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ABSTRACT
This paper reports on a research program of modeling

single and multi-phase granular flow. Both incompressible and

compressible single-phase granular flow, as well as two-phase

liquid/granular flow in a pressure vessel were considered. For

the latter case, detailed results based on a viscous/Mohr-

Coulomb closure were compared to existing formulations.

Idealized test cases indicated that the numerical procedure is

sound. Subsequent simulations of two-phase flow using realistic

geometries and boundary conditions showed that the pressure

distribution in the solid phase is fundamentally different for the

Mohr-Coulomb system than for the conventional system. The

effect of the angle of internal friction, geometry, and other

parameters is discussed.

NOMENCLATURE
A Area

A, B Constants in equation of state

aW, aE, aS, aN, aJ Coefficients in finite-volume equations

b Forchheimer’s constant

C Source term coefficient

D Diameter or width

d0 Threshold rate of deformation

dij Components of deformation rate tensor

dI,dII Principle rates of deformation

g Generation term

g
�

Acceleration due to gravity

H Height

k Permeability

k’ Inter-phase slip coefficient

m Exponent in equation of state

P Solid phase pressure

p Fluid pressure

rf, rs Fluid, solid volume fraction

S Source term in finite-volume equations

u
�

Velocity vector

u, v Velocity components

fu
�

, su
�

Fluid, solid phase velocity

V Source term value

x, y Displacement

∆ Rate of deformation

η Solid phase shear viscosity

κ Kappa number

µ Fluid viscosity

ρ, ρf, ρs Density, fluid density, solid density

σ Normal stress

σ Stress tensor

σ11,σ22,σxx,σyy Normal components of stress tensor

σΙ,σΙΙ Principle stresses

τ Shear stress

τ12,τxy Shear component of stress tensor

τw Wall shear stress

ΦP ,ΦW,ΦE,ΦS,ΦN Values of Φ in finite-volume equations

ΦiP,ΦiW,ΦiE,ΦiS,ΦiN Values of Φi in finite-volume equations

φ Angle of internal friction

φw Angle of friction with wall

ψ Angle of major principle stress

nu ∂∂ Wall velocity gradient
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INTRODUCTION
The two-phase flow of granular materials within a viscous

fluid is a subject with many important applications in the

chemical and process industries, food and beverage, materials

refining, energy, and other industry sectors. Figure 1 shows an

example of an industrial reactor-vessel used to process wood

chips into pulp. Solid wood chips and liquid material are

introduced at the top, and removed at the bottom of a long

pressure vessel. There are four main regions in the vessel: An

impregnation zone, followed by (from top-to-bottom) heating,

cooking, and washing zones. The unconsolidated porous matrix

of solid particles is saturated with free liquid in the upper

impregnation zone. The chips are then brought to the required

cooking temperature in the heating zone. Chemical

delignification of the wood fibers occurs in the cooking stage,

while the chips are cooled and washed in the lower washing

zone. Additional liquid, necessary to optimize the cooking

process, is introduced at three locations in the apparatus; spent

fluid being extracted at two sets of screens in the outer wall.

Smooth flow of the granular material within the vessel, under

the action of gravity and fluid drag, is critical to the successful

operation of the apparatus, especially in the washing zone,

where a counter-flow regime exists. Hanging of the chip

column, or plugging of the extraction screens could lead to

time-consuming and expensive downtime of the equipment.

In view of the elevated pressures and temperatures, caustic

environment, and complex nature of the flow, performing even

the simplest experiments is difficult or impossible. Under these

circumstances, computational fluid dynamics can convey

important information to the manufacturer and operator of the

equipment. Although chemical kinetics, heat and mass transfer

are present, these are considered beyond the scope of this paper,

which is concerned only with the mechanics of the solid and

liquid phases, knowledge of which is of paramount importance

to the operator of the equipment.

Previous solutions
Härkönen (1984, 1987) was among the first to attempt

numerical modeling of such a system. He considered two-

dimensional (2-D) steady-state flow within the axisymmetric

reactor illustrated in Fig. 1. Fluid flow within the isotropic

porous media was described by the Ergun-modified form of

Darcy’s law (Scheidegger, 1974, Ergun and Orning, 1949,

Ergun, 1953). Terms due to confining and pore pressure, as well

as Darcy friction and gravity were constructed in a force

balance. Härkönen’s numerical scheme involved the solution for

a harmonic scalar potential function, satisfying overall

continuity, followed by the iterative solution for the solid bed

(inter-granular) pressure, volume fraction, phase velocities, and

Darcian inter-phase slip coefficient. Härkönen’s method was

based on the notion that a solid pressure, P, distinct from the

fluid pressure, p; was present; however no shear forces were

permitted within the granular material, other than at the wall,

i.e. the bulk of the material was treated as an inviscid fluid.

Figure 1. Schematic of the reactor used in this study.
From Härkönen (1984), with permission.

The Härkönen scheme has formed the basis for subsequent

calculations: Michelsen (1995) and Michelsen and Foss (1994,

1996) considered transient one-dimensional (1-D) two-phase

flow in an industrial digester. The solid material was treated as

a Newtonian fluid with a kinematic viscosity of 10
-3

(m
2
/s) The

chip and liquid heights were allowed to vary; however radial

momentum was presumed insignificant in comparison to axial

momentum. Saltin (1992) also considered a 1-D two-phase flow

model. The Härkönen scheme suffers from a number of

restrictions: (i) The method is based on a static balance, i.e.

creeping flow, and inertial terms are excluded entirely. (ii)

Because a scalar potential is employed, boundary layer effects

(Brinkman, 1949) cannot be accounted for. (iii) The rheology

of the chip column is idealized. (iv) The algorithm employed is

highly specialized, i.e. non-standard.

Scope of the present study
The goals of this study are to: (a) Develop a model of 2-D

single and two-phase granular flow with standard CFD methods

and codes. (b) Validate the method against previous numerical

work. (c) Introduce a more realistic rheology, which includes

the frictional behavior of the solid phase. (d) Conduct

parametric studies to ascertain the effects of the frictional

properties of the solid phase on the flow.

Rheology of the solid phase
Flowing granular materials are known to behave differently

from viscous fluids. The significant feature of that behavior is

that the shear stresses, which arise during deformation, are

proportional to the normal stresses. Such frictional properties

give rise to one of the well-known observations concerning

pressure distribution in bins. Janssen (1895), see also Brown

and Richards (1970) considered the equilibrium of vertical

forces on a section of the granular material to show that the
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pressure on the walls of a bin increase linearly with depth, only

near the top. The resulting vertical distribution of the pressure

follows an exponential profile, tending to a constant maximum

value that does not increase with further increase of depth.

The frictional properties of granular materials are

commonly described by a Mohr-Coulomb criterion as follows

φσ+=τ sinc (1)

where τ and σ are the shear and normal stress on the failure

plane, c is the cohesion term, and φ is the angle of internal

friction. Both φ and c are material properties (or constants).

The angle, φ, is approximately equal to the angle of repose of

the granular material.

The Mohr-Coulomb criterion for two-dimensional

deformation can be graphically represented, as shown in Fig. 2.

The vertical and horizontal axes represent the shear and normal

stress, respectively. The stress states can be represented as

circles. The yield envelope corresponds to a straight line,

tangent to the stress circles. The case shown is for a

cohesionless material, c = 0, with shear stresses vanishing at

zero normal stress.

For 2-D Cartesian coordinates, x1 and x2, the stress

relations are

( )ψϕ+−=σ 2cossin111 P (2)

( )ψϕ−−=σ 2cossin122 P (3)

ψφ−=τ 2sinsin12 P (4)

where σ11, σ22, τ12 are the normal and shear stresses, ψ is the

angle between the major principal stress σI and the x1 axis, and

the magnitude of the solid pressure, P, is the average of the

major and minor principal stresses,

�
�

�
�
�

� σ+σ−=
2

IIIP
(5)

At low rates of deformation, it is usually assumed that

granular material can be modeled as a plastic continuum, and

the Mohr-Coulomb criterion is used to represent the frictional

behavior. Drucker and Prager (1952) developed the first

adaptation of the theory of plasticity to the deformation of

granular materials. The model was based on an associated flow

rule, with a generalized Mohr-Coulomb criterion as the plastic

potential. There have since been a large amount of related

investigations. Most of the relevant results may be found in soil

mechanics textbooks, e.g. Scott (1963). At high rates of

deformation, flowing granular materials exhibit a behavior that

is somewhat different. Particle-particle collisions give rise to

stresses that depend on the magnitude of the rate of

deformation; i.e. of a turbulent nature. Savage (1984) gives a

thorough review of that behavior.

Normal

stress σ

φ

σ ,τ11 12

σ ,τÿ ÿ11 12

2ψ
σIIσI

σ ,τ22 21
σ ,τÿ ÿ22 21

Yield envelope

Psinφ

P

Shear stress τ

Figure 2. Mohr-Coulomb diagram for a cohesionless
material. The circles represent possible stress states.

At present, there is no indication that treatment of the

present problem requires the relatively complex models that

correspond to the high rate of deformation regime.

Consequently, we incorporate the frictional behavior of the

solid phase by employing a plasticity approach representing the

slow deformation regime. The impact on performance of using

models for the high rate regime is left for future investigations.

Such work may also consider the theory of Savage (1998)

which incorporates particle fluctuations in a plasticity

framework, and may be relevant to the present situation.

GOVERNING EQUATIONS
Two distinct classes of problem are considered in the

present work. (i) The motion of incompressible bulk granular

material. Interstitial fluid effects are assumed negligible. The

objective is to verify that the present numerical scheme can deal

with plastic rheology. (ii) The simultaneous motion of both

granular and viscous fluid phases, and the coupling between

them. This case is considered in order to examine actual flow

conditions in the industrial pressure vessel.

Incompressible single-phase granular flow
The continuity and momentum equations of the bulk

granular material may be written as follows:

( ) 0=ρ⋅∇ u
�

� (6)

( ) σ⋅∇+ρ=ρ⋅∇
�

���

�

guu;
(7)

where u
�

is the velocity, ρ is an effective density, g
�

is the

acceleration due to gravity, and σ is the stress tensor. Tensile

normal stresses are considered positive in Eqs (6) and (7).

The relationship between the stress and the rate of

deformation may be expressed as
1

1 Cartesian tensor notation is adopted for reasons of brevity. The vector

forms in Cartesian and polar co-ordinates may easily be derived (Aris, 1962).
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ijijij dP η+δ−=σ 2
(8)

where ( )ijjiij uud ,,
2

1 += are the components of the rate of

deformation, P is the pressure, see Eq. (5), and η is a solid

phase shear viscosity. Bulk viscosity is considered negligible in

Eq. (8). The Mohr-Coulomb criterion and associated flow rule

are introduced into the flow algorithm by giving the shear

viscosity, η, the following value,

∆
φ=η sinP

(9)

The rate of deformation, ∆, is given by

( )0III ,max ddd −=∆ (10)

where dI and dII are principle values of the deformation gradient

tensor, and d0 is a threshold rate-of-deformation. The reader

will note that for the present case, gdd =− III , where the

generation term, g, is frequently used in fluid mechanics codes for

calculations involving heat transfer and turbulence. For relatively

large rates of deformation, ∆ > d0, the rheology is plastic, with

stresses independent of the magnitude of the rate of deformation

components. At small rate of deformation values, ∆ ≤ d0, the

shear viscosity is constant, and the deformation is viscous.

Thus, the present model employs a viscous-plastic formulation

to approximate rigid-plastic conditions. The threshold rate of

deformation, d0, is assigned a very small value in order to

maintain a predominantly plastic deformation. Equations (6) to

(10), together with the appropriate boundary conditions are

sufficient to determine the velocities and components of the

stress tensor.

Compressible two-phase fluid/granular flow
For this type of analysis, we add the equations of motion of

the fluid phase, terms describing the coupling between solid and

fluid phases, and an equation-of-state for the solid phase

(needed to model the bulk compressibility of the granular

material).

The continuity and momentum equations for the fluid phase

are

( ) 0=ρ⋅∇ fff ur
�

�

(11)

( ) ( ) ( )sffffffffff uukurprgruur
���

���

���

�

−′+µ∇⋅∇+∇−ρ=ρ⋅∇ ; (12)

where rf is the fluid volume fraction, 10 ≤≤ fr , ρf and fu
�

are

liquid velocity and density, respectively, µ is the fluid viscosity,

and p is a fluid or pore pressure. The inter-phase slip

coefficient, k ′ , is given by,

sffff uubr
k

rk
��

−ρ+µ=′ 2

(13)

where k is permeability, and b is Forchheimer’s constant

(Scheidegger, 1974). For the solid phase, i.e., the bulk granular

material,

( ) 0=ρ⋅∇ sss ur
�

� (14)

( ) ( ) ( )fsssssssss uukrprgruur
��

��

���

�

−′+σ⋅∇+∇−ρ=ρ⋅∇ ;
(15)

where fs rr −=1 is the solid volume fraction and ρs and su
�

refer

to the solid phase. The components of the solid phase stress

tensor σ are given in Eq. (8). For compressible flow, the solid

(granular) pressure, P, is related to the volume fraction

according to the equation-of-state, or compressibility equation;

m

s BPAr +=
(16)

for 0≥P . The fluid pressure, p, is solved-for but the solid

pressure, P, is obtained algebraically, by inversion of Eq. (16)

as,

( ) 695.1356.0
ln139.0831.0

410 −
κ−

= srP
(17)

from Härkönen (1987), with a constant value of κ = 195

(Michelsen, 1996), and 356.0>sr . The reader will note that

while the fluid pressure, p, acts on both fluid and solid, the solid

pressure, P, has no effect upon the fluid. Thus, p is sometimes

referred to as a ‘shared’ pressure.

NUMERICAL SCHEME
Both incompressible single-phase granular flow, and

compressible two-phase fluid/granular flow were considered in

this study. For the former case a finite-volume method based on

the well-known SIMPLE (Semi-Implicit Method for Pressure

Linked Equations) algorithm of Patankar and Spalding (1972)

may readily be employed. The domain is divided into a number

of finite-cells, and it is postulated that the governing partial

differential equations may be approximated by linear algebraic

equations having the form

( ) ( ) ( )
( ) 0=+Φ−Φ+

Φ−Φ+Φ−Φ+Φ−Φ
Sa

aaa

PNN

PSSPEEPWW
(18)

where ΦP is the value of some intrinsic property Φ at cell P, and

ΦW,  ΦE,  ΦS,  ΦN refer to values at the west, east, south, north

neighbors of P, and ( )PVCS Φ−= is a linearized source-term.

A so-called staggered scheme (Harlow and Welch, 1965) is

employed for velocities, Φ = u, v. The momentum equations are
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solved assuming a guessed pressure field. If the pressure field is

incorrect, the velocity field will not satisfy continuity, and

pressure and velocity correction factors are computed until

satisfactory convergence is achieved. For multi-phase flow, the

system of equations having the form,

( ) ( ) ( )
( ) ( ) 0=+Φ−Φ+Φ−Φ

+Φ−Φ+Φ−Φ+Φ−Φ
Saa

aaa

PiPjJPiNiN

PiSiSPiEiEPiWiW
(19)

i = 1,2, j = 2,1, may be solved using the IPSA (Inter-Phase Slip

Algorithm) of Spalding (1980, 1981). The main features of this

algorithm are: (i) The notion of a ‘shared’ pressure, p, between

the fluid and the solid, with an associated ‘extra’ pressure, P, in

the solid due to inter-granular stresses (Markatos and Kirkcaldy,

1983). (ii) The use of a partial elimination algorithm to mitigate

the cross coupling in the inter-phase term in Eq. (19). (iii) The

sum-to-unity requirement for volume fractions, rf, rs. Phase-

continuity equations are used to solve for volume fractions,

while overall continuity is used to correct the pressure, p, and

velocity fields in the phase momentum equations in a fashion

analogous to the SIMPLE algorithm.

The commercially available research-oriented code,

PHOENICS, was modified to perform all the calculations

described in this paper. This was achieved by modifying parts

of the source code, supplied by the vendor, in order to compute

(a) η according to Eq. (9) (all cases) (b) k’ according to Eq. (13)

(two-phase cases) and P according to Eq. (17) (compressible

cases), at the end of each ‘sweep’ or iterative cycle. In addition

source terms were introduced, as described below.

Boundary and initial conditions
Treatment of a granular flow at a wall is as follows. The

shear stress on the wall is assumed to be,

sin

n

uwP
w ∂

∂
∆

φ=τ
(20)

where ∂u/∂n is the velocity gradient at the wall, φW is the angle

of friction between the granular material and the wall,

0 ≤ φW ≤ φ, and the rate of deformation, ∆, is computed with

Eq. (10). By changing φW, the wall shear stress may thus be

varied from no slip to pure slip.

For the liquid phase, the fluid regime is dominated by

gravity and Darcy (inter-phase) friction, in the inertial regime,

so wall effects were not considered in this study. Other

boundary prescriptions are straightforward; both fixed mass and

momentum sources, and fixed pressure-type boundary

conditions were imposed at inlets and exits, as appropriate. For

two-phase flow, solid and liquid were presumed to enter with no

initial inter-phase slip.

Cases considered
The following four cases were examined:

(1) Incompressible single-phase granular flow in a vertical

channel.

(2) Compressible granular/air flow through a hole in a

square bin.

(3) Two-phase viscous/viscous flow in the axisymmetric

apparatus shown in Figs. 1 and 3.

(4) Two-phase viscous/Mohr-Coulomb liquid/solid flow in

the apparatus shown in Figs. 1 and 3.

Cases (1) and (2) were considered in order to demonstrate

the accuracy of the model, and to help clarify the results for

cases (3) and (4) which involved a problem with practical

industrial applications. In case (1) both frictional and

frictionless granular flow are considered and compared. The

effect of the angle of internal friction, and of the channel width,

D, on the solid flow regime is analyzed. In case (2) the stress

distribution for a compressible granular flow in a short channel

or bin is considered in detail. Cases (3) and (4) are both

concerned with the apparatus of Fig. 1. Figure 3 shows further

details of the equipment. The cross section of the 14.75 m

vessel increases from the top to bottom, as shown. Solid and

liquid material are introduced at the top of the pressure vessel.

There are four main regions in the reactor: impregnation,

heating, cooking and washing zones. Liquid is injected from

three locations, and extracted through two sets of screens. The

solids exit through the main outlet assisted by a mechanical

scraper. An axisymmetric grid was constructed. The mesh was

concentrated in the vicinity of the liquid inlet regions, and

around the main outlet. Boundary conditions and property

values are indicated in Fig. 3 and Table 1. These correspond to

values given in Härkönen (1984, 1987).

For case (3), the inter-granular friction in the solid phase is

presumed to be viscous, consistent with Michelsen (1996) with

a shear viscosity, η, corresponding to a constant kinematic

viscosity of 10
-3

m
2
/s. For case (4), the solid-phase rheology is

extended to include friction using a Mohr-Coulomb plastic yield

criterion. Comparison with case (3) reveals substantial

differences. The effect of the angle of internal friction, φ, on

the solid flow is discussed.

RESULTS AND DISCUSSION

Incompressible single-phase granular flow

Figures 4 to 7 show the results for gravity-driven single-

phase incompressible granular flow in a straight vertical

channel, Eqs. (6) to (10). The channel is open at both top and

bottom. No-slip boundary conditions are imposed at the walls.

The mass flow rate at the outlet is fixed corresponding to a bulk

velocity of 1 mm/s and ρ = 1132.4 kg/m
3
, while the pressure, P,

is fixed to zero, at the top of the channel.
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Figure 3. Detailed schematic of the reactor vessel
used in this study.

y

x

D

H

Figure 4. Velocity vectors for frictional granular flow,
D/H = 2:12, φ φ φ φ = 20°°°°.

Table 1. Boundary conditions and properties for solid
and fluid phases for the problem of Fig. 3

Parameter Value

Main inlet solid volume fraction, rs 0.42

Main inlet solid pressure, P 5 000 (Pa)

Main inlet solid velocity, vs 2.4x10
-3

(m/s)

Main inlet fluid velocity, vf 2.4x10
-3

(m/s)

Main outlet fluid pressure, p 0 (Pa)

Solid density, ρs 1132.4 (kg/m
3
)

Fluid density, ρf 1 000 (kg/m
3
)

Fluid permeability, k
2

2

3106.4 s

f

r

r

x

µ (m
2
)

Forchheimer’s constant, b
2

6109.3

f

s

f r

rx

ρ
(1/m)

. 0.5

x (m)
1.00.-0.5

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

φÿ= 20
o

φÿ= 0
o

Figure 5. Fully developed velocity profiles for
frictionless and frictional granular flow in a channel.
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D/H = 0.208

D/H = 0.167

D/H = 0.125
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D/H = 0.041

P (Pa)

y (m)

Figure 6. Effect of aspect ratio on pressure, P (Pa), for
incompressible single-phase flow, φφφφ = φφφφw = 30º.
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Figure 7. Pressure, P (Pa), as a function of depth,
D/H = 2:12. Various angles of internal friction, φφφφ (°°°°).

Figure 4 shows velocity vectors in the channel. The flow is

predominantly in the vertical direction. Note the formation of

shear layers near the channel walls, as observed in the

experimental work of Savage (1984), who also noted that the

plug-like velocity profile in the central region of the vertical

channel. Figure 5 is a detail of the fully-developed v-velocity

profile. Results for both frictional, φ= 20°, and frictionless

φ= 0°, granular material are shown. For the frictionless case, a

flat profile is observed across the entire cross-section of the

channel, corresponding to a slip boundary condition velocity at

the wall: Since ηw = η = 0 in Eqs. (9) and (20), there is no shear

force between the granular particles and the wall (or each

other), and therefore no mechanism for the production of

friction and hence shear.

Figures 6 and 7 show profiles of the pressure, as defined in

Eq. (5), versus channel depth at the centerline of the channel.

In Fig. 6, the aspect ratio D/H is varied, with H = 12m, and

φ= 30°. It can be seen that the pressure, P, increases with

increasing depth, y, near the top of the channel, then reaches a

maximum which is proportional to the channel width, D. This

class of pressure distribution is always observed for granular

materials (Brown and Richards, 1970, Shamlou, 1988). It

differs from that observed in fluids, where the hydrostatic

pressure increases linearly with depth, and is independent of the

channel’s width.

In Fig. 7, the aspect ratio D/H is fixed at 0.167, and φ is varied

in the range 0 ≤ φ ≤45º with φw = φ. The case φ= 0º

corresponds to a frictionless material, i.e. a perfect fluid. For

this case, P increases linearly with y, reaching a maximum of

1.3x10
5

Pa at the bottom of the channel (corresponding to the

hydrostatic fluid pressure, with g = 9.81 m/s
2
). As the value of φ

increases, the resulting pressure distribution departs from that

for a fluid and increases asymptotically to a constant maximum,

which decreases with increasing friction, φ. The reader will

note that the local pressure distortion at y = 12m, Figs. 6 and 7,

is due to the prescription of a fixed mass flux (velocity) at the

exit. An alternative would be to specify the downstream

pressure.

The pressure distributions shown in Figs. 6 and 7 are in

good agreement with the equation of Janssen (1895). A

quantitative comparison is not considered meaningful, owing to

the numerous simplifying assumptions inherent in the derivation

of Janssen’s formula. The results, presented here, clearly

illustrate the important role of shear (or friction) terms.

Compressible granular/air flow
Figures 8 to 12 show results for flow of a mixture of air and

granular material from a small 2-D bin. The bin is open at the

bottom with a centrally-located hole of size 0.2D, through

which the mixture flows. The only influence of the air is on the

compressibility equation (equation of state), Eq. (17), i.e. the

flow is in effect a compressible single-phase granular flow

problem
2
. The inlet flow rate is prescribed at 1x10

-3
m/s with

rs = 0.4.

Figure 8 shows the solid phase velocity field. The gravity-

driven flow converges toward the bottom hole. A shear layer at

the walls is also apparent. The flow accelerates from the top to

a maximum of 4.6x10
-2

m/s at the outlet. Figure 9 shows the

values of the angle, ψ, between the major principal stress and

the horizontal axis, at a horizontal section mid-way up the bin.

The resulting distribution of ψ is asymmetric, with

-45° ≤ ψ ≤ 45°. This asymmetry is to be expected and can be

explained as follows: The shear stress on the bulk granular

material at each wall acts upwards. Consequently, according to

the present co-ordinate system, the shear stress would be

negative near the right wall, and positive near the left wall.

Hence, the horizontal distribution of ψ should be asymmetric.

The value of ψ = 0° at the centerline indicate that the major

principal stress acts horizontally. This is sometimes referred to

as a passive stress state (Scott, 1963). This is expected when a

channel or bin is being emptied. In contrast, an active stress

state corresponds to the major principal stress along the

centerline acting vertically. It usually arises when a channel is

being filled, with the outlet blocked.

The present calculations give values of ψ = ±45
0

at the side

walls, i.e. the major principal stress acts at an angle of 45
0

to the

vertical side walls. This is a consequence of the imposed no-slip

boundary condition at the walls. The results indicates that slip

planes are inclined to the side walls. It is interesting to note that

according to the Mohr-Coulomb criterion, deformation (or

failure) of the granular materials occurs along slip planes which

form at angles of ±(45
0
-φ/2) to the major principal stress (see

for example Scott, 1963). It follows that such slip planes do not

coincide with the side walls.

2 The problem was actually solved as two-phase flow; However inter-

phase friction and fluid pressure, p, have negligible influence upon the solid

flow, and were hence neglected.
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Figure 8. Solid phase velocity vectors.
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Figure 12. Shear stress component, ττττxy (Pa).

Figures 10 and 11 show the normal stress components, σxx

and σyy, respectively. Negative values indicate compression.

For σxx, two main regions are apparent. (a) A center ‘core’

where the horizontal stresses, σxx, have large magnitudes,

between 2.6x10
3

and 5.x10
3

Pa. (b) Outer zone(s) near the

wall(s), where the stresses have relatively small magnitudes,

compared to center-line values and |σxx| decreases in a near

linear fashion from 2.6x10
3

at the top to 1.3x10
3

at the bottom.

For σyy, three distinct zones may be identified. (a) A center

‘core’ of the bin where |σyy| has the smallest values, between

2.3x10
4

and 9.2x10
2

Pa. (b) Lower outer regions near the bin

corners, where |σyy | has large values in the range 2.6x10
3

to

3.4x10
3

Pa. (c) Upper outer region(s) where |σyy| is almost

constant around 2.4x10
3

Pa. The stress distributions in Figs. 10

and 11 follow intuitively expected patterns. For example, the

vertical normal stress, σyy, decreases near the exit. Also, the

value of σyy is greater than that of σxx in the vicinity of the exit.

This is expected when emptying granular material,

corresponding to the passive state mentioned above.

Figure 12 shows the shear stress, τxy. This component is

almost constant at the side walls. This behavior is in agreement

with the results obtained in the above section for incompressible
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granular material in a vertical channel, and is also in agreement

with Janssen’s formula as well as numerous observations of

stresses in bins (Brown and Richards, 1970). The distribution of

the shear stress displays asymmetry with respect to the

centerline. This is expected, as mentioned in the discussion of

the distribution of the angle ψ, shown in Fig. 9.

Two-phase viscous/viscous compressible solid/fluid
flow

Figures 13 and 14(a) show the results for case (3), namely

viscous/viscous solid/fluid flow in the apparatus of Fig. 3,

generated using a grid of 72x164 cells. Figure 13 shows

velocity vectors for both liquid and solid. It can be seen that for

the solid, a plug-flow is apparent other than near the secondary

inlets 1 and 2, where liquid injection entrains and disperses the

solid particles as a result of inter-phase friction. Liquid

velocities are axial in the impregnation and cooking zones, but

radial in the heating and washing zones near the outlet screens,

due to extraction. In the upper region, solid and liquid flow co-

currently while in the lower washing zone a counter-current

state is apparent at the wall, due to injection at inlet 3 (see

Fig. 3). The reader will note that liquid and solid phases have

relatively similar densities. These spatial velocity distributions

are in good agreement with those of Härkönen (1984).

Figure 14(a) shows contours of solid pressure, P. The

reader will note that a near linear pressure gradient is apparent

in the central cooking zone, with somewhat larger gradients in

the impregnation and washing zones. Though not readily

apparent from Fig. 14(a), the pressure actually tends to zero in

the vicinity of liquid injection sites 1 and 2, in addition to the

main inlet. This indicates that there is no particle-to-particle

contact here; i.e. the granular material is dispersed, since a

state-of-tension cannot exist. In the impregnation zone, the

compression increases slightly towards the bottom of the

equipment, where a maximum of 3x10
4

Pa is observed. In the

washing zone the pressure decreases near the side walls, due to

liquid re-circulation between the injection inlet 3 and outlet 2.

Liquid injection and extraction in the heating and washing

zones disperses the solid in these regions, and a reduction in

solid volume fraction, rs, and pressure, P, results.

Figure 14(b) shows the distribution of solid pressure from

Härkönen (1984). These are similar to the present results,

Fig. 14(a). Inspection of Fig. 14(b) reveals that P increases

from 5x10
3

Pa at the main inlet to 7x10
3

Pa at the main outlet,

with the same pressure decrease in the vicinity of the lower

liquid injection screens, as noted above. Some differences

between Figs. 14(a) and 14(b) are observed near the main inlet

and also the two lateral heating and washing zones. This may

be due to the fact that inertial terms, considered here, were not

included in the earlier work, or because the Härkönen

formulation was for an inviscid fluid i.e. it did not contain a

diffusion term within the bulk of the solid phase.

y

x

Impregnation

Zone

Heating

Zone

Cooking Zone

Washing

Zone

Liquid velocity Solid velocity

Figure 13. Velocity vectors, viscous/viscous
compressible two-phase flow.

Two-phase Viscous/Mohr-Coulomb compressible
solid/fluid flow

Finally, the results of case (4) are presented. This case

corresponds to the full solution for two-phase flow, including

the Mohr/Coulomb frictional behavior of the granular material.

All other boundary conditions, transport properties etc. were

identical to those given in case 3, above (as given in Table 1

and Fig. 3) other than the solid shear viscosity, η. The angle of

internal friction, φ= 45°, used in the calculation of η is based

on an industry-accepted average value, although this may vary

substantially, in reality.

Fig. 14(c) shows the pressure, P, in the solid phase. It can

be seen that P increases only very slightly from 5x10
3

Pa at the

top, to 5.6x10
3

Pa at the bottom. For Mohr-Coulomb granular

flow, the pressure is independent of height, which is in

accordance with observed behavior of frictional granular

materials, as discussed above. The minor increase in each of

the four zones is due to the small increases in cross-section. It

can also be seen that while P decreases near the liquid injection

inlets 1 and 2 (Fig. 3), it does not approach zero, as in the

previous case. This result suggests that frictional shear forces

reduce dispersion of the solid particles by the pore fluid.
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Figure 15 is a comparison of solid pressure, P, midway

across the reactor vessel, for case (3), viscous/viscous solid

flow, and case (4), viscous/frictional Mohr-Coulomb solid. It is

apparent that the two approaches generate fundamentally

different profiles: For the viscous/viscous approach, the solid

pressure increases from inlet to outlet (from 0 Pa to 1.8x10
4
Pa),

in a relatively linear fashion, with depth, as expected for a

Newtonian or perfect fluid. Local pressure extrema are

associated with liquid injection. Conversely, for case (4)

viscous/Mohr-Coulomb formulation, the pressure is relatively

constant, around 5.3x10
3

Pa, along the length, but is sensitive to

cross-sectional size.

The effect of the angle of internal friction, on the solid

pressure distribution, midway across the vessel, is shown in

Fig. 16, for φ= 10°, 20°, 40°. P is inversely proportional to φ,

as demonstrated for case (1), above. For values of φ> 20°, the

solid pressure in the impregnation zone is close to the inlet

value of 5x10
3

Pa. For φ= 10°, gravitational forces

predominate over shear forces, and the solid material is more

closely-packed, leading to higher solid pressures.

Numerical considerations
The fluid pore pressure, p, was chosen to test for grid

independence as a solved-for variable (unlike the solid pressure

P, which is evaluated algebraically). Figure 17 shows profiles

obtained using grids consisting of 18x41 (1x), 36x82 (2x) and

54x123(3x) cells. The difference between inlet and outlet

pressure is approximately 30% for the 18x41 and 36x82 grids,

and 3% for the 36x82 and 54x123 grids. Results for a 72x164

(4x) grid are essentially identical to those for the 54x123 (3x)

grid. This indicates that the present calculations achieve a

satisfactory measure of grid independence. Comparisons

suggested that there is only a small performance penalty

associated with the use of the well-known IPSA algorithm, in

the place of previously developed specialized numerical

schemes to obtain a converged solution.

An assessment of the effects of numerical diffusion has yet

to be conducted for the current problem. It is true that higher-

order schemes than the ‘hybrid’ scheme (Patankar, 1980)

adopted generate more accurate solutions e.g. for simple

problems involving laminar single-phase flow. However, it is

not readily apparent whether numerical considerations are the

limiting factor in complex multi-phase flow. The governing

equations, Eqs. (11) to (16), are based on assumptions

introduced to close ensemble-averaged mass and momentum

equations. The form of the (closed) inter-phase transport terms

are presumed to be diffusive and/or convective in nature. The

availability of 3-D multi-phase direct-numerical simulations

(DNS) would be a useful tool in analyzing the combined effects

of the precision of the discretization scheme and the accuracy of

the closure assumptions.
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CONCLUSIONS
A multiphase flow model for chemical process equipment

has been presented. The problem involves the simultaneous

solution for two-phase flow of frictional bulk granular material

and viscous-liquid. The two-phase flow is driven by gravity,

and the imposed solid/fluid phase discharge at the inlets.

Established single and two-phase Eulerian algorithms were

modified to perform granular flow calculations, based on the

solution of systems of coupled linear algebraic equations using

a segregated flow solver.

The solid phase was modeled using two different

approaches. In the first approach it was treated as a Newtonian

fluid with constant shear viscosity, and an extra solid pressure,

P (as in previous studies). The second approach extends the

model to include Mohr-Coulomb viscous-plastic flow. This was

achieved by introducing a shear viscosity such that the stress

tensor is independent of the magnitude of the rate-of-

deformation tensor. In fully-developed regions, where velocity

gradients vanish, the viscosity coefficient is indeterminate, and

the viscous-plastic threshold is reached. This, however, is a

reasonable rheological behavioral assumption.

Idealized test cases showed that the present numerical

scheme correctly handled the viscous-plastic regime. A solution

of the full two-phase flow problem with realistic geometry and

boundary conditions was then developed. The results show that

the frictional properties of the solid phase play an important,

previously neglected role. The pressure distribution down the

vessel is quite different from that obtained by neglecting friction

entirely, or by assuming a constant viscosity. The present model

indicated a relatively constant pressure along the vessel walls; a

result which is in agreement with numerous observations of

granular materials in bins and hoppers, and contrary to the

Newtonian model. The pressure distribution, and indeed the

motion of the solid phase also appeared to be sensitive to the

frictional properties of the granular material in the vicinity of

fluid inlets, a situation with important ramifications to the

equipment designer and operator.
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