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Abstract. Semi-supervised learning has attracted much attention over
the past decade because it provides the advantage of combining unlabeled
data with labeled data to improve the learning capability of models. Co-
training is a representative paradigm of semi-supervised learning meth-
ods. Typically, some co-training style algorithms, such as co-training and
co-EM, learn two classifiers based on two views of the instance space. But
they have to satisfy the assumptions that these two views are sufficient
and conditionally independent given the class labels. Other co-training
style algorithms, such as multiple-learner, use two different underlying
classifiers based on only a single view of the instance space. However,
they could not utilize the labeled data effectively, and suffer from the
early convergence. After analyzing various co-training style algorithms,
we have found that all of these algorithms have symmetrical framework
structures that are related to their constraints. In this paper, we propose
a novel unsymmetrical-style method, which we call the unsymmetrical co-

training algorithm. The unsymmetrical co-training algorithm combines
the advantages of other co-training style algorithms and overcomes their
disadvantages. Within our unsymmetrical structure, we apply two un-
symmetrical classifiers, namely, the self-training classifier and the EM
classifier, and then train these two classifiers in an unsymmetrical way.
The unsymmetrical co-training algorithm not only avoids the constraint
of the conditional independence assumption, but also overcomes the flaws
of the early convergence and the ineffective utilization of labeled data. We
conduct experiments to compare the performances of these co-training
style algorithms. From the experimental results, we can see that the
unsymmetrical co-training algorithm outperforms other co-training al-
gorithms.

1 Introduction

Over the course of the past decade, researchers have developed various types of
semi-supervised learning methods. Co-training [1] is a representative paradigm
of semi-supervised learning methods that are based on the multiple representa-
tions from difference views. Co-training was inspired by the observation discov-
ered in the Web pages classification [1], in which a Web page has two different
representations (views): the words occurring on the page itself; and the words
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contained in the anchor text of hyperlinks pointing to the page. The initial form
of co-training is to train two classifiers separately on two sufficient and redun-
dant views of data, and let these two classifiers label some unlabeled instances
for each other. Like other semi-supervised learning methods, co-training requires
its own assumptions to guarantee its success. Blum and Mitchell [1] proved that
co-training can be successful if the two sufficient and redundant views are condi-
tionally independent given the class label. Many researchers have supported the
observation that co-training is sensitive to this theoretical assumption [18] [2].
However, the sufficient and redundant views are rarely found in most real-world
application scenarios.

In order to tease out the effect of view-splitting from the effect of labeling,
Nigam and Ghani [2] proposed a hybrid algorithm of expectation-maximization
(EM) and co-training, called co-EM. Like co-training, co-EM tries to divide the
instance space into two conditional independent views, and to train two EM
classifiers based on these two views, respectively. But unlike co-training, co-
EM uses all the unlabeled data every time, instead of incrementally selecting
some confident predictions to update the training set. Nigam and Ghani [2]
also provided a method for ideally splitting the view of instance space based on
the conditional mutual information criteria between two subsets of attributes.
However, this method is NP-hard and difficult to apply in practice.

Since both co-training and co-EM suffer from the conditional independence
assumption, variants of co-training have been developed based on only a single
view (without splitting the attribute set). For example, Goldman and Zhou [3]
used two different learning algorithms in the paradigm of co-training without
splitting the attribute set. Steedman et al. [4] developed a similar co-training
algorithm that applies two diverse statistical parsers. Wang and Zhou [5] proved
that if the two classifiers are largely diverse, co-training style algorithms are able
to succeed. Because these variants substitute multiple views by multiple classi-
fiers, these algorithms are referred to as multiple-learner algorithms. Since the
multiple-learner algorithms are trained on the same attribute set, it is impor-
tant to keep the two classifiers different during the process in order to prevent
early convergence. Maintaining separated training sets is one approach for this
purpose. However, assigning labeled instances to two different initial training
sets will cause the ineffective utilization of labeled data sets in a semi-supervised
learning scenario.

Considering the framework structures of co-training, co-EM, and multiple-
learner algorithms, we can see that each structure is symmetrical. The co-training
algorithm splits the instance space into two symmetrical views, trains two clas-
sifiers symmetrically, and lets two classifiers teach each other in a symmetrical
way. Similarly, the co-EM algorithm sets up two symmetrical EM classifiers based
on their related views. And likewise, the multiple-learner algorithm also has a
symmetrical structure, where two classifiers are trained in parallel and combined
together to score the unlabeled instances. Therefore, we define these algorithms
as the symmetrical-style co-training algorithms.
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In this paper, we propose an unsymmetrical co-training algorithm - a novel,
semi-supervised, unsymmetrical-style algorithm. The unsymmetrical co-training
algorithm combines the advantages of other co-training style algorithms and
overcomes their disadvantages. The unsymmetrical co-training algorithm com-
bines two unsymmetrical classifiers, namely, an EM classifier and a self-training
classifier. In the algorithm, the self-training classifier takes the responsibility for
a section of unlabeled instances in a data pool; and the EM classifier maintains
a global view over the entire instance set. Without the two-view splitting, the
unsymmetrical co-training algorithm uses the full set of attributes so that it
can avoid the intractable constraint of the conditional independence assump-
tion. Although both classifiers are initially trained by labeled instances, the EM
classifier and the self-training classifier have different training sets once they en-
ter the iteration procedure. The unsymmetrical co-training algorithm does not
need to hold different initial training sets and is therefore able to utilize the
labeled instances more effectively. Furthermore, according to the study of Wang
and Zhou [5], the multiple-learner algorithm could not further improve the per-
formance after a number of learning rounds because the difference between the
two learners become smaller and smaller. Since the unsymmetrical co-training
algorithm uses two unsymmetrical classifiers in an unsymmetrical structure, it
does not need to worry about the difference between these two classifiers fading
too quickly. We conduct the experiments to compare the performances of co-
training, co-EM, multiple-learner, and unsymmetrical co-training algorithms on
30 data sets from Weka [6]. From the experimental results, we can see that the
unsymmetrical co-training algorithm outperforms other algorithms.

The remainder of this paper is organized as follows. After introducing some
preliminaries about co-training, co-EM, and multiple-learner algorithm in Sec-
tion 2, we present our unsymmetrical co-training algorithm in Section 3. Then,
the experiments to compare the performances of algorithms are reported in Sec-
tion 4. Finally, we give our conclusion and look toward future work in Section
5.

2 Preliminaries

Suppose we have the instance space X = X1 × X2, where X1 and X2 corre-
spond to the two different views of the instance space, respectively, and the
class label space Y . Given the data set L ∪ U , we have a labeled data set
L = {
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)} ⊂ X. In addition, we have two classifiers

h1 and h2, which are used to compose the following algorithms.

2.1 Co-training

Co-training [1] first tries to divide the instance space X into two different views
X1 and X2, which are conditionally independent given the class label. Then, two
classifiers h1 and h2 are trained based on these two different views, respectively.
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Classifier h1 classifies the unlabeled instances and “teaches” the other classifier
h2 the predicted class labels of unlabeled instances about which it feels most
confident. These confident unlabeled instances are added into the training set
of h2 together with their predicted class labels. At the same time, classifier h2

teaches h1 the predicted class labels about which it feels more confident. After
that, each classifier is retrained with the updated training set. Such a process
can be repeated until a certain stopping condition is satisfied. The framework
structure of co-training is shown in Figure 1. From Figure 1, we observe that the
framework structure of co-training is symmetrical: the instance space is divided
into two views symmetrically; the two classifiers are trained symmetrically; and
they update each other’s training set in a symmetrical way.

Some theoretical studies have analyzed why and how the co-training algo-
rithm can succeed. With proposing the co-training algorithm, Blum and Mitchell
[1] defined the co-training model in a PAC-style theoretical framework and
proved that the two different views are supposed to satisfy the following condi-
tions: (1) each view is sufficient and consistent to train a good classifier; (2) each
view is conditionally independent to the other one given the class label. Dasgupta
et al. [20] also provided a PAC-style theoretical analysis for co-training. Yu et al.
[7] proposed a graphical model for the co-training algorithm based on the con-
ditional independence assumption. Abney [8] showed that weak dependence can
also guarantee co-training’s working. Balcan et al. [9] proposed a much weaker
“expansion” assumption on the underlying data distribution, and proved that it
is sufficient for the iterative co-training to succeed. Wang and Zhou [10] analyzed
the co-training algorithm as a combinative label propagation over two views, and
provided the sufficient and necessary condition for co-training to succeed.

Labeled Data 1

Unlabeled Data 2

view 1    view 2

Training
set 1

classifier 1
training

Labeled Data 2

Unlabeled Data 1

Testing
 set 1

classification

selection

Testing
 set 2

classification

Training
set 2

classifier 2
training

selection
combination

Output

Fig. 1: The structure of co-training al-
gorithm.

Labeled Data 1

Unlabeled Data 2

view 1    view 2

M Step

Labeled Data 2

Unlabeled Data 1

E Step

combination

Output

M Step

E Step

EM
Classifier 1

EM
Classifier 2

Fig. 2: The structure of co-EM algo-
rithm.

2.2 Co-EM

Nigam and Ghani [2] compared the performances of the co-training algorithm
with the EM algorithm, and studied how sensitive the co-training algorithm
is to the conditional independence assumption. They the proposed a hybrid
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algorithm of EM and co-training, called co-EM. The co-EM algorithm is similar
to the EM algorithm, which is an iterative procedure that uses all the unlabeled
instances every time, instead of incrementally selecting some unlabeled instances
to update the training set. On the other hand, the co-EM algorithm is also
like the co-training algorithm, which tries to divide the instance space into two
conditionally independent views. Nigam and Ghani [2] argued that the co-EM
algorithm is a closer match to the theoretical argument established by Blum and
Mitchell [1].

In the co-EM algorithm, two EM classifiers, h1 and h2, are chosen to cor-
respond to the two different views X1 and X2. Initially, classifier h1 is trained
only based on the labeled data set L with view X1. Then, classifier h1 proba-
bilistically labels all the unlabeled instances in data set U . Next, classifier h2

is trained using the labeled instances from the view X2 of data set L, plus the
unlabeled instances from the view X2 of data set U with the class labels given
by h1. Classifier h2 then relabels the instances for the retraining of h1. This
process iterates until the classifiers converge. The framework structure of co-EM
is shown in Figure 2. From Figure 2, we can see the symmetrical structure of
the co-EM algorithm.

2.3 Multiple-learner

Since the paradigmatic assumptions of co-training are difficult to satisfy in real-
world application scenarios, many researchers begin to study the variants of
co-training that do not require the two-view splitting [3] [4] [11]. Because those
algorithms usually use multiple learners, they are referred to as the multiple-
learner algorithms. Ng and Cardie [12] summarized multiple-learner algorithms
and proposed their own algorithm3. In their multiple-learner algorithm, two
different classifiers h1 and h2 are used and trained based on the single view of
instance space. At each iteration, each classifier labels and scores all the instances
in a data pool. Some instances with scores found to be high by classifier h1 are
added to the training set of classifier h2 together with their predicted class labels
from h1, and vice verse. Then, the entire data pool is flushed and replenished
using instances drawn from the unlabeled data set U after each iteration. The
process is repeated until no further instances can be labeled. The framework
structure of multiple-learner algorithm is shown in Figure 3. Here we can see
that the structure of multiple-learner algorithm is also symmetrical, where two
classifiers are trained in parallel and combined together to score the unlabeled
instances in the data pool.

3 Unsymmetrical Co-training

As we have already emphasized, the co-training algorithm, the co-EM algorithm,
and the multiple-learner algorithm all have symmetrical framework structures.

3 The multiple-learner algorithm that appears in later sections refers to the version of
Ng and Cardie [12]
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Fig. 3: The structure of multiple-
learner algorithm.
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Fig. 4: The structure of unsymmetrical
co-training algorithm.

Some of the constraints that restrict these algorithm are related to their sym-
metrical structures. For example, both the co-training algorithm and the co-EM
algorithm are required to symmetrically divide the instance space into two suf-
ficient and conditionally independent views, and their performances are quite
sensitive to these assumptions. However, fulfilling these assumptions is a NP-
hard problem, and these assumptions are intractable in practice. Although the
multiple-learner algorithm does not suffer from the same intractable assump-
tions, it nevertheless still requires two different classifiers that are trained in a
symmetrical way. Wang an Zhou [10] reported that if the two initial classifiers
have large difference, they can be improved together using the multiple-learner
algorithm. They also discovered that, as the multiple-learner algorithm proceeds,
more and more unlabeled data are labeled, which makes the difference between
the two learners become smaller and smaller. In other words, even though the
two classifiers have big difference initially, they become more and more similar
after several learning rounds since they are trained in a symmetrical way, and
the performance of the multiple-learner algorithm cannot be further improved.
Moreover, if the two selected classifiers are only slightly different from one an-
other, two different training sets are required in order to avoid convergence of
the algorithm at an early stage in the symmetrical structure. However, in the
scenario of semi-supervised learning, assigning labeled instances to two different
initial training sets will cause the ineffective utilization of labeled data set. To
escape the constraints of symmetrical structures, we attempt to design a new
algorithm that still performs with the style of co-training but has an unsymmet-
rical framework structure.

In this paper, we propose the unsymmetrical co-training algorithm. This al-
gorithm uses two unsymmetrical classifiers, namely, the EM classifier and the
self-training classifier. The EM classifier is a kind of generative model that has
been successfully applied in semi-supervised learning [13]. The EM algorithm
includes two steps: the E-step and the M-step. The E-step estimates the expec-
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tations of the class information of unlabeled instances, and the M-step maximizes
the likelihood of the model parameters using the expectations from the previous
E-step. The EM classifier performs an iterative hill-climbing process to find a
local maxima of model probability and then assigns the class labels in terms
of the established model. Self-training might be the earliest technique for semi-
supervised learning [14] [15] and is commonly applied in many domains [17] [16].
In the self-training classifier, an underlying classifier is iteratively trained and
used to label the unlabeled instances, and then some unlabeled instances having
the confident predictions are used to update the training set for the next round
training of the underlying classifier.

Not only are two unsymmetrical classifiers applied in the unsymmetrical co-
training algorithm, but these two classifiers are also applied within an unsym-
metrical framework structure. In the structure, a data pool has been created for
the self-training classifier by randomly selecting instances from the unlabeled in-
stance set U . This data pool is the labeling objective on which the self-training
classifier focuses in the process of the algorithm. But the EM classifier does not
focus on a specific section of unlabeled instances. Instead, it faces the entire un-
labeled instance set U during the algorithm. Moreover, the training sets used to
train these two classifiers are different. For the self-training classifier, the train-
ing set consists of the labeled instances and the unlabeled instances from the
data pool with their predicted class labels. For the EM classifier, the training
set is the labeled instances plus the whole unlabeled instances together with the
class labels assigned from the previous learning round. The framework structure
of unsymmetrical co-training algorithm is shown in Figure 4.

The unsymmetrical co-training algorithm learns the two classifiers in an un-
symmetrical way. Initially, both of the classifiers are trained based on the labeled
instance set L with the single view (the full set of attributes). Then, the EM
classifier labels all the unlabeled instances, and the self-training classifier pre-
dicts the labels of unlabeled instances in the data pool. The predicted class
labels of unlabeled instances in the data pool will be used to substitute the class
labels of corresponding unlabeled instances that have been assigned by the EM
classifier. The EM classifier is then retrained by the updated training set and
relabels the unlabeled instances. The unlabeled instances in the data pool, for
which class labels from the self-training classifier are identical to the class labels
from EM classifier, will be selected to update the training set of self-training
classifier together with their predicted class labels. If there are not enough such
unlabeled instances, the confidence degree metric will be used to select other
unlabeled instances with high confidence in the data pool to update the training
set together with the predicted class labels from the self-training classifier. Next,
the data pool will be replenished by other unlabeled instances. The procedure is
repeated until there are no further instances in the data pool. The predictions
for new-coming instances are obtained using the combination of predictions from
the EM classifier and the self-training classifier, just as the co-training algorithm
does [1]. The formal description of unsymmetrical co-training algorithm is shown
in Figure 5.
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Input: Labeled instance set L, unlabeled instance set U, self-training classifier hself , and EM classifier hEM .

Initialization:

– Initialize the training set for hself by L.

– Create the data pool for hself by randomly selecting from U.

– Build hEM by L, and use hEM to label all the unlabeled instances in U.
– Create the training set for hEM using all the labeled instances and unlabeled instances with predicted class

labels from hEM .

Loop if hself ’s data pool still has some instances

– Build hself using its training set.

– Use hself to label the instances in its data pool.

– Use the predicted labels in hself ’s data pool to replace the corresponding instances’ class labels in hEM ’s

training set.
– Build hEM by the updated training set.
– Relabel all the unlabeled examples using hEM , and return the predicted class labels of instances in the data

pool to hself .

– hself selects some instances in the data pool if:

1. their predicted labels are identical to the labels from hEM ; or
2. they have higher scores ranked by the confidence degree metric of hself .

– Add selected instances into the training set of hself together with their predicted class labels.

– Replenish instances in the data pool using other unlabeled instances.

Output: The combination of predictions for new-coming instances from hself and hEM .

Fig. 5: The description of unsymmetrical co-training algorithm.

According to the theoretical study of Wang and Zhou [5], the co-training style
algorithm is able to succeed if the two classifiers are vastly different. From the
description above, we can see that the unsymmetrical co-training is consistent
with their theory. The self-training classifier and the EM classifier not only dis-
play different characteristics on learning, but also are deployed differently in the
unsymmetrical framework structure. Although they are both initially trained by
the same labeled instances, these two classifiers have different training sets once
they enter the iteration procedure. Therefore, the unsymmetrical co-training al-
gorithm avoids the early convergence of both classifiers to the same hypothesis,
and utilizes the labeled and unlabeled instances more effectively than does the
multiple-learner algorithm. Moreover, unlike the multiple-learner algorithm, in
which two classifiers become more and more similar as the algorithm proceeds,
our algorithm always maintains the differences between the two classifiers due
to its unsymmetrical way of learning. On the other hand, the unsymmetrical
co-training algorithm uses the single view of instance space so that it avoids the
intractable conditional independent view-splitting.

In the unsymmetrical co-training algorithm, the self-training classifier and
the EM classifier can complement each other. The EM algorithm essentially uses
the naive Bayes method to assign class membership probabilities to unlabeled
instances. The EM classifier is expected to do well when it satisfies the con-
ditional independence assumption of naive Bayes. However, these probabilities
are always poorly estimated because the conditional independence assumption
is violated. Self-training, on the other hand, uses the class membership probabil-
ities for ranking the confidences of unlabeled instances instead of directly using
them for the classification. Thus, the conditional independence assumption influ-
ences the self-training classifier more weakly than does the EM classifier. From
another point of view, self-training is an incremental procedure and always suf-
fers from the reinforcement of any misclassifications from previous updates. In
the unsymmetrical co-training algorithm, the EM classifier is like a supervisor
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beside the self-training classifier, which checks the predicted class labels made
by self-training and provides opinions for these predictions in terms of its own
knowledge. It is useful to reduce the chance of adding misclassifications to the
next iteration in the procedure. Moreover, the self-training classifier restricts its
view only on the labeled instances and the unlabeled instances in the data pool.
Since the EM classifier is able to see the entire set of labeled and unlabeled
instances, the view of the EM classifier is much broader than that of the self-
training classifier. Therefore, the EM classifier might be seen to make predictions
from a global view to help self-training, and the self-training classifier likewise
boosts EM from its local view.

We summarize the differences of co-training, co-EM, multiple-learner, and un-
symmetrical co-training algorithms from several points of view in Table 1. From
Table 1, we can see that the unsymmetrical co-training algorithm not only com-
bines the advantages of other algorithms, but also overcomes their disadvantages.
In the next section, we design the experiments to compare the performances of
these algorithms in the next section.

Table 1: The differences of co-training, co-EM, multiple-learner and unsymmetrical
co-training algorithms.

co-training co-EM mult-learner unsym co-training

Structure Symmetrical Symmetrical Symmetrical Unsymmetrical

Split attribute set Yes Yes No No

Split training set No No Yes No

Learning style Incremental Iterative Incremental Incremental
and iterative

Num of instances Fixed Variable Fixed Variable
added per iteration

Use data pool Yes No Yes Yes

Example selection Higher scored N/A Agreed and Agreed and
for two learners (no need to select) higher scored higher scored

4 Experiments

In this section, we design the experiments to compare the performances of co-
training, co-EM, multiple-learner, and unsymmetrical co-training algorithms.
The experiments are conducted on 30 data sets from Weka [6], which are selected
from the UCI repository. There are some preprocessing stages adopted on each
data set. First, we use the filter ReplaceMissingV alues in Weka to replace the
missing values of attributes in each data set. Second, we use the filter Discretize
in Weka, which is the unsupervised ten-bin discretization, to discretize numeric
attributes. Thus, all the attributes are nominal. Moreover, we notice that some
attributes do not contribute any information for the purpose of prediction if the
numbers of these attributes are almost equal to the numbers of instances in the
corresponding data sets. The third preprocessing stage is to use the filter Remove
in Weka to delete such attributes. We implement co-training, co-EM, multiple-
learner and unsymmetrical co-training algorithms in the Weka framework. The
underlying classifiers used by algorithms are naive Bayes classifiers, except the
co-EM and a part of the unsymmetrical co-training algorithms that use the EM
classifiers.

Our experiments are configured as follows. In each data set, 10% of the
instances are used as testing instances; 10% of the remaining data set is used
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as the set of labeled instances; and all other instances are used as unlabeled
instances. For the co-training and co-EM algorithms based on two views, the
attribute set is randomly divided into two disjointed subsets. For the co-training,
co-EM, and unsymmetrical co-training algorithms that need the data pool, the
size of the data pool is set to 10% of the unlabeled instance set. For the co-
training and multiple-learner algorithms that fix the number of instances added
per iteration, the number of added instances for each class label is decided by
the class label distribution in the original labeled instance set: for the class label
with the minimum percentage, the number is set to 1; and for all the other
class labels, the numbers are set to the times of that the class label has the
minimum percentage. The accuracy score is used to evaluate the performances
of algorithms. In our experiments, the accuracy scores of each algorithm are
obtained via 10 runs of ten-fold cross-validation and evaluated on the same
testing sets. Finally, we conduct two-tailed t-test with a 95% confidence level to
compare the unsymmetrical co-training algorithm to the other algorithms. The
results are shown in Table 2.

In Table 2, the two-tailed t-test results are shown in the bottom row, where
each entry has the format of w/t/l. This means that, comparing with the un-
symmetrical co-training algorithm, the algorithm in the corresponding column
wins w times, ties t times, and loses l times. From the experimental results,
we observe that the unsymmetrical co-training algorithm outperforms other al-
gorithms, where it wins 8 times and loses 2 times against the co-training and
multiple-learner algorithms, and wins 10 times and never loses against the co-EM
algorithm.

The evidences provided by the above experiments can be explained as follows.
The unsymmetrical structure is more effective in the scenario of semi-supervised
learning than are the symmetrical structures. The unsymmetrical co-training
algorithm combines the EM classifier, which learns from a global view, and
the self-training classifier, which boosts the learning from the local view. These
two classifiers, which complement each other in the unsymmetrical structure,
enhance the learning ability of the co-training style framework. The co-training
and co-EM algorithms are sensitive to the conditional independence assumption.
Randomly splitting the attribute sets decreases the overall performances of co-
training and co-EM algorithms. Although the multiple-learner algorithm does
not need two-view splitting, just as the unsymmetrical co-training algorithm
does, the small number of labeled instances cannot be utilized effectively in the
symmetrical structure. Besides, as the multiple-learner algorithm proceeds, its
underlying classifiers become more and more similar so that the performance
cannot be further improved.

5 Conclusion

In this paper, we propose the unsymmetrical co-training algorithm, which is
a novel semi-supervised learning method in the co-training style. In the algo-
rithm, two unsymmetrical classifiers, namely, the self-training classifier and the
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Table 2: Experimental results on accuracy for co-training, co-EM, multiple-learner and
unsymmetrical co-training algorithms.

Dataset UnSymCoTrain Co-training Co-EM Mult-Learner

zoo 85.36 79.48 76.24 80.19
labor 78.83 78.5 65.9 79.87
iris 89.2 89.33 79.47 90.4
vote 88.62 88 88.23 88.26
breast-cancer 72.25 65.94 71.63 70.97
lymph 74.21 55.1 64.65 57.63
primary-tumor 34.29 30.98 25.38 30.44
hepatitis 82.55 80.5 80.08 82.18
balance-scale 72.38 70.03 53.68 65.63
glass 45.43 42.27 42.42 43.53
audiology 31.46 34.27 26.55 35.16
heart-h 83.2 74.27 81.36 79.12
heart-c 81.99 67.27 82.75 74.53
colic.ORIG 58.45 59.02 54.88 57.38
heart-statlog 81.04 77.67 70.07 81.07
autos 46.79 45.58 41.22 45.67
credit-a 84.29 82.14 75.64 83.88
colic 72.2 74.17 67.37 73.54
breast-w 97.44 97.02 97.4 97.08
diabetes 71.66 71.79 69.37 70.75
anneal.ORIG 77.04 77.38 69.32 77.61
soybean 77.71 68.3 62.29 70.77
ionosphere 84.64 80.34 80.6 82.73
anneal 86.15 83.44 68.93 84.66
vowel 30.59 26.82 18 26.86
kr-vs-kp 65.55 74.27 51.63 72.82
credit-g 69.03 67.51 67.13 65.73
vehicle 50.33 47.26 43.91 46.34
sonar 65.23 56.55 55.7 56.82
mushroom 90.04 93.06 89.24 92.96

w/t/l 2/20/8 0/20/10 2/20/8

EM classifier, are learned in an unsymmetrical way within an unsymmetrical
framework structure. Compared with other co-training style algorithms, such as
co-training, co-EM, and multiple-learner, the unsymmetrical co-training algo-
rithm has several advantages. First, the unsymmetrical co-training algorithm is
based on the single view of instance space, so it does not suffer from the violation
of conditional independence assumption as co-training and co-EM algorithms do.
Second, the unsymmetrical structure makes the utilization of labeled instances
more effective since there is no need to split the labeled instance set into two
different initial training sets for two underlying classifiers. Moreover, the two un-
symmetrical classifiers do not easily become more similar after several learning
rounds because the unsymmetrical training of the algorithm prevents growing
similarity. We conduct the experiments to compare the performances of these
algorithms. The experimental results show that the unsymmetrical co-training
algorithm overall outperforms other algorithms.

In the future, we will continue the study of semi-supervised learning methods
in the co-training style, especially within the unsymmetrical framework struc-
ture. More experiments will be conducted to compare our unsymmetrical co-
training algorithm with other co-training style methods under various circum-
stances. The different underlying classifiers will be tested within this unsymmet-
rical structure to see whether the performance can be improved further. It will
also be interesting to apply the unsymmetrical co-training algorithm to real-
world applications, especially for the applications suitable for semi-supervised
learning, such as natural Language processing (NLP) and bioinformatics.
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