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Abstract. The information explosion in astronomy requires the devel-
opment of data mining procedures that speed up the process of scientific
discovery, and the in-depth understanding of the internal structure of the
data. This is crucial for the identification of valid, novel, potentially use-
ful, and understandable patterns (regularities, oddities, etc).
A Virtual Reality (VR) approach for large heterogeneous, incomplete
and imprecise information is introduced for the problem of visualizing
and analyzing astronomic data. The method is based on mappings be-
tween one heterogeneous space representing the data, and a homogeneous
virtual reality space. This VR-based visual data mining technique allows
the incorporation of the unmatched geometric capabilities of the human
brain into the knowledge discovery process, and helps in understanding
data structure and patterns. This approach has been applied successfully
to a wide variety of real-world domains, and it has a large potential in
astronomy. Examples are presented from the domain of galaxy research.

1. Introduction

The science of astronomy has experienced unprecedented progress in the last
years. In particular, the advances in computer, communication, and observa-
tion technologies have increased in many orders of magnitude the quantity and
quality of astronomic data. This information explosion requires the development
of data mining procedures that speed up the process of scientific discovery, and
the in-depth understanding of the internal structure of the data. This is crucial
for the non-trivial process of identifying valid, novel, potentially useful, and ulti-
mately understandable patterns in data; that is, for knowledge discovery (Fayyad
et.al 1996).

The information explosion requires analytic and interpretation procedures
which enable users to understand their data rapidly and with greater ease. Fur-
ther, the increasing complexity of the data analysis procedures makes it more
difficult for the user to extract useful information out of the results given by
the various techniques applied. Visual techniques are, therefore, very appealing.
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In general, objects under study are described in terms of collections of hetero-
geneous properties. For example, an astronomic source can be characterized
by a set of properties represented by nominal, ordinal or real-valued variables
(scalar), as well as by other of a more complex nature like images (in the visible
wavelength region, infrared, and others), time-series (e.g. spectra), etc. In addi-
tion, the information comes with different degrees of precision, uncertainty and
completion (missing data is quite common). Classical data mining and analy-
sis methods are sometimes difficult to use, the output of many procedures may
be large and time consuming to analyze, and often their interpretation requires
special expertise. Moreover, some methods are based on assumptions about
the data which limit their application, specially for the purpose of exploration,
comparison, hypothesis formation, etc, typical of the first stages of scientific
investigation.

This makes graphical representation directly appealing. Humans perceive
most of the information through vision, in large quantities and at very high input
rates. The human brain is extremely well qualified for the fast understanding
of complex visual patterns, and still outperforms the computer. Several reasons
make Virtual Reality (VR) a suitable paradigm: Virtual Reality is flexible, as
it allows the choice of different representation models to better suit different
human perception preferences. It allows the construction of different virtual
worlds representing the same underlying information, but with different look
and feel. Thus, the user can choose the most appealing representation. VR
allows immersion. The user can navigate inside the data, and interact with the
objects in the world. VR creates a living experience. The user is not merely a
passive observer or an outsider, but an actor in the world, in fact, part of the
information itself. VR is broad and deep. The user may see the VR world as a
whole, and/or concentrate the focus of attention on specific details or portions
of the world. Of no less importance is the fact that in order to interact with a
Virtual World only minimal skills are required.

In this paper a Virtual Reality approach for understanding large heteroge-
neous, incomplete and imprecise data (Valdés 2002, 2002b, Valdés & Bonham-
Carter 2003, Valdés 2003, Valdés 2004), is introduced in the domain of astron-
omy. In this approach, the notion of data is not restricted to databases, but also
includes logical relations and other forms of structured knowledge.

2. The Heterogeneous Space

Consider an information system S =< U,A > where U and A are non-empty
finite sets, called the universe and the set of attributes respectively, such that
each a ∈ A has a domain Va and an evaluation function fa assigns to each u ∈ U
an element fa(u) ∈ Va (i.e. fa(u) : U → Va) (here the Va are not required to
be finite). An example is shown in Fig 1. There are attributes with domains of
different kinds (nominal, ordinal, ratio, fuzzy, images, time-series and graphs),
and also containing missing values (represented as ?).

Heterogeneous and incomplete information systems will be considered as
follows. Let ? be a special symbol having two basic properties: i) if ? ∈ Ω (Ω
being an arbitrary set) and f is any unary function defined on Ω, then f(?) = ?,
and ii) ? is an incomparable element w.r.t any ordering relation defined on Ω. A
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Figure 1. An example of a heterogeneous database.

heterogeneous domain is defined as a Cartesian product of a collection of source
sets (Ψi): Ĥn = Ψ1× . . .×Ψn, where n > 0 is the number of information sources
to consider.

As an example, consider the case of a heterogeneous domain where objects
are characterized by attributes given by continuous crisp quantities, discrete
features, fuzzy features, graphs and digital images. Let R be the reals with
the usual ordering, and R ⊆ R. Now define R̂ = R ∪ {?} to be a source set
and extend the ordering relation to a partial order accordingly (R̂ may model
scalar measurements, with missing values). Now let N be the set of natural
numbers and consider a family of nr sets (nr ∈ N+ = N − {0}) given by
R̂nr = R̂1 × . . . × R̂nr (nr times) where each R̂j (0 ≤ j ≤ nr ) is constructed
as R̂, and define R̂0 = φ (the empty set). Now let Oj , 1 ≤ j ≤ no ∈ N+ be
a family of finite sets with cardinalities ko

j respectively, composed by arbitrary
elements, such that each set has a fully ordering relation ≤Oj

. Construct the
sets Ôj = Oj ∪{?}, and for each of them define a partial ordering ≤̂Oj

by
extending ≤Oj

according to the definition of ?. Analogously construct the set
Ôno = Ô1 × . . . × Ôno (no times and Ô0 = φ). For the special case of nominal
variables, let Nj , 1 ≤ j ≤ nm (nm ∈ N+) be a family of finite sets with
cardinalities km

j ∈ N+ composed by arbitrary elements but such that no ordering
relation is defined on any of the Nj sets. Now construct the sets N̂j = Nj ∪{?},
and define N̂ nm = N̂1× . . .×N̂nm , (nm times and N̂ 0 = φ). Sets Ôno , N̂ nm may
represent the case of no ordinal variables and nm nominal variables respectively.
Similarly, a collection of nf extended fuzzy sets F̂j (1 ≤ j ≤ nf ) , ng extended
graphs Ĝj (1 ≤ j ≤ ng) and ni extended digital images Îj (1 ≤ j ≤ ni), can be
used for constructing the corresponding cartesian products given by F̂nf , Ĝng
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and Îni .
The heterogeneous domain is given by Ĥn = R̂nr×Ôno×N̂ nm×F̂nf ×Ĝng×Îni .
Elements of this domain will be objects o ∈ Ĥn given by tuples of length n =
nr + no + nm + nf + ng + ni, with n > 0 (the empty set is excluded). Other
kinds of heterogeneous domains can be constructed in a similar manner, using
the appropriate source sets. More general information systems are those in
which the universe is endowed with a set of relations of different arities. Let
t =< t1, . . . , tp > be a sequence of p natural integers, called type, and Y =<
Y, γ1, . . . , γp > a relational structure as defined in (Hajek & Havranek 1978),
where Y is a non-empty domain of objects and the Γ = {γi} (i = 1, . . . , p) are
different relations of various arities defined on Y (according to t). The extended
information system will be Ŝ =< U,A,Γ >, endowed with the relational system
U =< U,Γ >.

3. The Virtual Reality Space

A virtual reality space is a structure composed of different sets and functions
defined as Υ =< O, G,B,<m, go, l, gr, b, r >. O is a relational structure defined
as above (O =< O,Γv > , Γv =< γv

1 , . . . , γv
q >, q ∈ N+ and the o ∈ O are

objects), G is a non-empty set of geometries representing the different objects
and relations (the empty or invisible geometry is a possible one). B is a non-
empty set of behaviors (i.e. ways in which the objects from the virtual world
will express themselves: movement, response to stimulus, etc. ). <m ⊂ Rm

is a metric space of dimension m (euclidean or not) which will be the actual
virtual reality geometric space. The other elements are mappings: go : O → G,
l : O → <m, gr : Γv → G, b : O → B, r is a collection of characteristic functions
for Γv, (r1, . . . , rq) s.t. ri : γv

i
ti → {0, 1}, according to the type t associated with

Γv.
The representation of an extended information system Ŝ in a virtual world

implies the construction of another Ŝv =< O, Av, Γv >,O in Υ, which requires
the specification of several sets and a collection of extra mappings (w.r.t. those
required for Υ). A desideratum for Ŝv is to keep as many properties from Ŝ
as possible. Thus, a natural requirement is that U and O are in one-to-one
correspondence (with a mapping ξ : U → O). The structural link is given
by a mapping f : Ĥn → <m. If u =< fa1(u), . . . , fan(u) > and ξ(u) = o,
then l(o) = f(ξ(< fa1(u), . . . , fan(u) >)) =< fav

1
(o), . . . , fav

m
(o) > (fav

i
are the

evaluation functions of Av). This gives semantics to the pair < go(o), l(o) > (it
determines important properties like geometry, visibility and location).
It is natural to require that Γv ⊆ Γ (possibly empty), thus having a virtual world
portraying selected relations from the information system, represented according
to the choices made for G and gr.

4. The Problem of Large Datasets

Regardless of the criteria followed when computing a virtual reality space, com-
plex optimization procedures are applied involving the estimation of the image
of the data objects. The objective function surface becomes more complex and
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convoluted with the increase of the dimensionality of the parameter space, and
local extrema entrapment is typical. Even if all of the difficulties related with the
amount of memory and the numeric computation involved are put aside (note
that a dissimilarity matrix grows quadratically with the number of objects), the
graphical representation of millions or possibly billions of objects in a screen
with the current computer technologies, is neither feasible, nor practical. On
the other hand, assuming that it would be possible, the amount of information
presented to the user will be overwhelming, and will obscure, rather than clar-
ify, the presence of meaningful or interesting patterns. The approach followed
here is to study the properties of the dataset (X), possibly huge, in order to
extract a subset of a sufficiently smaller cardinality which will either retain as
much structural information as possible, or guarantee its preservation up to a
predefined threshold. In this approach only the non-redundant objects up to a
predefined degree are preserved, thus producing a kernel or core representation
of the original dataset. If a similarity measure S is chosen as a redundancy
criterium, and a similarity threshold Ts is set forth as a parameter, it is possi-
ble to construct a set L ⊆ X, such that ∀x ∈ X, ∃ l ∈ L, S(x, l) ≥ Ts (Fig-2).
There are efficient algorithms which can generate L-sets at different Ts-levels,
and this parameter will determine both the cardinality of the resulting L-set, as
well as its semantics. According to this approach, a VR representation of a large
or huge dataset is obtained by first extracting a L-set according to a suitable
similarity threshold, and then computing its VR space. Since each of the data
objects is represented by a sufficiently similar l-object (lower bounded by Ts),
the VR space is compliant with the similarity structure of the whole dataset X
at that level.

Figure 2. Relation between a dataset X and its corresponding L-
subset at the Ts-similarity level (# denotes set cardinality).

4.1. The Direct and Inverse Transforms

As mentioned, f plays an important role in giving semantics to the virtual
world, and there are many ways in which such a mapping can be defined. In
a great extent it depends on which features from the original data need to be
highlighted. In particular, adjacency relationships between the objects O in Υ
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should give an indication about the similarity relationships (Chandon, Pinson
1981) between the objects in the original heterogeneous space Ĥn (Valdés 2002b).
Other interpretations about internal structure are related with the linear/non-
linear separability of class membership relations defined on the data (Jianchang
& Jain 1995). In this sense, f can be constructed according to several criteria: i)
to maximize some metric/non-metric structure preservation criteria as has been
done for decades in multidimensional scaling (Kruskal 1964), (Borg & Lingoes
1987), ii) minimize some error measure of information loss, iii) maximize some
measure of class separability (in a supervised case), or iv) satisfy several criteria
simultaneously. For example, in the case of i), if δij is a dissimilarity measure
between any two i, j ∈ U (i, j ∈ [1, N ], where n is the number of objects),
and ζivjv is another dissimilarity measure defined on objects iv, jv ∈ O from Υ
(iv = ξ(i), jv = ξ(j), they are in one-to-one correspondence), two examples of
error measures frequently used are:

S stress =

√√√√
∑

i<j (δ2
ij − ζ2

ij)2∑
i<j δ4

ij

(1)

Sammon error =
1∑

i<j δij

∑
i<j (δij − ζij)2

δij
(2)

The f mappings obtained using approaches of this kind are only implicit,
as no functional representations are found, and its usefulness depends the final
errors obtained in the optimization process. Explicit mappings can be obtained
from these solutions using neural network, genetic programming, and other tech-
niques. An explicit f is useful for both practical and theoretical reasons. On
one hand, in dynamic data sets (e.g. systems being monitored or databases
formed incrementally from continuous processes) an explicit direct transform f
will speed up the incremental update of the VR information system Sv. On the
other hand, it can give semantics to its attributes, thus acting as a dimensionality
reducer or as a generator of new attributes.

The possibilities derived from this approach are practically unlimited, since
the number of different similarity, dissimilarity and distance functions defin-
able is immense. Moreover, similarities and distances can be transformed into
dissimilarities according to a wide variety of schemes. This provides a rich frame-
work where one can find appropriate measures better suited to both the internal
structure of the data, and external criteria.

The existence of an inverse transformation f−1 from Υ back to Ĥn is, in
many cases, worth considering. If a sense is made of patterns of objects in
Υ in terms of abstract concepts, and new conjectured objects or relations are
conceived, it is natural to ask what kind of previously unseen or undiscovered
objects or relations they would correspond to in Ĥn. Several approaches for
finding the inverse transformation can be followed, and neural networks are
among the obvious choices (Valdés 2002b).



Visual Data Mining of Astronomic Data with Virtual Reality Spaces 7

5. An Astronomic Example

In order to illustrate the possibilities of the proposed approach, a dataset con-
taining information about 33055 galaxies was used. This information is part of
the Canada-France-Hawaii Legacy Survey (the CFH telescope), and the observa-
tional conditions, and preprocessing related with the dataset were the following:

• I-band (red filter) exposure time is 46740 seconds
• Total 5-band exposure time is 77180 seconds (u,g,r,i,z filters were applied,

and the i-Band was used to get the morphologies)
• Image reduction, with photometry, and photometric redshifts (courtesy of

Stephen Gwyn from the University of Victoria)
• The seeing was 0.9 arcseconds to 1.1 arcseconds (moderate).
• Morphologic analysis by David Schade (Herzberg Institute for Astrophysics,

National Research Council Canada)
Each galaxy was characterized by a collection of 11 attributes: 1) The I-

band (red) magnitude, 2-6) five variables describing the color of the gallaxy
(derived from the values obtained by the u,g,r,i,z filters, 7) the half-light radius
of the galaxy image, 8) the half-light radius, as a measure of the size of the
galaxy, 9) the exponential index of the slope of the light profile, 10) the axial
ratio (longer half-axis/smaller half-axis of an ellipse), and 11) the Photometric
redshift.

When presenting the VR spaces corresponding to the experiments, it must
be taken into account that it is impossible to illustrate appropriately the look,
feel and immersion of a virtual reality, color, 3D environment within the limits
imposed by printed paper. Thus, grey level screen snapshots from the examples
are presented only to give a rough idea. The design of the virtual reality spaces
was kept simple in terms of the geometries used, (in particular, behaviors were
excluded). The snapshots were simplified w.r.t the information included in the
corresponding Υs to avoid information overload. The criterium for computing
the VR space was to preserve the similarity structure, and the direct trans-
form between the original space and Υ was found by minimizing Sammon error,
with ζij given by the euclidean distance in Υ and δij = (1 − ŝij)/ŝij , where
ŝij is Gower’s similarity (Gower 1973). In all cases, the computed VR space
corresponds to L-sets extracted from the database containing all of the galaxies.

5.1. Experiment 1: All Galaxies

For this first experiment, all of the variables were used as descriptor attributes,
and the L-sets were computed at a similarity threshold of 0.85. In addition, the
values of the Photometric redshift were used as a classification criterium, and the
galaxies were divided into three classes: < 0.5, in the [0.5, 1) interval, and ≥ 1.
Accordingly, additional objects were included in the space, namely, transparent
membranes wrapping the classes induced by the previously defined partition.
The resulting space is shown in Fig. 3. In the left hand side, each element of
the L-set is represented as a sphere with a radius proportional to the number of
objects of the original database represented by the corresponding L-object, thus
giving an idea of the relative distribution of the elements of the whole database
in the VR space. In the right hand side, the elements of the same space are
wrapped with semitransparent surfaces corresponding to the classes induced by
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Figure 3. Virtual Reality Space corresponding to the 33055 galaxies
database. Left: L-set computed with a similarity threshold of 0.85.
Right: the same set but with transparent membranes wrapping subsets
having specific ranges of the Photometric redshift attribute (see text).

the partition derived from the Photometric redshift. This variable is related with
the distance to a given galaxy, and the differential concentration of the galaxies
within each class. The clear distinction of the wrapping surfaces, indicates that
their intrinsic properties have a dependency w.r.t. their Photometric redshift.

5.2. Experiment 2: Three Groups of Galaxies According to the Pho-
tometric Redshift

In this case, the dataset was partitioned into three separate subsets according to
the value of the Photometric redshift as described in the previous experiment.
Then, a four-fold set of VR-spaces was computed (for the whole dataset, and
for the three subsets). In all cases the Photometric redshift was excluded as
a descriptor attribute in order not to bias the computation of the L-sets and
their corresponding VR-spaces, hence, each galaxy was described by a set of 10
attributes. The similarity threshold used for computing the L-sets in all cases
was 0.75, and the results are shown in Fig. 4.

The shapes and structure of the VR-spaces corresponding to the galaxy
subgroups in comparison with the whole are different. This provides an indi-
cation of the influence of distance to the galaxy (expressed by the Photometric
redshift), on its nature and properties.
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7. Conclusion

The construction of virtual reality spaces for astronomic databases allows the
visualization and the understanding of the underlying structure of datasets, pos-
sibly large. As illustrated by examples from the domain of galaxy research, this
tool is potentially useful in knowledge discovery and data mining in astronomy.
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Figure 4. Virtual Reality Space corresponding to the 33055 galaxies
database according to the values of the Photometric redshift. The L-
sets were computed with a similarity threshold of 0.75. Upper left: All
of the galaxies. Upper right: Galaxies with Photometric redshift < 0.5.
Lower left: Galaxies with Photometric redshift in the [0.5, 1) interval.
Lower right: Galaxies with Photometric redshift ≥ 1. The toolbar
at the bottom of each representation corresponds to the navigation
controls of the virtual reality browser.


