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Abstract. 

A common problem in simulations of MRI-experiments based on the numerical solution of 

the Bloch equations is the finite number of isochromats used in the calculations. This usually 

results in false or spurious signals and is a source of various differences between calculated 

and experimentally obtained data. In this paper, we are proposing a technique representing 

each sample voxel by a central and three additional isochromats, slightly shifted  in 

orthogonal directions from center, thus providing a linear approximation of  intravoxel 

dephasing. This approach allows for further improvement and precision of the calculated 

NMR signal and virtually avoids the problem related to an finite set of isochromats. Here we 

provide details of the algorithm together with examples of simulations which prove the 

efficiency of this approach.    

 

Keywords: MRI simulation; Bloch equation; Intra-voxel dephasing
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1. Introduction 

There are numerous situations where computer simulations have become a useful tool for 

studying various aspects of MR experiments, pulse sequences and hardware configurations.  

One of the most common and flexible categories of such simulators is based on the 

discrete-iterative solution of the Bloch equations applied to the spin system [1]. This method 

allows one, in a simple and convenient way, to investigate most phenomena occurring during 

magnetic resonance imaging (MRI) experiments.  However, despite the flexibility of such 

models, the common problem with this approach is the finite set of isochromats used in the 

calculation. This affects formation of the output data in the following ways: 

 the accuracy of the calculated signal from each volume element depends on the number 

of isochromats used per spatial dimension in the simulation, 

 simulated data generally have a discrete frequency spectrum as the limited set of spins 

used in these calculation only contributes a certain number of frequencies to the signal,   

  the discrete and regular location of the spins in simulations can  generate false signals 

caused by rephasing of the transverse magnetization, e.g. by applying strong spoiler 

gradients.      

A number of different approaches to deal with this problem have been suggested in the past. 

One possible way is to use multiple isochromats in each volume element, which helps to 

obtain a more realistic signal and, to some extend, the suppression of spurious signal. It has 

been shown that to achieve an image reconstruction error below  1.5%  at least three 
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isochromats per voxel and spatial direction have to be used [2] .  However, even with 

multiple spins per voxel, spurious signal could appear if the gradient amplitude/duration 

exceeds certain limits.  Therefore, the spin density distribution and/or appropriate isochromat 

spacing has to be considered prior to simulation experiments [3][4]. The randomization of 

spin-spin distances within the voxel could be used to suppress spurious rephasing as well [5], 

however, this method induces additional stochastic noise into the simulated data [6].   

As the intra-voxel dephasing (IVD) from main field inhomogeneities 0B , and imaging 

gradients strongly affects MRI signal formation, the incorporation of this phenomenon would 

provide a more realistic simulation.  In [7], the additional *

2T exponential weighting of signal  

has been applied in order to reflect dephasing from 0B  inhomogeneities. However, this 

approach requires special treatment of the time scale in order to generate proper spin-echo 

signal formation by 180
0
 refocusing pulses. Another approach assumes a linear phase change 

across the voxel which determines the dephasing slope for the phase of the neighboring 

isochromats, and finally, integration of transverse magnetization is used to calculate the 

signal generated by each element [8]. An alternative approach is to calculate intra-voxel 

dephasing iteratively using an analytical formula for partial derivatives of the magnetization 

vectors  [9]. 

In this work we are proposing a simple alternative approach to estimate the intra-voxel 

dephasing in Bloch simulators from the mutual phase difference of closely placed pairs of 

isochromats [10]. The technique is relatively computational efficient as it requires usage of 

only one extra isochromat for each spatial dimension considered in the simulation, and at the 
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same time is resistive to the generation of spurious echoes as the spacing of spins can be 

chosen to be very small.    

    

2. Methods 
 

2.1 Spin modeling 

The typical approach exploited in most Bloch simulators includes the following steps:  

 Construction of the discrete virtual object – a 1D, 2D or 3D matrix, where each element 

holds information about a local physical property such as: spin density, relaxation constants 

T1 and T2, 0B field inhomogeneity etc. Each voxel contains one or more magnetization 

vectors as well. The matrix represents a real object, which is assumed to consist of 

rectangular, homogeneous and homogeneously excited voxels. It is the goal of the approach 

presented in the paper to improve the accuracy of the representation of the rectangular voxel 

volume, which would normally be absent in the pointwise representation.   

 Numerical solution of the Bloch equation is applied for each element of the virtual object.   

Calculations are performed step by step following the evolution of experimental parameters 

such as the radiofrequency field (RF) 1( , )tB r , the gradient field ( )tG , and in some cases 

dynamic properties e.g. flow [11]. The evolution of the magnetization vector 

( , ) ( , , )T

x y zt M M MM r  in the rotating laboratory frame can be calculated from time 

instance it  to 1it   as:    

 1 0 0( , ) ( ( , ), 0,0, ( ) , ( )) ( , )
T

i Rot 1 i i it t t t   M r B r G r B r M r EE R   (1) 
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where RRot
 is a rotation operator which can be found in the literature e.g. [1][9][12]. The 

diagonal matrix   2 2 1/ / /, ,t T t T t Tdiag e e e  
E=  and the column vector 

  1/

0 00, 0, 1
T

t T
M e

 E   introduce the relaxation and 0M represents the initial 

magnetization in the equilibrium state.         

  The NMR signal of the sample, acquired at time instance it , is  calculated by summation 

of the transverse components of magnetization vector over the all elements in the virtual 

object:      

 ( ) ( , ) ( , )i x i y is t M t j M t
r

r r      (2) 

where 1j   .   

 

 

2.2 Tracking of intra-voxel dephasing  

Although calculation of the output signal using Eq.(2) is simple and straightforward in 

certain situations, output data are substantially different from results obtained in real 

NMR experiments. Perhaps the most obvious difference is related to the rephasing of 

false transverse magnetization as a consequence of insufficient isochromat spacing used 

in the simulation. When the model only contains a single isochromat per voxel, the 

mutual phase difference between neighboring isochromats in a given spatial dimension 

is: 

 , ,n n n n x y zk r      (3) 
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where  nk  is distance of the k -space trajectory from the origin and nr  represents the  

isochromat spacing. The phase difference n   is repeating with cycle of 2
nr




, which 

determines the replication or modulation of the signal in k-space, calculated according to 

Eqn.(2). The desired image resolution dictates that signal is sampled over the k -space 

span 2
n

n

k
w

 , where nw  is the image voxel size. In order to avoid image artifacts 

related to signal replication in k -space,  the following condition has to be fulfilled:  

     n nw r        (4) 

Incorporation of IVD into signal calculations could significantly suppress problems with 

rephasing of transverse magnetization and at the same time improve the precision of signal 

estimation. However, in order to do so it is imperative to track exact IVD in time during the 

evolution of isochromats. Here we are suggesting a simple solution for IVD monitoring, 

which could be used as an alternative to the analytically based method. The idea is to utilize 

extra isochromats, one per used spatial dimension, and to position them very close to the 

central isochromat as is shown in Fig.1. Assuming a linear approximation of the 

phase-change within the voxel, dephasing in each direction is then calculated as the phase 

difference between the central and the corresponding off-center isochromat divided by their 

mutual distance: 

n c
n

h

    ,  n = x,y,z    (5) 

where n   represents a phase gradient, c  the central isochromat’s phase, n   the off-center 

isochromat’s phase in the corresponding spatial dimension and h  the distance between the 
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central and the off-center spins. The signal from the voxel affected by IVD can thus be 

calculated by integration of the phase over the whole voxel volume [8][9][13]: 

       

2 2 2

22 2

( , ) ( , ) ( , ) ( , )

,

2 2 2

( )

, , ,

( , ) ( , )

( , ) ( ) ( ) ( )

rr ryx z

i

XY

r r rx y z

XY

i i i c

c i

tx y z

i i

r r r

i x i y i z i

i t x t y t z

i t
t t t

s t dx dy dz

sinc sinc sincM

M t e

t e

   

   

 

   

  

     

  





  
r r r r

r

r

r r r

r

r

(6) 

Where the sinc function takes the un-normalized form of sin(x) / x . As the three off-center 

isochromats serve the purpose to monitor phase evolution only, their distance from the center 

isochromat can be very small, and is in practice only limited by computational accuracy of 

the computer’s double precision arithmetic.  The close isochromat spacing helps to keep the 

isochromat’s phase difference within the   range and makes the tracking of IVD possible, 

even when very long gradient pulses or large 0B  field inhomogeneities are applied. All 

simulations presented in this paper used the same off-center isochromat distance of  h=10
-9 

m.   
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3. Simulation results and discussion 

The proposed IVD algorithm was implemented on a homemade stand-alone Bloch simulator 

written in C/C++ in a Unix environment.  All simulations were prepared by Matlab version 

7.4  (The MathWorks, Natick, MA, USA) program scripts, which generated the input data 

such as the phantoms, the inhomogeneity maps, and the pulse sequences. These were sent to 

the simulator for execution.  After the simulation was finished, the Matlab script read and 

processed the output data from the simulator and displayed the  results on the screen.  The 

Matlab script measured  the simulation time from  start to finish of the Bloch simulator run, 

i.e. the overhead including preparing and processing the data was not included. All 

simulations were performed on a 2.5 GHz dual core CPU laptop computer running 

Windows/XP. The Cygwin emulator of the Unix operating system was used to run the Bloch 

simulator in the Windows/XP. 

In the following, the input matrix size will refer to the dimensions of the phantom voxel 

arrays used by the Bloch simulator to generate NMR signal.  The output matrix size will refer 

to the dimensions of the sampled NMR signal i.e. the k-space matrix and/or reconstructed 

image.  

 

3.1 FID simulations 

Figure 2 compares analytical and simulated magnitudes of the FID signal from a 1D boxcar 

object of 0.5 mm length with a 36 mT/m applied gradient field. The analytical signal was 

calculated using equation (6) applied for a 1D object.  In the simulation, only one voxel was 
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used containing a central and three off-center isochromats, however, two of them had no 

effect on the signal formation as their shifts were perpendicular to the applied gradient. Both 

data sets demonstrate excellent agreement between theoretical and simulated signal. 

3.2 Voxel spectrum simulations  

Frequency spectra from a 1D boxcar object were collected in two different ways. The first 

calculation used a single center and three offset isochromats, and included the IVD 

technique. The second calculation was performed on 1000 uniformly distributed isochromats 

within the boxcar object of identical size.  The results of these calulations are shown in Fig. 3. 

The parameters used in both simulations are as follows: gradient echo sequence with a 50 μs 

hard pulse excitation, object size is 0.5 mm (1 voxel), gradient amplitude 63 mT/m, sampling 

frequency 10 kHz and 1000 complex points acquisition. The spectra are almost identical, 

with a frequency bandwidth of 1340.5 Hz in case of IVD and 1342.8 Hz for the multiple 

isochromats simulation, both measured as full width at half maximum (FWHM) intensity. 

This is very close to a bandwidth of 1343.586 Hz calculated from the gradient amplitude and 

voxel size.  IVD generates a uniform spectral distribution with a frequency bandwidth 

modulated by the applied gradient field along the corresponding direction.  

In addition, IVD makes it possible to use a significantly smaller number of isochromats, what 

is demonstrated on phantom which contains four vertical strips of  relative  width 1,2,3 and 4 

(see Fig.4). The image (A) was generated from the phantom of 256x256 input matrix size 

and without usage of IVD algorithm.   In the simulation of image (B), the phantom of 

16x16-matrix size with combination of IVD algorithm has been used.   Both output images 

have the same resolution of 256x256 pixels and appear almost identical, though a closer look 
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at the profile of image (B) reveals ringing artifact at the edges of the high-low intensities 

transitions. However, there was a significant (approximately 78 times) reduction in the 

simulation time needed to generate image (B) due the smaller number of isochromats used in 

the calculation.   The ripple artifact in IVD simulations could be suppressed choosing a 

higher phantom resolution as demonstrated in image (C). The image (C) used the same input 

and output matrix size of 256x256 voxels, however, for image (C) the computational time 

was approximately 200 longer.  The simulation parameters for image (D) were identical to 

those for experiment (B), with the exception of the IVD application. The obtained image (D) 

reveals that the frequency lines from the neighboring isochromats are separated from each 

other. The simulation demonstrates it fails to meet requirements on resolution of the phantom 

model and the image i.e. condition given by Eqn. (4). The previous examples demonstrate 

how IVD modifies the voxel spectrum character, which now reminds the user more of a 

spectrum obtained from the continuous spin distribution rather than from the discrete 

isochromat grid. This permits us to speed up the simulations using isochromat matrices with 

a significantly smaller size as the simulated image resolution and, at the same time, it avoids 

any severe spectral distortions.    

    

 3.3 Spurious signal suppression 

Fig. 5 shows an example of the gradient-echo (A) and spin-echo (D) pulse sequence. 

Simulation parameters were as follows: 1D phantom with a matrix size of 128 voxels, 

FOV  = 50 mm, gradient amplitude 20 mT/m, echo time 12 ms and 10  s time steps. The 

results obtained without considering IVD contain three additional spurious echoes shown in 
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(B) and (E). These false signals can be effectively suppressed using IVD, as is shown in (C) 

and (F). 

3.4 Echo train simulations 

Two echo train examples are presented: a multiple spin-echo i.e., Carr-Purcell-Meiboom-

Gill (CPMG) and a multiple gradient pulse sequence (see Fig.6). In both simulations, an 

input phantom with the following parameters has been used: single voxel with a size of 

5 mm in each dimension, T1  = 600ms and T2 = 200ms.  The IVD technique modulated 

the echo formation from the single voxel using a 0.5 mT/m linear field inhomogeneity 

applied across the voxel in each dimension. Note that the apparent *

2T  modulation of the 

echo amplitude in the multi gradient echo experiment represents a modulation due to both 

IVD as well as a T2 relaxation effect. 

 

 3.5 Truncation artifact 

When applying IVD in Bloch simulations, it introduces a ringing or so-called Gibbs artifact 

into the output images. This is especially well visible when simulations are using lower 

output image resolution. It might be considered a disadvantage using the IVD algorithm and 

introducing such artifacts into the reconstructed data. However, when comparing simulated 

with experimentally obtained data, similar artifacts can be found there as well, as 

demonstrated in Fig.7. Both experimental (A) and IVD simulated images (B) contain Gibbs 

artifacts, which tend to be much less visible in higher resolution datasets.  It should be noted 

that these artifacts are not visible in simulations with a single isochromat per voxel as is 

demonstrated by images in the bottom row (C). The behavior and source of the Gibbs artifact 
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is similar for both the experimental results and the data simulated with IVD. The artifacts are 

more pronounced when abrupt intensity changes are presented in the object and for data sets 

with low k-space coverage [14]. We do not see the Gibbs artifact in simulated images as a 

disadvantage of the IVD method but as a specific feature of the model, able to reproduce 

experimental performance limitations and imperfections. 

3.6 Inhomogeneity induced signal decay. 

In order to verify the effect of susceptibility on the simulation, we compare simulated and 

experimentally obtained data from a 3T spectrometer using a cylindrical phantom containing 

an axially placed air-filled tube. The phantom was positioned with its long axis perpendicular 

to the static magnetic field B0. The field inhomogeneity through the phantom was calculated 

using a formula for the phantom containing a glass tube (i.d. = 18.8 mm, o.d. = 22.8 mm) 

according to [15]. The Bloch simulator used this field map to interpolate the inhomogeneity 

induced by the gradients through the voxel [8]. The following parameters were used in both 

simulations and experiments: gradient echo sequence with FOV = 120 mm, 128x128-matrix 

size, TE = 10, 15 and 25 ms, TR = 1000 ms, 90 Hz bandwidth per pixel. The sample 

relaxation times were estimated to be T1= 1200 ms and T2 = 800 ms. Figure 8 illustrates the 

impact of field inhomogeneities on the output images with increasing echo time. From the 

experimentally obtained images it is obvious that the area of pixel intensity decay around the 

air-filled tube is increasing with the usage of longer echo times. The intensity profiles 

through the phantom center demonstrate that simulated data obtained with IVD exhibit very 

good agreement with experiment.  It should be noted that, using only a single isochromat per 

voxel without any account for IVD, the model is not capable to realistically simulate the 

effect of field perturbations and the results substantially deviate from the experimentally 
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obtained data.   In  [9]  it was estimated that in order to obtain reasonable simulation results,  

at least 8 isochromats per directions are necessary when  the multiple isochromats summation  

strategy is used. The previous results indicate that usage of the IVD algorithm could be much 

more computationally efficient for the tracking of susceptibility-induced intravoxel 

dephasing compared to the summation of transverse magnetization from multiple voxels.    

The presented IVD algorithm is assuming a linear approximation of the phase change over 

the voxel. As it was shown in previous examples, for many situations this simplification is 

reasonable and the linear phase approximations leads to good results. However, when 

multiple selective excitations are used, the phase change can substantially deviate from the 

linear assumption. In such cases, the applicability of the method and/or special care for 

simulation parameters such as spatial discretization of the sample has to be considered prior 

to the simulations.  

 

 

4. Conclusion 

The proposed intra-voxel dephasing method provides a simple and efficient way to 

accurately simulate MR signal attenuation for different experimental settings. The algorithm 

is based on the calculation of differences in transverse orientations for spin pairs in close 

proximity. Our simulation examples showed good agreement with experimentally obtained 

data sets. The main characteristics and benefits of the proposed method can be summarized 

as follows: 

 simple and straightforward implementation of IVD algorithm,  
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 it helps to suppress problems commonly encountered in simulations using a limited 

number of  isochromats, such as spurious echoes and truncation artifacts, 

 the spectral features of the signal generated with IVD resemble that of a real sample 

with a large number of spins.  

 the simulated data show a similar k-space span coverage behavior as is typical in real 

experiments i.e. reconstructed images exhibit Gibbs artifacts and imperfections for 

which signal intensities depend on the matrix size, 

 it required only one extra isochromat for each considered dimension, which makes 

the simulation relatively time efficient, 

 it is applicable to the simulation of the effects of RF pulses and gradient trains on the 

magnetization, 

 it is capable to correctly and efficiently simulate the effect of susceptibility induced 

field perturbations on experimentally obtained images. 
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Fig.1 Voxel representation used in the Bloch simulations. Three off-center isochromats are 

used to monitor the evolution of intra-voxel dephasing. As the mutual distance between 

central and off-center spins is very small (h =10
-9 

m is used in this paper) the accumulated 

phase differences can be kept within   which makes it easy to calculate intra-voxel 

dephasing.    
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Fig.2 Comparison of FID signals obtained from: (A) analytical equation (signal is shifted up 

to avoid overlap) and (B) Bloch simulation. 
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Fig.3 Comparison of the echo signal from a voxel containing a single, central, isochromat 

using the IVD technique i.e. three off-center additional isochromats (A), versus the signal 

from 1000 uniformly distributed isochromats (B). The signals are almost identical and have a 

similar spectral width: 1340.5 Hz in case of IVD and 1342.8 Hz for the 1000 isochromats set.    
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Fig.4 Simulated images obtained from a phantom containing four strips, shown on the left 

hand side, and the corresponding signal intensity profile, shown on the right hand side. All 

simulations were performed with the same 256x256-output matrix resolution; however, there 

was difference in phantom matrix resolution and IVD application: (A) 256x256 without IVD, 

(B) 16x16 with IVD, (C) 256x256 with IVD and (D) 16x16 without IVD.  The output image 

(D) contains only discrete frequencies corresponding to the position of the isochromats.  The 

time required for simulation is indicated at bottom of each image.   
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Fig.5 Examples of the gradient echo (A-C) and spin-echo sequences (D-F) and the 

corresponding excited signals.  The signals generated without intra-voxel dephasing exhibits 

false spurious echoes (B) and (E), which disappear when IVD dephasing is applied (C) and 

(F). The excitation profile is shown in (G).      
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Fig.6 Simulation of the echo trains: (A) CPMG sequence, with echo time 100 ms and (B) the 

multi-gradient echo sequence, with an echo time of 2ms and a alternating 100 mT/m gradient 

pulse. In the simulations, the echo formation and *

2T  decay is generated by a single voxel 

using the IVD technique (four isochromats in total) combined with a 0.5 mT/m linear field 

inhomogeneity applied across the voxel in each spatial direction. 
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  A 

A            

Fig.7. Comparison of Gibbs artifacts in real and simulated images using different spatial 

resolutions (sample model and image have identical matrix size): 64x64 left, 128x128 middle 

and 256x256 right columns. The top row shows images of a water-filled phantom acquired 

on 11.7T scanner. The middle and bottom row are simulated images with and without using 

IVD, respectively. Although images without dephasing are perfectly smooth, the images with  

IVD have a much closer resemblance to the experimental data. The time required for 

simulation is indicated at bottom of each simulated image.        
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Fig.8. Comparison of experimental and simulated gradient echo images with various echo 

times of 10, 15 and 25 ms from a cylindrical phantom containing an axially placed air-filled  

tube:  (A) row of experimental images from a 3 T scanner, (B) row of simulated images with 

IVD and (C) row of simulations without IVD. The profiles through the phantom center 

(location marked by a vertical white dotted line) for data sets with TE = 25 ms are shown as 

well at the bottom of the figure.  The typical simulation times are indicated as well.     


