedure). The
pmf of the pipe at age 52 is predicted to be A(52) = {0, 0.404, 0.553, 0.040, 0.003}.

Figure 5. Example: Total cost curve as a function of age – scenario #1 .

Scenario #2: Supposes the pipe was not inspected after installation and thus it is not known
whether it was in perfect condition at age zero. Suppose further that an inspection and condition
assessment were arbitrarily implemented 30 years after installation. According to the original
expert opinion one would anticipate at age 30 (Figure 2) a pmf of roughly
A(30) = {0.5, 0.5, 0, 0, 0}. If the observed condition assessment reveals that the pipe is either in
state 1 or in state 2, that would indicate that the initial expert opinion was adequate. However, if
the pipe is observed to be in state 3 or 4, that would indicate that the initial expert opinion was
overly optimistic and it should be modified to reflect shorter waiting times in the earlier states.

Scenario #3: Suppose that following scenario #1 an inspection was carried out at age 50. The
anticipated pdf (Figure 2) is roughly A(50) = {0, 0.46, 0.51, 0.03, 0}. If the condition assessment
reveals that the pipe is in state 2 or 3 that would mean that the initial expert opinion was

adequate. Further, re-applying equation [12] to find the optimal time for the next inspection τ**,
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yields the cost curve depicted in Figure 6, which implies that intervention should be planned
immediately.

Figure 6. Example: Total cost curve as a function of age – scenario #3 .

If, however, condition assessment reveals that the pipe is in state 1 at age 50, that would imply
that the original expert opinion was overly pessimistic and the waiting times (at least in the first
state) should be modified to reflect this new observation.

Summary and conclusions

Figure 7 provides a flow diagram that summarises the decision framework. The key elements
are:

• The deterioration of large buried assets is modelled as a semi-Markov process, in which the
waiting times in each state are assumed to be random variables with known probability
distributions. These probability distributions are initially based on expert opinion, and then
continually updated as observed deterioration data are collected over time. The updating can
be done using a statistical process such as Bayesian updating.

• The distributions of the cumulative waiting times in states 1+2, 1+2+3, and 1+2+3+4 are
calculated using Monte-Carlo simulations and subsequently age-dependent transition
probability matrices are compiled, using conditional survival probabilities.

• The expected discounted total cost associated with an asset (including cost of intervention,
inspection and failure) is computed as a function of time, and the time to schedule the next
inspection/condition assessment is when the total expected discounted cost is minimum.

• Immediate intervention should be planned if the time of minimum cost is less than a
threshold period (2 to 3 years) away.
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This framework was implemented in a computer program for proof of concept and
demonstration. The framework is suitable for a computer application, however more research is
required in the following areas, to develop a practical and comprehensive tool:

• As more deterioration data are collected over time, statistical procedures have to be
developed for updating ‘waiting time’ parameters. The procedures will be used to shift
gradually from relying on expert opinion to using deterioration data. Since assets may
deteriorate at different rates under various conditions, assets and data will have to be
partitioned into groups comprising relatively homogeneous characteristics.

• The asset is assumed to begin a new deterioration mode after it has undergone intervention
(rehabilitation/renewal). This new deterioration mode may have a unique starting pmf as well
as state waiting times. Different intervention alternatives can have different level of
effectiveness at different costs. For example, alternative A can cost $10,000 to bring the
deteriorated asset back to state 1, while alternative B costs $5,000 to bring the asset to state 2,
or 3. Furthermore, these transitions to lower states are not deterministic but rather stochastic,
with their own transition probabilities.

Data are required to determine transition probabilities from a deteriorated state to a renewed
state, given various rehabilitation techniques (e.g., if an asset is in state 4, what is the
probability that it would be in state 1 or 2 after it was lined with cement mortar). Once these
transition probabilities and state waiting times are determined, the decision framework could
include the selection of the most efficient rehabilitation/renewal alternative for a given buried
asset in a given state.

• Economies of scale in buried assets rehabilitation costs can be an important factor. Their
consideration in a decision optimisation procedure, however, is very challenging from a
mathematical viewpoint. This issue warrants further research.
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Figure 7. Decision process flow diagram
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Notation

p
ij

t,t+1
 = single (time) step transition probability from state i to state j.

P
t,t+1 = transition probability matrix with members p

ij

t,t+1 (for a stationary process indices t,

t+1 can be omitted).

A(t) = vector with members ai
t , denoting the probability mass function (pmf) of the

Markov process at time t.

Tij = a random variable denoting, the sojourn time in state i given that the process goes
next to state j, in a semi-Markov process. i+1,

Ti = Tij in the deterioration model (under the assumption that the process always moves
from state i to state i+1, index j can be omitted) denoting waiting time in state i.

fi(t) = probability density function (pdf) of Ti .

Fi(t) = cumulative density function (cdf) of Ti .

Si(t) = survival function (sf) of Ti .

Ti→k = a random variable denoting the sum of sojourn times in states i, i+1,…, k-1

fi→k(Ti→k) = pdf of Ti→k

Fi→k(Ti→k) = cdf of Ti→k

Si→k(Ti→k) = sf of Ti→k

X(t) = random variable representing the state of a Markov process at timestep t.

λi , βi = parameters for the Weibull distribution of the waiting time in state i, TI

xi,u , xi,v. = quantiles that reflect the expert’s belief that, for example, there is xi,u % chance that
an asset will stay in state i more that u years.

τ = variable denoting the time elapsed from the present and on.

t*, τ∗, τ∗∗ = optimal age for action, optimal time for action, next optimal time for action

C
F = cost of failure.

C
I = cost of inspection and condition assessment.

C
R = cost of intervention (rehabilitation, renewal, repair).

c
r
i = cost of planned intervention with a buried pipe in state i.

r = discount rate.



REFERENCES

Aaseth, L.I., and P.J. Hovde, A stochastic approach to the factor method for estimating

service life, Proceedings of the 8
th

 conference Durability of Building Materials and

Components, Edited by M.A. Lacasse and D.J. Vanier, IRC, NRC, pp. 1247-1256,
Vancouver, 1999.

Abraham, D.M., and R. Wirahadikusumah, Development of prediction model for sewer

deterioration, Proceedings of the 8
th

 conference Durability of Building Materials and

Components, Edited by M.A. Lacasse and D.J. Vanier, IRC, NRC, pp. 1257-1267,
Vancouver, 1999.

Ariaratnam, S.T., A. El-Assaly, and Y. Yang, Sewer Infrastructure assessment using logit

statistical models, Proceedings, Annual Conference of the Canadian Society for Civil

Engineering, Regina, pp.330-338, June, 1999.

Edmonton City of, Standard sewer condition rating system report, City of Edmonton

Transportation Department, Canada, 1996.

Flourentzou, F., E. Brandt, and C. Wetzel, MEDIC – a method for predicting residual service

life and refurbishment investment budgets, Proceedings of the 8
th

 conference Durability of

Building Materials and Components, Edited by M.A. Lacasse and D.J. Vanier, IRC, NRC,
pp. 1280-1288, Vancouver, 1999.

Guignier, F. and S. M. Madanat, Optimisation of infrastructure systems maintenance and

improvement policies, Journal of Infrastructure Systems, ASCE, Vol. 5, No. 4, Dec., 1999

ISO/CD 16686-1, Buildings: Service life planning, part 1 – general principles,
ISO/TC59/SC3, 1997.

Jiang, Y., M. Saito, and K. C. Sinha, Bridge performance prediction model using Markov

chain, Transp. Res. Rec. 1180, Transportation Research Board, Washington DC, pp 25-32,
1989.

Lawless, J. F., Statistical models and methods for lifetime data, John Wiley and Sons, 1982.

Madanat, S. M., R. Mishalani, and W. H. Wan Ibrahim, Estimation of infrastructure transition

probabilities from condition rating data, Journal of Infrastructure Systems, ASCE, Vol. 1,
No. 2, June, 1995

Madanat, S. M., M. G. Karlaftis, and P. S. McCarthy, Probabilistic infrastructure

deterioration models with panel data, Journal of Infrastructure Systems, ASCE, Vol. 3, No.
1, Mar., 1995.



Misra, K. B., Reliability analysis and prediction, Elsevier Science Publishers, 1992.

Moser, K., Towards the practical evaluation of service life – illustrative application of the

probabilistic approach, Proceedings of the 8
th

 conference Durability of Building Materials

and Components, Edited by M.A. Lacasse and D.J. Vanier, IRC, NRC, pp. 1319-1329,
Vancouver, 1999.

WRc, Manual of sewer condition classification, 3rd Edition, Water Research Centre, UK 1993.

WRc, Sewer rehabilitation manual, 3rd Edition, Water Research Centre, UK 1994.

Zhao, J. K., and S.E. McDonald, Development of guidelines for condition assessment and

rehabilitation of large sewers, Client Report (final), National Research Council of Canada,

Institute for Research in Construction, Sep. 2000.


