
tac-com 

I*I National Research Conseil national de 
Council Canada recherches Canada Canada. 

Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Numerical Methods in Laminar and Turbulent Flow: Proceedings of the 10th 
International Conference, 10, pp. 549-560, 1997-07-21

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=140fa331-1b4b-449e-9686-1a829dada48a

https://publications-cnrc.canada.ca/fra/voir/objet/?id=140fa331-1b4b-449e-9686-1a829dada48a

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

A direct method for grid generation
Beale, S. B.

https://nrc-publications.canada.ca/eng/view/object/?id=140fa331-1b4b-449e-9686-1a829dada48a
https://publications-cnrc.canada.ca/fra/voir/objet/?id=140fa331-1b4b-449e-9686-1a829dada48a
https://nrc-publications.canada.ca/eng/copyright
https://publications-cnrc.canada.ca/fra/droits


141 

MC - MC 
ICPETAITPCE 

4)10 

National Research Conseil national
Council Canada de recherches Canada

Institute for Chemical Process Institut de technologie des procédés
and Environmental Technology chimiques et de l'environment

A Direct Method for Numerical Grid
Generation

by S.B. Beale

Reproduced from
Numerical Methods in Laminar and Turbulent Flow Vol. 10.
Proceedings of the 10th International Conference. Swansea, U.K., July
21-25, 1997, pp. 549-560 Ed. C. Taylor and J. Cross.



549
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ABSTRACT

A method to generate body-fitted grids, based on the direct solution for
three scalar functions, is derived. The grid is re-meshed, based on the
solution, using a grid-correction procedure. Calculations are performed for
a variety of problems with both Dirichlet and Neumann boundary
conditions, involving the use of non-linear source-terms, and other
techniques to effect grid-control.

1. INTRODUCTION

Numerical methods are readily applied to a wide-range of problems in fluid
flow, heat, and mass and mass transfer, governed by the single equation,

D
t

u Sφ ∂
∂

ρφ ρ φ φ1 6 1 6 1 6= + ∇ ⋅ − ∇ ⋅ ∇ − =
&

&

& &

Γ 0

           Transient Convection Diffusion Source
(1)

Many problems have been successfully solved using computational fluid
dynamics (CFD) codes, based on a finite-volume method [1,2] where
φ = u v w h, , , ,... are solved iteratively. In this paper it is shown how the grid
variables may be added to the list. Although grid smoothing and control are
an integral part of the overall solution procedure, they are generally treated
as a separate subject. Books [3,4] and review articles [5,6,7] have appeared
on the subject.

Grid-generation involves the stipulative definition of functions, denoted by
Greek letters, ξi (or alternatively ξ, η, ζ) using differential equations,



SOLUTION 

Inverse method 

4' field BFC 
Physical space 

Solution 

Feedback 

Present method 

4` constant 

•••••••••••••• 
•••••••••••••• 
•••••••••••••• 
•••••••••••••• 

j grid 

Transformed space 

550

Figure 1. Conceptual schematic of methodology
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where English letters, xi (or x, y, z), denote Cartesian components. Equation
(2) is sometimes referred to ostensively as a ‘physical-space’ formulation.
In grid generation, inverse methods [8] are often employed, namely,

D x

D
=

i

j

1 6
3 8ξ

0 (3)

i.e., the Cartesian co-ordinates of the grid are obtained in ‘transformed
space’. Most schemes are based on inversions of (2), however transformed-
space formulations have also been proposed [9,10]. These caused grid-
folding, though more recent forms [11,12] are in use. In this paper, a co-
ordinate independent formulation using vector operators is made. Thus any
co-ordinate system may be employed to obtain a solution,
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ξ* j could represent a Cartesian, polar, or general BFC system (grid), as is
used here: An initial ξ* j grid is generated algebraically, and the equations
for φ ξ= i  discretized in physical space. The key to the procedure is that
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values of the solved-for ξi scalars are back-substituted into the grid, as the
solution proceeds.

The governing equations may be parabolic, hyperbolic or elliptic, the latter
being popular. First-used elliptic equations were Laplace systems [13]
where only the diffusion term in (1) is non-zero. These systems satisfy an
extremum principle, namely that the mapping be proper; 1-1 and
monatonic, boundary-values spanning the interior. Diffusion-source
equations [14,15] are also widely used. ‘Control-functions’ are often coded
as source terms, in order to alter the position or slope of grid-lines/surfaces.
Thompson et al. [16] proposed exponential terms to effect attractions.
These can violate the extremum principle, and for this and other reasons,
these functions have been somewhat supplanted by more recent rationales
based on boundary orthogonality [17,18]. Both approaches are considered.

2. FINITE-VOLUME EQUATIONS

The so-called ‘mathematical’ form [19] of Eq. (1) is,
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g gu gg gSj
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where φ ξ ξ η ζ= =i , ,  for i = 1,2,3. The metric components, gjk, and

Jacobian, g , refer to the ξ* i co-ordinate system. Only restricted forms,

such as diffusion-source systems, will be considered below in any detail.
Equation (5), or equivalent physical form may be discretized as [20],

φ
φ φ φ φ φ φ φ

P
W W E E S S N N L L H H T T

W E S N L H T

a a a a a a a CV

a a a a a a a C
=

+ + + + + + +
+ + + + + + +

(6)

where W, E, S, N, L, H refer to the West (i-1), East (i+1), South (j-1), North
(j+1), Low (k-1), High (k+1) neighbours of P. T-values refer to the
previous grid (inertial relaxation).

2.1 Grid correction

Suppose a BFC grid, with 
&

r x y zP P P P* *, *, *= 1 6 , has been generated. Let

ξref, ηref, ζref be desired reference values: These are often natural numbers,
but could be real numbers or values of ξP, ηP, ζP at particular nodes. If the
grid corners are not at the desired places, ξP, ηP, ζP will differ from ξref,
ηref, ζref. Displacement correction factors 

&

r '  are then added as follows,

& & &

r r + rp P P= * 'α (7)
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α is a linear relaxation coefficient, and,
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Often one may assume, ξ ξE W− = 2, etc. Scalar fields are re-initialised,

φ α φ αφ φ ξ η ζ= +P ref1− =0 5 * , , , (10)

and the process repeated. The numerical solution of (1) together with (7)
constitutes a complete description of the methodology.

2.2 Boundary conditions

Boundary conditions are prescribed as linearized source terms, as follows,

S C V P= − φ1 6 (11)

(i) Neumann problem: Normal gradients ∂φ ∂n  are equivalent to fixed
sources. ∂φ ∂n = 0 corresponds to the default S= 0. (ii) Dirichlet

problem: φ-values are fixed to V with a large coefficient, C. V should be
consistent at opposing nodes in 2D or around an entire ‘slab’ in 3D.
(iii) Mixed Dirichlet/Neumann problem: corresponding to the ‘natural’
boundary value problem, will produce good results under most
circumstances. Two fixed-value Dirichlet boundary conditions are required
in addition to two (2D) or four (3D) Neumann boundary conditions.
Practical considerations often prevent this formulation. Other
Dirichlet/Neumann combinations are encountered: e.g., fixed values along
the 4 bounding lines/curves for the Neumann surfaces in case (iii), above.

Grid correction is not necessary at Dirichlet boundaries. At Neumann
boundaries, grid correction is applied subject to an additional constraint,
e.g., ξ x y z, ,0 5 = constant; unless boundary orthogonality is induced using 

variable source-terms, in which case grid correction should not be applied.
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3.  EXAMPLES

Figure 2(a)-(d) show four elementary O-grids. Figure 2(a) is a Laplace
system corresponding to the mixed boundary-value problem with
∆ξref = ∆ηref =1. In Fig. 2(b) η cells have concentrated.  This is achieved by
one of two equivalent methods (a) by introducing a non-linear source term,
S, for example as,

S
n

L

e

p
p

n

p

P= −�
�

�
� ×

−
− −

−
�
�

�
�

1 1
2

1

12

2
2 7

exp
η

(12)

where L is a length scale, n−1 is the number of cells in the η-direction, and
p controls the distribution. (b) By prescribing ηref as a set of non-integer
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 values. Figure 2(c) shows a Dirichlet-Laplace system for ∆ξref = ∆ηref =1.
Figure 2(d) demonstrates the use of variable source terms to obtain
boundary orthogonality. These were prescribed iteratively as,

S S S= +* ' (13)

S* is a previous value and,

S C nref P ref' , , , ,...= − =ξ φ ξ3 8 1 2 3 (14)

and C a aE W= + . Interior source terms were interpolated from boundary-

sources, weighted according to the Jacobian, g . The same end may be

also achieved by varying reference values. Figure 2(e) shows a 3D bend,
where variable source terms are prescribed, for the latter case in §2.2,
namely fixed values along the 4 bounding lines of each Neumann surface. 
Figure 2(f) shows a C-grid around an aircraft: Only η was solved as a
Dirichlet problem, ξ lines are algebraically-generated initial values. Figure
2(g) shows an H-grid over a 2D car body. The grid was allowed to slide at
the upper boundary, but fixed at the lower wall; ξref values were set to ξP at
j = 1. Figure 2(h) is a similar grid in 3D. In Fig. 2(i)(j), an initially-folded
O-grid has been unfolded and concentrated using the above procedure.

4. DISCUSSION

The results demonstrate grid generation by means of the solution of Eq. (1)
using the correction procedure Eq. (7). The main differences between this
method and a conventional procedure are: (a) The dependent variables are
ξ, η, ζ not x, y, z. (b) Diffusion-coefficients are based on a conservative

discretization; gg
w

113 8  gg
e

113 8  at (i-½,j) (i+½, j), not node-centred

values gP
ii  (the same is true for the non-orthogonal terms). (c) Source-terms

are just gSP; no cross-terms, e.g., η source in ξ equation etc., are required.

The sign of p in Eq. (12), determines the boundary to which grid lines are
attracted. The strategy was derived from consideration of the stretching-
function,

x x

x x
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− −
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exp

1
1
1

1

ξ

0 5
(15)

A diffusion-source equation, with S prescribed according to (12) satisfies
the inverse (logarithmic) function in 1D. The length-scale, L r r= −

& &

max min

should be a maximum, to assure compliance with the extremum principle.
Other source terms may readily be used [21].
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There is no requirement control-functions be coded as diffusion-source
equations; alternative forms exist e.g., variable Γ diffusion equations [22],
convection-diffusion formulation [23] and so forth.  The control function in
Fig. 2(g) was actually coded using a convection-diffusion formulation, and
formulations such as u u u= +* '  successfully used in place of Eq. (13). An

alternative is to prescribe ξref according to a bunching law, or use nodal
values, instead of integers. Under these circumstances, boundary ξ-values
are not fixed in the linear algebraic equations. If the same ξref is used at
opposite boundaries (2D) or round and entire slab (3D) the grid will be
parallel to scalar field. Even if ξ , η, ζ are not parallel to ξref, ηref, ζref, the
same results as using variable source-terms, are effectively obtained in a
rapid and stable manner.

The solution of mixed boundary-value problems with sliding boundaries is
repeatable, grid-independent, and allows for effective grid-control. ξ, η, ζ
are solved-for and may be controlled, independently, and stability is
seldom a problem. With Neumann conditions, boundary (x,y,z) co-
ordinates slide subject to, say, the constraint, ξ(x,y,z) = constant, by
locating the point on the ξ-surface a minimum from (x*+x’,y*+y’,z*+z). No
distinction need be made between surface and regular grid generation in
Euclidean space; however, a general procedure for complex shapes is not
trivial and there may be constraints for the grid to pass through specific
points. There will always be situations where the user is obliged to
implement fixed boundary nodes. Initial grids may then be highly distorted,
due to the combination of grid-bunching and trans-finite interpolation, and
stability a matter for concern. When solving Dirichlet problems, Fig. 2(f),
the choice of boundary point distribution and control-functions must be
made consistently, e.g., Eqs. (12) and (15), or divergence will occur near
the boundary and control lost. For Fig. 2(f), only η was solved; ξ values
were generated using trans-finite interpolation; A useful feature of this
method is that each variable may be treated independently. In many
problems it is difficult to prescribe boundary points consistent with the
natural solution, a priori. Another feature of the code is the facility to
obtain results for ξ, η, ζ in a fixed grid ξ*, η*, ζ*, by setting α = 0 in
Eq. (7), thus providing an idea of where boundary points should be located.

When using variable source-terms to produce boundary orthogonality,
Eq. (13); the equations were solved as mixed (Neumann) problems, with S
eliminating the discrepancy between Neumann and Dirichlet solutions.
Interior sources were obtained by interpolation. Technically the ξ
distribution is a function of changes in η and ζ, however, the effect is
minor; only interior weightings, not end-values of S, are affected.

Care was taken to enforce the extremum principle, and grid folding [9,10]
was not a problem, even when highly concentrated grids were produced,
see Fig. 2(g)(h). Initially-folded grids were also unfolded, Fig. 2(i)(j) by
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imposing limits 1≤ ≤ξP n on field variables, and ensuring g  was always

positive in the scheme.

Tests showed the procedure to be comparable in speed to inverse methods.
Point-by-point, line, and slab and whole-field procedures [1] were
considered. The latter accelerated convergence substantially, however
point-by-point schemes were, of necessity used with Eq. (13). The code
requires additional memory for  ξ, η, ζ, (only one of which is required at
any given time). Storage for xP, yP, zP, metric-coefficients, etc., are required
here as elsewhere. The current implementation was node-based, but may
readily be adapted for cell-centred procedures: Because the same algorithm
as the flow solver is used, the same software may be used. Available CFD
codes with specific features may be exploited: e.g., multi-block and fine-
grid-embedding, multi-grid acceleration, and built-in memory-management
techniques. Modification of existing codes to include grid correction is a
relatively simple task, and many important problems in grid generation;
user-interface, domain decomposition, boundary condition prescription,
and automation, are common to CFD flow solvers. Modification of the
method for solution-based grid-adaptation using redistribution is apparent;
since the scheme is inherently adaptive.

5. CONCLUSIONS

In previous grid generation methods, the governing equations are usually
formulated in physical space, inverted, and solved using a finite-difference
approximation on a uniform mesh in transformed space. In the method
here, both the formulation and the solution occur in physical space.

A scheme based on the solution of the scalar transport equation was
described. It was shown that by implementing a grid-correction or re-mesh
scheme, grids could be generated using a conventional finite-volume type
formulation. Both fixed and sliding conditions for the boundary grid points
were considered. Exponential functions and variable functions designed to
procure boundary orthogonality were introduced as source terms. Use of
the latter slowed down convergence, somewhat. Effective grid control was
also facilitated using non-integer reference values.

The governing equations need not be of the form Eq. (1); any suitable
partial differential equations may be adopted, parabolic, hyperbolic or
elliptic, regardless of whether they may be inverted analytically. All non-
linear source-terms degrade the performance of linear equation solvers, and
alternative formulations should be considered in the future. Existing CFD
codes may readily be modified to do grid generation with the addition of a
grid-correction scheme.
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