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A WEIGHTED-TREE SIMILARITY ALGORITHM FOR MULTI-AGENT SYSTEMS IN 

E-BUSINESS ENVIRONMENTS
*
 

 

VIRENDRAKUMAR C. BHAVSAR1, HAROLD BOLEY2, and LU YANG1 
 

1 Faculty of Computer Science, University of New Brunswick, Fredericton, New Brunswick, Canada 
2 Institute for Information Technology e-Business, National Research Council of Canada, Fredericton,  

New Brunswick, Canada 

 
       A tree similarity algorithm for match-making of agents in e-Business environments is presented. Product/service 
descriptions of seller and buyer agents are represented as node-labelled, arc-labelled, arc-weighted trees. A 
similarity algorithm for such trees is developed as the basis for semantic match-making in a virtual marketplace. The 
trees are exchanged using an XML serialization in Object-Oriented RuleML. Correspondingly, we use the 
declarative language Relfun to implement the similarity algorithm as a parameterised, recursive functional program. 
Three main recursive functions perform a top-down traversal of trees and the bottom-up computation of similarity. 
Results from our experiments aiming to match buyers and sellers are found to be effective and promising for e-
Business/e-Learning environments. The algorithm can be applied in all environments where weighted trees are used.   

       Key words: multi-agent system, e-Business, e-Learning, similarity measure, buyer-seller matching, arc-labelled 
trees, arc-weighted trees, Object-Oriented RuleML, Relfun. 

 
 

1.  INTRODUCTION 

 
      With the increasing adoption of e-Business, buyer-seller message exchange for negotiation 
will be increasingly supported by advanced technologies from the Semantic Web and Web 
Services. In the emerging multi-agent virtual marketplace, seller and buyer agents will conduct e-
Business activities basically as follows: Using a semantic representation for the message content, 
sellers advertise their product/service offers and buyers issue product/service requests so that a 
match-making procedure can pair semantically similar offer and request content, after which the 
paired agents can carry out negotiations and finalize their transactions. The present study 
employs a multi-agent architecture similar to Agent-based Community Oriented Routing 
Network (ACORN) (Marsh et al. 2003) as the foundation for semantic match-making (Sycara et 
al. 2001) and focuses on its central similarity algorithm for comparing RuleML-like message 
contents (Boley 2003). 
      In a multi-agent system such as ACORN (Marsh et al. 2003) a set of key words/phrases with 
their weights is used for describing the information an agent is carrying or seeking. 
Product/service advertising and requesting can be realized on top of sets of weighted key 
words/phrases. However, such a flat representation is limited in that it cannot represent tree-like 
product/service descriptions. For example, when we want to describe a car, we often provide its 
colour, maker and model. The attribute colour is independent of the maker of the car, while the 

 
      *This paper is a revised and extended version of a paper presented at the Business Agents and the Semantic Web 
(BASeWEB) Workshop that was held in Halifax, Nova Scotia, Canada on June 14, 2003. 
      Address for correspondence:  V. C. Bhavsar, Faculty of Computer Science, University of New Brunswick, 
Fredericton, New Brunswick E3B 5A3, Canada; e-mail:bhavsar@unb.ca. 
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model is dependent of it because each car maker provides their own models. Therefore, to allow 
more fine-grained interaction between agents, we propose to represent descriptions in the form of  
weighted trees. Users give weights that reflect the importance of branches on all levels of such 
product/service describing trees. However, because of the many variants and refinements in 
modern products/services, a total match will rarely be possible; so partial matches, embodied in 
some measure of similarity, are needed. While some variety of trees has already been used in 
multi-agent systems to describe the content part of messages, tree similarity matching for such 
content representations has not been studied to our knowledge. On the other hand, many other 
flavours of similarity have been explored in Utility Theory and AI, in particular in Case-Based 
Reasoning (Richter 2001), some of which should be combinable with our tree similarity. 

Node-labelled trees are a common data structure for information representation in various 
areas. In this paper, following Object Oriented (OO) modelling, F-Logic (Kifer et al. 1995), and 
the Resource Description Framework (RDF) (Lassila and Swick 1999), we propose node-
labelled, arc-labelled (hence arc-unordered) trees, where not only node labels but also arc labels 
can embody semantic information. Furthermore, our trees are arc-weighted to express the 
importance of arcs. Arc labels represent attributes of products/services and arc weights represent 
their relative importance. 

Trees must be transformed to an appropriate representation before the computation of their 
similarity. For a given application, buyer and seller trees must conform to the same standard 
schema in order to compute similarity. In a marketplace, the first step of a transaction between 
buyer and seller agents is to provide information that describes their requirements and offers. 
However, in a hybrid human-computer virtual marketplace, human buyers and sellers have to 
input that information. Thus, a user interface is needed for human buyers and sellers to input their 
descriptions. The interface implements a standard schema by generating instance trees only for 
well-formed input.  
       For the uniform representation and exchange of product/service trees we use a weighted 
extension of Object-Oriented RuleML (Boley 2003). In Weighted Object-Oriented RuleML, 
besides ‘type’ labels on nodes, there are ‘role’ labels on arcs, as in the alternating (or ‘striped’) 
syntax of RDF graphs (which quite often are trees or can be unrolled into trees); we assume here 
arc labels to be unique on each level, i.e. every pair of outgoing arcs of a given node must use 
different arc labels. Arc weights are numbers taken from the real interval [0,1] and employed as a 
general measure of relevance for branches, neutral w.r.t. any specific probabilistic, fuzzy-logic, 
or other interpretation. 
       Tree similarity (distance) techniques are an active area of research for applications like 
pattern recognition, image analysis and processing, natural-language processing (Kamat 1996) 
and bioinformatics. Previous work mostly dealt with node-labelled trees, whether they were 
ordered (Wang et al. 1998; Shasha et al. 2001) or unordered (Shasha et al. 1994). Operations 
including insertion, deletion and node label substitution (Lu 1979) with costs were defined to 
transform one tree to another to compute their distance complementary to their similarity. For 
local tree matching (Liu and Geiger 1999), operations such as merge, cut, and merge-and-cut, 
including costs, were also defined to find the best approximate match and matching cost. The 
Hamming Distance (Hamming 1986; Togneri and deSilva 2002) is also used in some approaches 
(Schindler et al. 2002) to compute the tree distance. However, because of our different tree 
representation, we needed to develop a new similarity measure as a recursive function, treesim, 
mapping any (unordered) pair of trees to a value in the real interval [0,1], not to be confused with 
the above arc weights, also taken from that interval. This will apply a co-recursive ‘workhorse’ 
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function, treemap, to all pairs of subtrees with identical labels. For a branch in one tree without a 
corresponding branch in the other tree, a recursive simplicity function, treeplicity, decreases the 
similarity with decreasing simplicity. These functions are implemented in the functional-logic 
language Relfun (Boley 1999). Our current algorithm only considers a global measure for tree 
similarity, but not local measure.  The Global measure computes the similarity of two trees based 
on matching pairs of arc labels and inner node labels. In this paper, the local similarity measure, 
which compares leaf node labels, is just an exact string comparison resulting in either 0.0 or 1.0. 
In order to demonstrate our tree similarity matching techniques, we specify here our particular 
buyer-seller interaction protocol elements.  
      Multi-agent systems provide a virtual marketplace for buyer and seller agents to conduct 
transactions. The form of the information carried by buyer and seller agents is crucial to their 
matching. In order to represent the hierarchical relationship between product/service attributes, 
we propose node-labelled, arc-labelled trees for product/service descriptions. However, because 
different users have different preferences on different product/service attributes, we allow users 
to assign weights to product/service attributes (arc labels) to indicate these preferences. Thus, the 
matching problem between buyers and sellers becomes the computation of tree similarity 
between buyer and seller agents. This paper proposes a new tree similarity measure based on our 
tree representation. 

The paper is organized as follows.  The architecture of a multi-agent system that carries out 
match-making of buyer and seller agents is outlined in the following section. The representation 
and generation of our node-labelled, arc-labelled, and arc-weighted trees are presented in Section 
3.  Many issues that need to be addressed while developing a similarity measure for our trees are 
discussed in Section 4. This section also presents our algorithm for computing the similarity of 
trees. Section 5 presents similarity results obtained with the Relfun implementation (included in 
the Appendix) of our algorithm. Finally concluding remarks are given in Section 6.      

 
 

2. MULTI- AGENT SYSTEMS 

 
Agent systems have been proposed and exploited for e-Business environments (see for 

example, (Yang et al. 2000)).  In such systems, buyer agents deal with information about the 
items their owners want to buy and corresponding price they can accept, while seller agents deal 
with information about the items the sellers want to sell and the price they ask. Therefore, buyer 
agents and seller agents need to be matched for similarity of their interests and subsequently they 
can carry out negotiations (Chavez and Maes 1996). Furthermore, they may need another agent 
that acts as a middle man (Marsh et al. 2003) performing the match-making. A slightly more 
complex multi-agent architecture will be developed here. 
   
 
2.1.     The Architecture  
 

       The Agent-based Community Oriented Routing Network (ACORN) is a multi-agent 
architecture that can manage, search and filter information across the network. Among the 
applications of ACORN, e-Business is a very important one. We outline the architecture of  an 
ACORN-like multi-agent system. This multi-agent system uses mobile agents.  
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Figure 1 shows an overview of the ACORN-like multi-agent system architecture. The multi-
agent system has the structure of a Client-Server system. Clients provide the interface to users. 
Users create and organize agents, such as buyer and seller agents, create and modify their 
profiles which describe the interests of users. As can be seen, user profiles are stored on the 
server side and the incoming agents are processed according to user profiles. The Main Server 
provides mobility to agents. When an agent reaches a new site, the agent can visit users and 
communicate with other agents at thematic meeting points, named Cafes.  

 
 
 

 
 
 
 
 
 
 
 
 
 
          
 
        The structure of an agent is shown in Figure 2. An agent contains its unique AgentID. The 
AgentType can be either buyer or seller. The agent also carries information about its owner (a 
buyer or seller). In this paper we focus on the Weighted Tree Metadata component of the agent, 
which carries a description of the products/services that a buyer wants to buy and a seller wants 
to sell. 
 
 
 
 
 
 
 
 
 
 
 
2.2.     Match-Making in the Cafe 
 
      As mentioned in Section 2.1, buyer and seller agents meet in a Cafe to conduct their 
transaction. In an ACORN-like multi-agent system, there can be more than one Cafe. Different 
Cafes are used for different applications. For example, one Cafe may be used for e-Commerce, 
while another Cafe is used for e-Learning. 
      One very important aspect of the multi-agent system is the exchange of information between 
agents in the pre-selected Cafe. Figure 3 shows a Cafe with buyer and seller agents. The buyer 

 
Main     Server

User   Info 

User  Profiles 

User  Agents

Agents

 Cafe-1 Cafe-n 

To other 
sites 

Web 
Browser User 

FIGURE 1. ACORN-like (Marsh et al. 2003) multi-agent system. 

AgentMatcher 1 AgentMatcher n

AgentID

AgentType 

Metadata about Owner

Weighted Tree Metadata

FIGURE 2. Structure of an agent. 
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and seller agents do not communicate with each other (Marsh et al. 2003) directly, but 
communicate through the AgentMatcher (Sarno et al. 2003) of the Cafe. One of the 
AgentMatcher’s components, Similarity Computation, is responsible for calculating the tree 
similarity between buyers and sellers. For example, if two agents enter the Cafe, one 
representing a car seller who wants to sell a Ford car that was made in 2002, another agent 
representing a car buyer that wants to buy a Ford car made in 1999, the e-Commerce Cafe is the 
place where an AgentMatcher computes their similarity and, above a threshold, lets them 
exchange their information. 
 

 

 

 

 
 
 
 
 

 
 

We have adapted the above match-making scenario to e-Learning as part of the eduSource 
project (Boley et al. 2004). In this project, the buyer agent represents a learner and the seller 
agent is a course provider. The similarity computation and information exchange between learner 
and course agents work the same way as those between buyer and seller agents described above.  

 
 

3. TREES 

 
3.1.     Representation 
 

Various representations of trees and their matching are possible. To simplify the algorithm, 
we assume our trees are kept in a normalized form: the arcs will always be labelled in 
lexicographic (alphabetical) left-to-right order. The arc weights on the same level of any subtree 
are required to add up to 1. Two flat example trees that describe the course “JavaProgramming” 
are illustrated in Figure 4 (a) and (b). To emphasize the difference between arc labels and node 
labels, node labels will always be bold-faced. 

 
 

 
 
 
 
 
 

 
 FIGURE 4. Leaner and course trees. 

JavaProgramming 

Credit

Thinking  

inJava 

Textbook
Tuition

Duration

$800 2months3 

0.2
0.1 0.3

0.4

JavaProgramming 

Credit

JavaGuidence 

Textbook
Tuition

Duration

$10002months 3

0.1
0.5 0.2

0.2

(a) Tree of a learner agent. (b) Tree of a course agent. 

FIGURE 3. Match-making of buyer and seller agents in a Cafe (adopted from (Marsh et al. 2003)). 
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Figure 4 (a) represents a tree carried by a learner agent. In this tree, the course this learner 
searches is “JavaProgramming”. Subtrees stretching out from this root node represent the 
learner’s preferences about this course. For example, this learner gives the arc “Tuition” the 
highest weight “0.4” relative to other arcs to express that cost will be the most important factor 
for his/her decision-making. The leaf node “$800” is the amount of money he/she is expecting. 
This learner only gives the arc “Duration” (of 2 months) a rather low weight “0.1”, which means 
that he/she does not care much about how long the course will last. The other two subtrees 
(leaves) are analogous. 
      In order to be applicable to real world description refinement, we do not limit the complexity, 
breadth or depth, of any subtree. So, the trees in Figure 4 could have extra subtrees for the 
interaction language, prerequisites, etc., as well as a non-leaf “Textbook” subtree mentioning a 
website etc.  
      Capturing these characteristics of our arc-labelled, arc-weighted trees, Weighted Object-
Oriented RuleML, a RuleML version for OO modelling (Boley 2003), is employed for 
serialization in Web-based agent interchange. The XML child-subchild structure reflects the 
shape of our normalized trees and XML attributes are used to serialize the arc labels and weights. 
So, the tree in Figure 4 (b) will be serialized as shown in Figure 5 (a). 
       In Figure 5 (a), the complex term (cterm) element serializes the entire tree and the _opc role 
leads to its root-node label, “JavaProgramming”. Each child element _slot is a metarole, where 
the start tag contains the names and weights of arc labels as XML attributes name and weight, 
respectively, and the element content is the role filler serializing a subtree (e.g. a leaf). Consider 
the first _slot metarole of the cterm as an example. The attribute name has the value “Credit”, 
describing the credit name of the course “JavaProgramming”. The other attribute weight, with 
the value “0.1”, endows the “Credit” branch with its weight. The content between the _slot tags 
is an ind (individual constant) serializing a leaf node labelled “3”. Such weights have the 
interpretation of relative importance. For example, from a course’s point of view the “Credit” 
weight means that the importance of the credit of this course is 0.1 relative to the other subtrees 
“Duration”, “Textbook” and “Tuition”, which have importance “0.5”, “0.2” and “0.2”, 
respectively. 
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 

cterm[ -opc[ctor[javaProgramming]], 
            -slot[name[Credit],weight[0.1]][ind[3]], 
            -slot[name[Duration],weight[0.5]][ind[2months]],   

-slot[name[Textbook],weight[0.2]][ind[javaGuidence]], 
-slot[name[Tuition],weight[0.2]][ind[$1000]] 

           ] 

                     

<cterm> 
   <_opc><ctor>JavaProgramming</ctor></_opc> 
   <_slot name=“Credit” weight=“0.1”><ind>3</ind></_slot> 
   <_slot name=“Duration” weight=“0.5”><ind>2months</ind></_slot> 
   <_slot name=“Textbook” weight=“0.2”><ind>JavaGuidence</ind></_slot> 
   <_slot name=“Tuition” weight=“0.2”><ind>$1000</ind></_slot> 

</cterm> 

FIGURE 5. Symbolic tree representations.  

(a) Tree serialization in Weighted OO RuleML. 

(b) Tree representation in Relfun.
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       For the purpose of our Relfun implementation, Weighted OO RuleML serializations such as 
Figure 5 (a) become Relfun structures such as Figure 5 (b). The correspondence is quite obvious, 
except that we have to use, e.g., –slot to denote a metarole, because any symbol beginning with a 
“_” (like any capitalized symbol) in Relfun denotes a variable. 
 
 

3.2.     Generation 

 
It is clear that trees users have in mind must be transformed to the internal representation 

before computing their similarity. In order to make the similarity values reasonable and 
comparable, trees cannot be generated arbitrarily by buyers or sellers. For a specific application, 
e.g., e-Commerce, trees representing the information of buyers and sellers have to conform to the 
same standard schema. The standard schema for a specific application restricts what node labels 
and arc labels will be allowed in instance trees.  
 
  
 
 

 
 

 
  
 
 
 

 
Using e-Learning application as an example, course providers want to advertise their 

courses, while learners want to search appropriate courses. In order to describe a course, from 
our eduSource project experience, we need to specify the course name, course level, interaction 
language, etc. For the specific e-Learning application, Internet-enabled hardware and software 
are also needed. In our design of a standard schema for both learners and course providers, we 
tried to address concerns of both sides.  Figure 6 shows the core of our standard tree schema for 
eduSource. Most node labels and arc labels in Figure 6 conform to the Candian Learning Object 
Metadata (CanLOM) standard (CanCore 2003).  

 
 
 
 
 

 
 
 

 
In the above tree schema, we do not provide any arc weights because they are decided by the 

course providers and learners. For every leaf node, we give an enumation of potential values for 

Educational
General

Configuration 

AgeRange 
Hardware 

Description

Context E-mail 

Technical 

Software Title Language 

Course

Level

{9-11,12-17,18-

25,26-33,34-

40,41-47,48-54} 

{Grade1, 

…,Grade12,  

SecondaryEducation}

{English,  

French,…, 

Chinese} 

{“How C 

Programming  Works”, 

  … , “Introduction to   

  Java”} 

{Yes,No} 
{PC, … ,  

 Mac} 

{IE,Netscape,  

  Mozilla} 

FIGURE 6. A standard tree schema for e-Learning. 

Educational
General 

Configuration 
AgeRange 

Hardware 

Description
Context E-mail 

Technical 

Software Title 

Course

Level 

18-25 Grade8 
HowCProgrammingWorks Yes PC IE 

FIGURE 7. An instance tree generated from the interface in Figure 8. 

1.0 0.2 0.8 0.3
0.3 

0.4 
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learners and course providers to select from. For example, for the arc “Language”, learners or 
course providers can select English or the other listed languages as their favorite interaction 
language. For certain nodes, also ‘built-in’ types could be employed, for example, boolean or 
string. 
 

       
 
 
 
       Based on the tree schema, interfaces have been designed for learners and course providers to 
input their preferences. Figure 8 shows a learner interface based on Figure 6, as used to input the 
instance tree shown in Figure 7. 

In this interface, there are three groupboxes: Course Description, Educational Level and 
Computer Configuration. Each groupbox corrsponds to one subtree stretching out from the root 
node “Course” in Figure 6. But the occurrence of these groupboxes in the interface does not 
conform to the “Educational-General-Technical” sequence in the tree schema. As mentioned in 
Section 3,  arc labels at the same level in any subtree are kept in lexicographic order. However, 
in the interface, the text label “Course Name” should occur earlier than any other text labels  
because it is the most important information for both learners and course providers. Also,  some 
text labels do not completely conform to the arc or node labels in the tree schema because the 
interface should be as intuitive as possible.  

Before every text label there is a check box to specify preferences. In Figure 8, the text label 
“Interaction Language” is not checked. Those unchecked text labels will lead to missing 
branches in instance trees. After every text label there is a combobox for selecting schema-

FIGURE 8. A learner interface snapshot inputting the tree in Figure 7.
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conforming values. Users also need to specify the importance (weights) of the checked text 
labels. In the interface, the scale of every importance slider is extended to the convenient interval 
[0,10]. Within every groupbox, all the importance values for checked text labels are thus forced 
to add up to 10. 
     Based on the snapshot of the learner interface in Figure 8, the instance tree in Figure 7 is 
generated. Its arc weights are not from 0 to 10, but from 0 to 1: every importance value is 
devided by 10 to get the corresponding arc weight from the real interval [0,1]. There is also an 
interface for course providers with slightly different conventions. Both interfaces, however,  
conform to the same tree schema shown in Figure 6. 

 
 

4. SIMILARITY OF TREES 

 
      When developing a tree similarity measure, several issues have to be tackled because of the 
quite general shape of trees, their recursive nature, and their arbitrary sizes. The similarity 
function maps two such potentially very complex trees to a single real number ranging between 0 
and 1. These issues are discussed in the first subsection with examples. The similarity algorithm 
is outlined in the subsequent subsection and fully listed in the appendix. 
 

 

4.1.     Issues 
 

In this subsection, we present six groups of characteristic sample trees that explore relevant 
issues for developing a similarity measure. Section 5 gives similarity values of these trees using 
the algorithm given in Section 4.2. 

 
Example 1: 

 
 
 

 
 

 
In Figure 9, tree t1 and tree t2 have the same root node label “Auto”. But the node labels of 

subtrees (leaf nodes) are all different. In this example, although the two leaf nodes have numeric 
values, we do not carry out any arithmetic operation on these values to find out their closeness. 
Therefore, the similarity of these trees could  be defined as zero. However, we have decided to 
award a user specifiable similarity ‘bonus’ reflecting the equality of the root nodes.  

 
Example 2: 

 

 

 
 
 

Auto 

0.5
Make 

2002Ford 

Year
0.5 

Auto 

0.5 
Make

1998Chrysler 

Year
0.5 

FIGURE 9.  Two trees with mismatching leaves. 

t1 t2 

Auto 

0.0 
Make 

2002 Ford 

Year 
1.0 

Auto 

1.0 
Make 

1998 Ford 

Year
0.0 

(a) Trees with opposite extreme weights. 

t1 t2 

Auto

0.0 
Make

2002 Ford

Year
1.0 

Auto

1.0 
Make 

2002Ford 

Year
0.0

(b) Trees as in (a) but with identical leaves. 

t3 t4 

FIGURE 10. Trees with opposite branch weights.
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       This example can be viewed as a modification of Example1. In Figure 10 (a), tree t1 and tree 
t2 have one identical subtree, the leaf “Ford,” and therefore the similarity of these two subtrees 
could be considered as 1.0. However, we note that the weights of the arcs labelled “Make” are 
0.0 versus 1.0. This indicates that the agent of tree t1 puts no emphasis on the “Make” of the 
automobile, even though “Ford” is specified. The agent of tree t2 puts the whole emphasis on the 
“Make” of the automobile. The averaged weight, using the arithmetic mean, of the 
corresponding branches is (0.0 + 1.0)/2 = 0.5. Our similarity measure for the “Make” branches, 
then, is defined using a pre-multiplier of value 1.0, because of the same label “Ford,” as 1.0*(0.0 
+ 1.0)/2 = 0.5. We could have chosen to use the geometric mean, which would give zero branch 
similarity. However, we think that the branch similarity should be nonzero for identical subtrees. 
Since the leaf node labels for the “Year” branches are different we use a pre-multiplier of 0.0, 
and we obtain 0.0*(1.0 + 0.0)/2 = 0.0. Thus, the weights of the branches do not contribute to the 
similarity, as stated for Example 1. We consider the similarity of trees with one having an arc 
weight equal to 0.0 to be larger than the similarity of trees with one having a missing arc. Thus, 
the similarity S(t1, t2) of the entire trees t1, t2 is defined as follows:  
S(t1, t2)  = 1.0*(0.0 + 1.0)/2 + 0.0*(1.0 + 0.0)/2 = 0.5. 
       In Figure 10 (b), tree t3 and tree t4 are the same as in Figure 10 (a) but have identical leaves. 
In this case, the trees are exactly the same except for their weights. In an e-Business environment 
this can be interpreted as follows. While the seller and buyer agents have attached opposite 
branch weights to reflect their subjective preferences, their autos represented are exactly the 
same. This implies that the similarity of the two trees should be equal to 1.0. Indeed, we obtain 
the similarity analogously to the case of (a), as follows:  
S(t3, t4) = 1.0*(0.0 + 1.0)/2 + 1.0*(1.0 + 0.0)/2 = 1.0. 

 

Example 3: 

 
 
 
 
 
 
 
 

Figures 11 (a) and (b) represent two pairs of trees only differing in the weights of the arcs of 
t2 and t4. In Figure 11 (a), t1 has only one arc with label “Make,” which also occurs in tree t2. But 
their leaf node labels are different. The situation of Figure 11 (b) is the same as Figure 11 (a) 
except that the weight of the label “Make” is 0.9 in tree t4, while it is 0.1 in tree t2. On cursory 
look, the similarity of both pairs of trees should be identical because the leaf node differences 
between each pair of trees are identical. However, we should not overlook the contribution of the 
weights. In tree t2, the weight of arc-label “Make” is much smaller than that in tree t4. Thus, 
during the computation of similarity, the weight of the arc labelled “Make” should make a 
different contribution to the similarity: the importance of the “Chrysler-Ford” mismatch in 
Figure 11 (a) should be much lower than the same mismatch in Figure 11 (b).  So, we expect 
S(t1, t2) > S(t3, t4). 

 

FIGURE 11. Tree pairs only differing in arc weights. 
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Example 4: 

 
 
 
 
 
 
 

 
In Figure12 (a), tree t1 only has one arc, while tree t3 in Figure 12 (b) has two arcs. Tree t2 

and tree t4 are identical. However, in both pairs of trees, for identical arc labels, the leaf nodes 
are different. For example, both tree t3 and tree t4 have arc label “Year”, but their node labels are 
“1999” and “2000”, respectively. Tree t1 only has one different subtree compared to tree t2, but 
tree t3 has two different subtrees compared to tree t4. Therefore, S(t1, t2) > S(t3, t4). 

 
Example 5: 

 
 
 
 
 
 
 

In Figures 13 (a) and (b), trees t1 and t2 and trees t3 and t4 have almost the same structure 
except one pair of node labels “2002” and “1999”. So, we are sure that node labels and arc labels 
cannot make S(t1, t2) and S(t3, t4) different. But for the arc label “Year”, Figure 13 (a) and Figure 
13 (b) have different weights which should lead to S(t1, t2) < S(t3, t4), because of the higher 
mismatch of weights in Figure 13 (a) compared to Figure 13 (b).  
 
Example 6: 
 
 
 
 
 

 
 

 
Figure 14 gives four sample trees with an increasing number of subtrees. Tree t1 is an empty 

tree (a labelled tree) while the other trees have one or more branches. Intuitively, when 
comparing tree t1 to the other trees, the more complex a tree, the smaller the tree’s simplicity (we 
refer to it as treeplicity), and, consequently, the smaller its similarity with t1. Thus, we initially 
expected that S(t1, t2) > S(t1, t3) > S(t1, t4). Clearly, S(t2, t3) > S(t2, t4). For a discussion of the 
actual results obtained see Section 5. 

 

FIGURE 12. Tree pairs with left-tree refinement. 
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FIGURE 13. Tree pairs with the same structure. 
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FIGURE 14. Trees with an increasing number of subtrees. 
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4.2.     The Algorithm 
 

The similarity algorithm is defined recursively, by case analysis. Here we explain its main 
functions treesim, treemap, and treeplicity in semi-formal English. Using the RuleML cterm 
representations introduced in Figure 5, the appendix gives the full formal definition in Relfun 
(Boley 1999). The call structure is as follows, where [bracketed] parameters are distinguished 
from (parenthesised) arguments: The main function treesim[N,A](t,t') calls the ‘workhorse’ 
function treemap[N,A](l,l’), which co-recursively calls treesim; treemap also calls treeplicity(i,t). 
The parameter “N” (with a value between 0 and 1) takes into account the relative importance of 
the roots versus the (sub)trees underneath. The functional parameter “A” specifies an adjustment 
function to prevent similarity degradation with depth deepening. 
 
treesim[N,A](t,t') 
 

The treesim recursion is terminated by two (sub)trees t and t' that are leaf nodes or empty 
trees, in which case their similarity is 1.0 if their node labels are identical and 0.0 otherwise. 
       If only one of the (sub)trees is a leaf node, the other being a non-leaf node (including an 
empty tree), the leaf node is ‘converted’ into an empty tree taking over the leaf node label, and 
the similarity of the resulting trees is computed. 
       The similarity of two (sub)trees, t and t', including leaves, with different node labels is 
defined to be 0.0. 

If two non-empty (sub)trees have identical root node labels, their similarity will be computed 
via treemap by a recursive top-down (root-to-leaf) traversal through the subtrees, ti and t'i, that 
are accessible on each level via identical arc labels li; on a given level, the index i 
─ implicit in the recursion of our implementation ─ accesses the arc 
labels in lexicographic (left-to-right) order. A node-equality fraction N 
─ a ‘bonus’ value from [0,1] ─ is added to the complementary fraction (1-N) of this subtree 
comparison (in this paper, the value of N is consistently assumed to be 0.1). 
 
treemap[N,A](l,l’) 
 

The treemap function recursively compares two lists, l and l', of weighted arcs on each level 
of identical-root fan-out identified by treesim. 

In general, the arcs can carry arbitrary weights, wi and w'i from [0,1]. The weights are 
averaged using the arithmetic mean, (wi + w'i)/2, and the recursively obtained similarity si of trees 

ti and t'i ─ adjusted to A(si) by an arc function A ─ is multiplied by the averaged weight. Finally, 
on each level the sum of all such weighted adjusted similarities, 
A(si)(wi + w'i)/2, is divided by the sum of all averaged weights: 
 

                                            ∑ (A(si)(wi + w'i)/2) / ∑ (wi + w'i)/2                                                   (1) 
 

       In general, A can be any function from [0,1] to [0,1], but we assume A(x) ≥ x to compensate 
similarity degradation for nested trees. Two examples are the identity function, A(si) = si, and the 

square root, A(si) = 
is . This arc-similarity-adjusting function also permits different (seller, 

buyer) agents to use different ‘yardsticks’, even when comparing the same pair of trees. For 
example, for agents biased towards higher similarities, the square root function is preferable to 
the identity function.  
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In the special case that weights on some level of both trees add up to 1, the denominator of 
formula (1) becomes 1. Hence, if we require that the weights on each level of both trees add up to 
1 (a reasonable assumption used throughout this paper), formula (1) will be simplified: 
 

                                                           ∑ (A(si)(wi + w'i)/2)                                                        (2) 
 

Suppose that, on a given level, for an arc label li in t there exists no identical arc label in t' (or 
vice versa). In this case, the algorithm uses treeplicity to compute the similarity based on the 
simplicity of an ‘extracted’ tree consisting of a newly generated root and the subtree reachable 
via li. Intuitively, the simpler the tree extracted from t, the larger its similarity to the 
corresponding empty tree extractable from t'. So, we use the simplicity as a contribution to the 
similarity of t and t'. 
 
treeplicity(i,t) 

 
       During the similarity computation of two trees, whenever a subtree is missing in the other 
tree, treeplicity is called for the subtree. With a depth degradation index i (initialised with 1-N by 
treemap) and a single tree t as inputs, this simplicity measure is defined recursively to map an 
arbitrary single tree t to a value from [0,1], decreasing with both the tree breadth and depth. The 
recursion process terminates when t is a leaf node or an empty tree. For a non-empty (sub)tree, 
simplicity will be computed by a recursive top-down traversal through its subtrees. Basically, the 
simplicity value of a tree t is the sum of the simplicity values of its subtrees multiplied with arc 

weights from [0,1], a subtree depth degradation factor ≤ 0.5, and a subtree breadth degradation 
factor from (0,1].          
       For any subtree ti underneath an arc li, we multiply the arc weight of li with the recursive 
simplicity of ti. To enforce smaller simplicity for wider trees, the reciprocal of the tree breadth is 
used on every level as the breadth degradation factor. On each level of deepening, the depth 

degradation index i is multiplied with a global depth degradation factor treeplideg ≤ 0.5 (= 0.5 
will always be assumed here), and the result will be the new value of i in the recursion. 
       The smaller the treeplideg factor, the smaller will be the tree simplicity value. As described 
in Example 6, Section 4.1, smaller tree simplicity also leads to smaller tree similarity. Based on 

the sum of the infinite decreasing geometric progression ...
2

1
...

2

1

2

1
2

++++
n

 being 1, we 

assume that treeplideg is 0.5 in order to enforce the smallest acceptable degradation through the 
recursion:  this guarantees that the simplicity of finite trees will always be smaller than 1. For leaf 
nodes or empty trees found on any level, the current i value will be their simplicity. For example, 
if tree t consists just of a leaf node, its simplicity value should be i. Thus, since we initialise i 
with 1-N and assume N = 0.1, every leaf’s simplicity is 0.9.  
 

5. EXPERIMENTAL RESULTS 

 
      In this section we consider the examples discussed in Section 4.1 and use our implemented 
algorithm in Section 4.2 to obtain similarity values. Table 1 summarizes the similairity values 
obtained for all tree pairs. In our experiments we have set the node-equality parameter N to 0.1.  
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      For Example 1, the complete mismatch of corresponding leaf nodes leaves only the user 
specified similarity ‘bonus’ of 0.1, reflecting the equality of the root nodes contributing to the 
similarity.  The similarities of Example 2 (a) and (b) are obtained as 0.5 and 1.0, respectively, as 
desired (see Section 4.1). 
      Since the importance of the “Chrysler-Ford” mismatch in Figure 11 (a) of Example 3 should 
be much lower than the same mismatch in Figure 11 (b), we expected S(t1, t2) > S(t3, t4). It turns 
out that S(t1, t2) is more than two times bigger than S(t3, t4). 

For Example 4 we anticipated that S(t1, t2) > S(t3, t4). Our program gives consistent results. 
Our results confirm the expected result of S(t1, t2) < S(t3, t4) for the Example 5. 
       Example 6 consists of four trees and we first expected S(t1, t2) > S(t1, t3) > S(t1, t4). 
However, we observe that we obtain S(t1, t2) = S(t1, t3) = S(t1, t4). This can be explained as 
follows. Our constraint that weights on the same level add up to 1 together with our similarity-
decreasing use of the weights imply that more branches in one of the trees do not necessarily 
make it less similar to the other tree since its weights must also be decreased. For instance, a 
single 1.0-weighted branch is worth as much as two 0.5-weighted branches. Thus, the t1 
similarities with t2, t3, and t4, are identical.  

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
In order to prevent rapid depth degradation of the similarity for complex trees, we propose 

three arc similarity adjusting functions as similarity parameters to ensure that the results are 
reasonable and intuitive. This is exemplified here with two 2-level trees shown in Figure 15.  

 
 
 
 
 
 
 
 
 

Example Tree Tree Similarity 

Example 1 t1 t2 0.1 

t1 t2        (a)    0. 5  
Example 2 

t3 t4        (b)    1.0 

t1 t2 0.2823 
Example 3 

t3 t4 0.1203 

t1 t2 0.2350 
Example 4 

t3 t4 0.1675 

t1 t2 0.55 
Example 5 

t3 t4 0.7000 

t1 t2 0.3025 

t1 t3 0.3025 

t1 t4 0.3025 

t2 t3 0.8763 

Example 6 

t2 t4 0.8268 
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0.3 
0.4 
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Year

10000 
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Engine Model 
0.3 0.5

0.3 

0.7 
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0.5 

 t1 

FIGURE 15. Applying three arc-adjusting functions to a pair of trees.  
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TABLE 1. Experimental results of the examples in Section 4.1. 
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       The square root function satisfies our assumption from Section 4.2 that A(x) ≥ x in the 

closed interval [0,1], and actually achieves A(x) > x in the open interval (0,1). We also 
conducted experiments with compositions of root functions and logarithmic functions. For tree t1 

and t2 in Figure 15, if we use A(si) = 
is , we get S(t1,t2) = 0.6398; while if we use A(si) = 

)1(log2 +is , we obtain S(t1,t2) = 0.6696. Should the user want the similarity to increase faster 

than this composition, he/she can also use A(si) = 3
is , resulting in S(t1,t2) = 0.6813; 

analogously, one could use higher roots of si or of )1(log 2 +is .  However, we feel the results 

obtained from the composition )1(log2 +is  are the most reasonable ones, especially for binary 

trees. Ultimately, it is up to the user to choose appropriate adjustment functions. 

 
 

6. CONCLUSION 

 
      The outlined multi-agent system is a novel architecture for agents to represent information 
and interact with each other. We focus on the metadata information these agents carry, and a 
similarity measurement over this information. In order to make the interaction between agents 
more meaningful and fine-grained, we chose trees to represent this information. More precisely, 
these trees are node-labelled, arc-labelled, and arc-weighted. The characteristics of these kinds of 
trees led us to use complex terms of Weighted Object-Oriented RuleML and XML attributes 
within them to represent arc labels and arc weights.  
      Our tree similarity algorithm, as part of semantic match-making between agents, computes 
the similarity of subtrees in a recursive way. It can be parameterized by different functions to 
adjust the similarity of these subtrees. This gives agents the option to tailor their similarity 
measure for trees based on their subjective preferences. Other parameter functions could, e.g., be 
“local” similarity measures for leaf nodes of various types. The appendix gives the full definition 
of the extensible core algorithm in Relfun. This executable functional specification has proved to 
be a flexible test bed for our experiments. These experiments have given us meaningful results 
for e-Commerce/e-Learning environments. The algorithm can also be applied in other 
environments wherein weighted trees are used, and reimplemented in other languages, as we did 
in Java.   

This multi-agent system has already been adapted for an electric power grid application with 
power plants as sellers and power distributors as buyers (Sarno et al. 2003). The tree 
representations and the similarity algorithm described in the current paper could be used 
unchanged in this new application. This has shown the flexibility of our match-making 
architecture for e-Business environments. 

For expressing buyer queries, we have already generalized our trees to non-ground trees 
containing “Don’t Care” leaves that have similarity value 1.0 with arbitrary corresponding seller 
trees. Furthermore, local similarity measures will be incorporated as a polymorphic functional 
parameter, based on the semantic leaf comparison of our eduSource e-Learning application 
(Boley et al. 2004). Finally, in a dynamic marketplace, it would be desirable to allow more 
flexible agent interactions. In future work we will thus consider user-definable buyer-seller 
interaction protocols. 
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Appendix: The Weighted Tree Similarity Algorithm in Relfun 

 
% Assumes both weighted trees are already in a 'lexicographic' normal form 
% (roles branch off in 'alphabetic' order). 
 
% Tree representation uses OO RuleML syntax in Relfun, where roles start 
% with a "-", not with a "_" (free in XML, but variable prefix of Relfun): 
% http://www.ruleml.org/indoo 
 
% Uses the parameter N(ode) for specifying the fraction to which the equality 
% of tree-root node labels is counted relative to the result of the recursive 
% comparison of its list of subtrees.  
 
% Uses the functional parameter A(djust), which can be the id(enti)ty, sqrt, 
% etc., for compensating similarity degradation for nested trees. 
 
% A binary function, treesim, computes the similarity between its two tree 
% arguments, co-recursively calling treemap, which sums up the similarities 
% of its two lists of (sub)trees. We assume that the weights in each subtree 
% fan-out sum up to 1. Here, 1 means total similarity; 0 represents absolute 
% dissimilarity. Since treesim is symmetric in its two arguments, some of the 
% algorithm's clauses could be simplified (incurring an efficiency penalty). 
 
% Analogously, a unary function, treeplicity computes the simplicity of its 
% single tree arguments, co-recursively calling treeplimap. The simplicity 
% measure is used by the similarity measure for subtrees occurring in only one 
% of the trees. Here, 1 means total simplicity; 0 (never to be reached) would 
% represent infinite complexity. 
 
% Only the deterministic, functional subset of Relfun is required, where '=' 
% is the 'cut-return' infix and "lhs = rhs if cond" is a conditional equation; 
% the unconditional equation "lhs = rhs" abbreviates "lhs = rhs if true". 
% Built-ins are taken from Common Lisp. E.g., string< and string> compare 
% two string or symbol arguments for 'lexicographic' less and greater order. 
 
% Source at http://www.cs.unb.ca/~boley/treesimilarity/treesim.rfp 
% runs at http://serv-4100.dfki.uni-kl.de:8000/~vega/cgi-bin/rfi 
 
 
 
% Paste the program into the above URL's Database window: 
 
 
 
treesim[N,A](ind[Leaf],ind[Leaf]) =  1.    % Same leaves 
 
treesim[N,A](ind[Leaf1],ind[Leaf2]) =  0.  % Different leaves 
 
treesim[N,A](cterm[ -opc[ctor[Label]]      % Same node Label 
                    ], 
             cterm[ -opc[ctor[Label]]      % on two empty trees: 
                    ]) 
        =  1.                              % 1 
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treesim[N,A](cterm[ -opc[ctor[Label]]      % Same node Label on two trees, 
                    | Rest1 ], 
             cterm[ -opc[ctor[Label]]      % one or both being non-empty: 
                    | Rest2 ]) 
        =  
            +(N,                                  % add N(ode) fraction 
              *( -(1,N),                          % to 1-N fraction of 
                 treemap[N,A](Rest1,Rest2) ) ).   % subtree list comparison 
 
treesim[N,A](cterm[ -opc[ctor[Label1]]     % Different node Labels 
                    | Rest1 ], 
             cterm[ -opc[ctor[Label2]]     % on arbitrary trees: 
                    | Rest2 ]) 
        =  0.                              % 0 
 
treesim[N,A](ind[Label],                   % Same Label on leaf and on 
             cterm[ -opc[ctor[Label]]      % arbitrary tree (e.g. empty): 
                    | Rest ]) 
        =  
            treesim[N,A](cterm[ -opc[ctor[Label]] % Substitute empty tree 
                                ], 
                         cterm[ -opc[ctor[Label]] 
                                | Rest ]). 
 
treesim[N,A](cterm[ -opc[ctor[Label]]      % Same Label on arbitrary tree 
                    | Rest ], 
             ind[Label])                   % (e.g. empty) and on leaf: 
        =  
            treesim[N,A](cterm[ -opc[ctor[Label]] 
                                | Rest ], 
                         cterm[ -opc[ctor[Label]] % Substitute empty tree 
                                ]). 
 
treesim[N,A](ind[Label1],                   % Different Labels on leaf and 
             cterm[ -opc[ctor[Label2]]      % on arbitrary tree (e.g. empty): 
                    | Rest ]) 
        =  0.                               % 0 
 
treesim[N,A](cterm[ -opc[ctor[Label1]]      % Different Labels on arbitrary 
                    | Rest ],               % tree (e.g. empty) 
             ind[Label2])                   % and on leaf: 
        =  0.                               % 0 
 
 
 
treemap[N,A]([],[]) =  0. 
 
treemap[N,A]([ First | Rest ], 
             [])                                  % no Role1 in empty T2 
       =  
            +( *( 0.5,treeplicity(-(1,N), 
                                  cterm[ -opc[ctor[Label]],First ])), 
               treemap[N,A](Rest,[]) ). 
 
treemap[N,A]([],                                  % no Role2 in empty T1 
             [ First | Rest ]) 
       =  
            +( *( 0.5,treeplicity(-(1,N), 
                                  cterm[ -opc[ctor[Label]],First ])), 
               treemap[N,A]([],Rest) ). 
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treemap[N,A]([ -slot[name[Role],weight[Weight1]][Subtree1]   % T1 and T2 start 
               | Rest1 ], 
             [ -slot[name[Role],weight[Weight2]][Subtree2]   % with same role 
               | Rest2 ]) 
       =                                                % With assumption 
            +( *( /( +(Weight1,Weight2),2),             % Weight sum = 1: 
                  A(treesim[N,A](Subtree1,Subtree2))),  % A(djusted) sub- 
               treemap[N,A](Rest1,Rest2) ).             % tree comparison 
 
treemap[N,A]([ -slot[name[Role1],weight[Weight1]][Subtree1] 
               | Rest1 ], 
             [ -slot[name[Role2],weight[Weight2]][Subtree2] 
               | Rest2 ]) 
       =  
            +( *( 0.5, 
                  treeplicity(-(1,N), 
                              cterm[ -opc[ctor[Label]], 
                                     -slot[name[Role1],weight[Weight1]][Subtree1] ])), 
               treemap[N,A](Rest1, 
                            [ -slot[name[Role2],weight[Weight2]][Subtree2] 
                              | Rest2 ]) ) 
       if 
            string<(Role1,Role2).                    % Role1 missing in T2 
 
treemap[N,A]([ -slot[name[Role1],weight[Weight1]][Subtree1] 
               | Rest1 ], 
             [ -slot[name[Role2],weight[Weight2]][Subtree2] 
               | Rest2 ]) 
       =  
            +( *( 0.5, 
                  treeplicity(-(1,N), 
                              cterm[ -opc[ctor[Label]], 
                                     -slot[name[Role2],weight[Weight2]][Subtree2] ])), 
               treemap[N,A]([ -slot[name[Role1],weight[Weight1]][Subtree1] 
                              | Rest1 ], 
                            Rest2) ) 
       if 
            string>(Role1,Role2).                    % Role2 missing in T1 
 
 
 
treeplicity(I,ind[Leaf]) =  I.             % I: Current depth degradation index 
 
treeplicity(I,cterm[-opc[ctor[Label]]]) =  I. % (initialized with 1-N fraction) 
 
treeplicity(I,cterm[ -opc[ctor[Label]],First | Rest ]) 
      =  
           *( /(1,1+(len(Rest))),        %    Breadth degradation factor 
              treeplimap(I,[First | Rest ])). 
 
 
treeplimap(I,[]) =  0. 
 
treeplimap(I,[-slot[name[Role],weight[Weight]][Subtree] 
              | Rest ]) 
      =  
           +(*(Weight,treeplicity(*(treeplideg(),I),Subtree)), 
             treeplimap(I,Rest)). 
 
 
treeplideg() =  0.5.    % Depth degradation factor (change global constant here) 
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SYMBOLS 

 

A           arc adjustment function to prevent similarity degradation with tree depth 
N           node-equality fraction taken from [0,1] 
t (or ti,or t')  node-labelled, arc-labelled, arc-weighted tree  

li                    arc label 
S(ti, tj)        similarity of two trees 
si           similarity value obtained by S 

A(si)           application of arc adjustment function A to similarity si 

wi              arc weight for arc label li 
 

 

TABLES 
 

TABLE 1. Experimental results of the examples in Section 4.1. 
 
 
 

FIGURE CAPTIONS 
 

FIGURE 1. ACORN-like (Marsh et al. 2003) multi-agent system. 
FIGURE 2. Structure of an agent. 
FIGURE 3. Match-making of buyer and seller agents in a Cafe (adopted from (Marsh et al.   
                 2003)). 
FIGURE 4. Leaner and course trees. 
FIGURE 5. Symbolic tree representations. 
FIGURE 6. A standard tree schema for e-Learning. 
FIGURE 7. An instance tree generated from the interface in Figure 8. 
FIGURE 8. A learner interface snapshot inputting the tree in Figure 7. 
FIGURE 9.  Two trees with mismatching leaves. 
FIGURE 10. Trees with opposite branch weights. 
FIGURE 11. Tree pairs only differing in arc weights. 
FIGURE 12. Tree pairs with left-tree refinement. 
FIGURE 13. Tree pairs with the same structure. 
FIGURE 14. Trees with an increasing number of subtrees. 
FIGURE 15. Applying three arc-adjusting functions to a pair of trees.  
 
 

 


