
Publisher’s version / Version de l'éditeur:

Proceedings of the 2012 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies - (HLT-
NAACL 2012), pp. 427-436, 2012-06-08

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Batch tuning strategies for statistical machine translation
Cherry, Colin; Foster, George

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=1101df04-9f92-4758-a257-3a8457183e06

https://publications-cnrc.canada.ca/fra/voir/objet/?id=1101df04-9f92-4758-a257-3a8457183e06

Batch Tuning Strategies for Statistical Machine Translation

Colin Cherry and George Foster

National Research Council Canada

{Colin.Cherry,George.Foster}@nrc-cnrc.gc.ca

Abstract

There has been a proliferation of recent work

on SMT tuning algorithms capable of han-

dling larger feature sets than the traditional

MERT approach. We analyze a number of

these algorithms in terms of their sentence-

level loss functions, which motivates several

new approaches, including a Structured SVM.

We perform empirical comparisons of eight

different tuning strategies, including MERT,

in a variety of settings. Among other results,

we find that a simple and efficient batch ver-

sion of MIRA performs at least as well as

training online, and consistently outperforms

other options.

1 Introduction

The availability of linear models and discriminative

tuning algorithms has been a huge boon to statis-

tical machine translation (SMT), allowing the field

to move beyond the constraints of generative noisy

channels (Och and Ney, 2002). The ability to opti-

mize these models according to an error metric has

become a standard assumption in SMT, due to the

wide-spread adoption of Minimum Error Rate Train-

ing or MERT (Och, 2003). However, MERT has

trouble scaling to more than 30 features, which has

led to a surge in research on tuning schemes that can

handle high-dimensional feature spaces.

These methods fall into a number of broad cate-

gories. Minimum risk approaches (Och, 2003; Smith

and Eisner, 2006) have been quietly capable of han-

dling many features for some time, but have yet to

see widespread adoption. Online methods (Liang

et al., 2006; Watanabe et al., 2007), are recognized

to be effective, but require substantial implementa-

tion efforts due to difficulties with parallelization.

Pairwise ranking (Shen et al., 2004; Hopkins and

May, 2011) recasts tuning as classification, and can

be very easy to implement, as it fits nicely into the

established MERT infrastructure.

The MERT algorithm optimizes linear weights

relative to a collection of k-best lists or lattices,

which provide an approximation to the true search

space. This optimization is wrapped in an outer

loop that iterates between optimizing weights and

re-decoding with those weights to enhance the ap-

proximation. Our primary contribution is to empiri-

cally compare eight tuning algorithms and variants,

focusing on methods that work within MERT’s es-

tablished outer loop. This is the first comparison to

include all three categories of optimizer.

Furthermore, we introduce three tuners that have

not been previously tested. In particular, we

test variants of Chiang et al.’s (2008) hope-fear

MIRA that use k-best or lattice-approximated search

spaces, producing a Batch MIRA that outperforms

a popular mechanism for parallelizing online learn-

ers. We also investigate the direct optimization of

hinge loss on k-best lists, through the use of a Struc-

tured SVM (Tsochantaridis et al., 2004). We review

and organize the existing tuning literature, provid-

ing sentence-level loss functions for minimum risk,

online and pairwise training. Finally, since random-

ization plays a different role in each tuner, we also

suggest a new method for testing an optimizer’s sta-

bility (Clark et al., 2011), which sub-samples the

tuning set instead of varying a random seed.

2 Background

We begin by establishing some notation. We view

our training set as a list of triples [f,R, E]ni=1, where

f is a source-language sentence, R is a set of target-

language reference sentences, and E is the set of

all reachable hypotheses; that is, each e ∈ Ei is a

target-language derivation that can be decoded from

fi. The function ~hi(e) describes e’s relationship to

its source fi using features that decompose into the

decoder. A linear model ~w scores derivations ac-

cording to their features, meaning that the decoder

solves:

ei(~w) = arg max
e∈Ei

~w · ~hi(e) (1)

Assuming we wish to optimize our decoder’s BLEU

score (Papineni et al., 2002), the natural objec-

tive of learning would be to find a ~w such that

BLEU([e(~w), R]n1) is maximal. In most machine

learning papers, this would be the point where we

would say, “unfortunately, this objective is unfeasi-

ble.” But in SMT, we have been happily optimizing

exactly this objective for years using MERT.

However, it is now acknowledged that the MERT

approach is not feasible for more than 30 or so fea-

tures. This is due to two main factors:

1. MERT’s parameter search slows and becomes

less effective as the number of features rises,

stopping it from finding good training scores.

2. BLEU is a scale invariant objective: one can

scale ~w by any positive constant and receive the

same BLEU score.1 This causes MERT to re-

sist standard mechanisms of regularization that

aim to keep ||~w|| small.

The problems with MERT can be addressed

through the use of surrogate loss functions. In this

paper, we focus on linear losses that decompose over

training examples. Using Ri and Ei, each loss ℓi(~w)
indicates how poorly ~w performs on the ith training

example. This requires a sentence-level approxima-

tion of BLEU, which we re-encode into a cost ∆i(e)
on derivations, where a high cost indicates that e re-

ceives a low BLEU score. Unless otherwise stated,

we will assume the use of sentence BLEU with add-

1 smoothing (Lin and Och, 2004). The learners dif-

fer in their definition of ℓ and ∆, and in how they

employ their loss functions to tune their weights.

1This is true of any evaluation metric that considers only the

ranking of hypotheses and not their model scores; ie, it is true

of all common MT metrics.

2.1 Margin Infused Relaxed Algorithm

First employed in SMT by Watanabe et al. (2007),

and refined by Chiang et al. (2008; 2009), the Mar-

gin Infused Relaxed Algorithm (MIRA) employs a

structured hinge loss:

ℓi(~w) = max
e∈Ei

[

∆i(e) + ~w ·
(

~hi(e) − ~hi(e
∗
i)

)]

(2)

where e∗i is an oracle derivation, and cost is de-

fined as ∆i(e) = BLEUi(e
∗
i) − BLEUi(e), so that

∆i(e
∗
i) = 0. The loss ℓi(~w) is 0 only if ~w separates

each e ∈ Ei from e∗i by a margin proportional to their

BLEU differentials.

MIRA is an instance of online learning, repeating

the following steps: visit an example i, decode ac-

cording to ~w, and update ~w to reduce ℓi(~w). Each

update makes the smallest change to ~w (subject to a

step-size cap C) that will separate the oracle from a

number of negative hypotheses. The work of Cram-

mer et al. (2006) shows that updating away from a

single “fear” hypothesis that maximizes (2) admits

a closed-form update that performs well. Let e′i be

the e ∈ Ei that maximizes ℓi(~w); the update can be

performed in two steps:

ηt = min

[

C, ℓi(~wt)

||~hi(e∗i)−~hi(e′i)||
2

]

~wt+1 = ~wt + ηt

(

~hi(e
∗
i) −

~hi(e
′
i)

)

(3)

To improve generalization, the average of all

weights seen during learning is used on unseen data.

Chiang et al. (2008) take advantage of MIRA’s

online nature to modify each update to better suit

SMT. The cost ∆i is defined using a pseudo-

corpus BLEU that tracks the n-gram statistics of

the model-best derivations from the last few up-

dates. This modified cost matches corpus BLEU

better than add-1 smoothing, but it also makes ∆i

time-dependent: each update for an example i will

be in the context of a different pseudo-corpus. The

oracle e∗i also shifts with each update to ~w, as it

is defined as a “hope” derivation, which maximizes

~w · ~hi(e) + BLEUi(e). Hope updating ensures that

MIRA aims for ambitious, reachable derivations.

In our implementation, we make a number of

small, empirically verified deviations from Chiang

et al. (2008). These include the above-mentioned

use of a single hope and fear hypothesis, and the use

of hope hypotheses (as opposed to model-best hy-

potheses) to build the pseudo-corpus for calculating

BLEUi. These changes were observed to be neu-

tral with respect to translation quality, but resulted in

faster running time and simplified implementation.

2.2 Direct Optimization

With the exception of MIRA, the tuning approaches

discussed in this paper are direct optimizers. That is,

each solves the following optimization problem:

~w∗ = arg min
~w

λ

2
||~w||2 +

∑

i

ℓi(~w) (4)

where the first term provides regularization,

weighted by λ. Throughout this paper, (4) is

optimized with respect to a fixed approximation

of the decoder’s true search space, represented as

a collection of k-best lists. The various methods

differ in their definition of loss and in how they

optimize their objective.

Without the complications added by hope decod-

ing and a time-dependent cost function, unmodified

MIRA can be shown to be carrying out dual coordi-

nate descent for an SVM training objective (Martins

et al., 2010). However, exactly what objective hope-

fear MIRA is optimizing remains an open question.

Gimpel and Smith (2012) discuss these issues in

greater detail, while also providing an interpretable

alternative to MIRA.

2.3 Pairwise Ranking Optimization

Introduced by Hopkins and May (2011), Pairwise

Ranking Optimization (PRO) aims to handle large

feature sets inside the traditional MERT architec-

ture. That is, PRO employs a growing approxima-

tion of Ei by aggregating the k-best hypotheses from

a series of increasingly refined models. This archi-

tecture is desirable, as most groups have infrastruc-

ture to k-best decode their tuning sets in parallel.

For a given approximate Ẽi, PRO creates a sam-

ple Si of (eg, eb) pairs, such that BLEUi(eg) >
BLEUi(eb). It then uses a binary classifier to sep-

arate each pair. We describe the resulting loss in

terms of an SVM classifier, to highlight similarities

with MIRA. In terms of (4), PRO defines

ℓi(~w) =
∑

(eg ,eb)∈Si

2
(

1 + ~w ·
(

~hi(eb) − ~hi(eg)
)

)+

where (x)+ = max(0, x). The hinge loss is multi-

plied by 2 to account for PRO’s use of two examples

(positive and negative) for each sampled pair. This

sum of hinge-losses is 0 only if each pair is separated

by a model score of 1. Given [S]ni=1, this convex

objective can be optimized using any binary SVM.2

Unlike MIRA, the margin here is fixed to 1; cost en-

ters into PRO through its sampling routine, which

performs a large uniform sample and then selects a

subset of pairs with large BLEU differentials.

The PRO loss uses a sum over pairs in place of

MIRA’s max, which allows PRO to bypass oracle

selection, and to optimize with off-the-shelf classi-

fiers. This sum is potentially a weakness, as PRO

receives credit for each correctly ordered pair in its

sample, and these pairs are not equally relevant to

the final BLEU score.

2.4 Minimum Risk Training

Minimum risk training (MR) interprets ~w as a prob-

abilistic model, and optimizes expected BLEU. We

focus on expected sentence costs (Och, 2003; Zens

et al., 2007; Li and Eisner, 2009), as this risk is sim-

ple to optimize and fits nicely into our mathemati-

cal framework. Variants that use the expected suffi-

cient statistics of BLEU also exist (Smith and Eisner,

2006; Pauls et al., 2009; Rosti et al., 2011).

We again assume a MERT-like tuning architec-

ture. Let ∆i(e) = −BLEUi(e) and let

ℓi(~w) = EP~w
[∆i(e)] =

∑

e∈Ẽi

[

exp(~w · ~hi(e))∆i(e)
]

∑

e′∈Ẽi
exp(~w · ~hi(e′))

This expected cost becomes increasingly small as

greater probability mass is placed on derivations

with high BLEU scores. This smooth, non-convex

objective can be solved to a local minimum using

gradient-based optimizers; we have found stochastic

gradient descent to be quite effective (Bottou, 2010).

Like PRO, MR requires no oracle derivation, and

fits nicely into the established MERT architecture.

The expectations needed to calculate the gradient

EP~w

[

~hi(e)∆i(e)
]

− EP~w
[∆i(e)]EP~w

[

~hi(e)
]

2Hopkins and May (2011) advocate a maximum-entropy

version of PRO, which is what we evaluate in our empirical

comparison. It can be obtained using a logit loss ℓi(~w) =
P

g,b 2 log
“

1 + exp
“

~w ·
`

~hi(eb) − ~hi(eg)
´

””

.

are trivial to extract from a k-best list of derivations.

Each downward step along this gradient moves the

model toward likely derivations, and away from

likely derivations that incur high costs.

3 Novel Methods

We have reviewed three tuning methods, all of which

address MERT’s weakness with large features by us-

ing surrogate loss functions. Additionally, MIRA

has the following advantages over PRO and MR:

1. Loss is optimized using the true Ei, as opposed

to an approximate search space Ẽi.

2. Sentence BLEU is calculated with a fluid

pseudo-corpus, instead of add-1 smoothing.

Both of these advantages come at a cost: oper-

ating on the true Ei sacrifices easy parallelization,

while using a fluid pseudo-corpus creates an unsta-

ble learning objective. We develop two large-margin

tuners that explore these trade-offs.

3.1 Batch MIRA

Online training makes it possible to learn with the

decoder in the loop, forgoing the need to approxi-

mate the search space, but it is not necessarily con-

venient to do so. Online algorithms are notoriously

difficult to parallelize, as they assume each example

is visited in sequence. Parallelization is important

for efficient SMT tuning, as decoding is still rela-

tively expensive.

The parallel online updates suggested by Chi-

ang et al. (2008) involve substantial inter-process

communication, which may not be easily supported

by all clusters. McDonald et al. (2010) suggest

a simpler distributed strategy that is amenable to

map-reduce-like frameworks, which interleaves on-

line training on shards with weight averaging across

shards. This strategy has been adopted by Moses

(Hasler et al., 2011), and it is the one we adopt in

our MIRA implementation.

However, online training using the decoder may

not be necessary for good performance. The success

of MERT, PRO and MR indicates that their shared

search approximation is actually quite reasonable.

Therefore, we propose Batch MIRA, which sits ex-

actly where MERT sits in the standard tuning archi-

tecture, greatly simplifying parallelization:

1. Parallel Decode: [Ẽ ′]n1 = k-best([f, E]n1 , ~w)

2. Aggregate: [Ẽ]n1 = [Ẽ]n1 ∪ [Ẽ ′]n1
3. Train: ~w = BatchMIRA([f,R, Ẽ]n1 , ~w)

4. Repeat

where BatchMIRA() trains the SMT-adapted MIRA

algorithm to completion on the current approxima-

tion Ẽ , without parallelization.3 The only change we

make to MIRA is to replace the hope-fear decoding

of sentences with the hope-fear re-ranking of k-best

lists. Despite its lack of parallelization, each call to

BatchMIRA() is extremely fast, as SMT tuning sets

are small enough to load all of [Ẽ]n1 into memory. We

test two Batch MIRA variants, which differ in their

representation of Ẽ . Pseudo-code that covers both is

provided in Algorithm 1. Note that if we set Ẽ = E ,

Algorithm 1 also describes online MIRA.

Batch k-best MIRA inherits all of the MERT archi-

tecture. It is very easy to implement; the hope-fear

decoding steps can by carried out by simply evaluat-

ing BLEU score and model score for each hypothe-

sis in the k-best list.

Batch Lattice MIRA replaces k-best decoding in

step 1 with decoding to lattices. To enable loading

all of the lattices into memory at once, we prune to

a density of 50 edges per reference word. The hope-

fear decoding step requires the same oracle lattice

decoding algorithms as online MIRA (Chiang et al.,

2008). The lattice aggregation in the outer loop can

be kept reasonable by aggregating only those paths

corresponding to hope or fear derivations.

3.2 Structured SVM

While MIRA takes a series of local hinge-loss re-

ducing steps, it is also possible to directly minimize

the sum of hinge-losses using a batch algorithm, cre-

ating a structured SVM (Tsochantaridis et al., 2004).

To avoid fixing an oracle before optimization begins,

we adapt Yu and Joachim’s (2009) latent SVM to

our task, which allows the oracle derivation for each

sentence to vary during training. Again we assume a

MERT-like architecture, which approximates E with

an Ẽ constructed from aggregated k-best lists.

Inspired by the local oracle of Liang et al. (2006),

we define Ẽi∗ to be an oracle set:

Ẽi∗ = {e|BLEUi(e) is maximal}.

3In our implementation, BatchMIRA() trains for J = 30
passes over [Ẽ]n1 .

Algorithm 1 BatchMIRA

input [f,R, Ẽ]n1 , ~w, max epochs J , step cap C,

and pseudo-corpus decay γ.

init Pseudo-corpus BG to small positive counts.

init t = 1; ~wt = ~w
for j from 1 to J do

for i from 1 to n in random order do

// Hope-fear decode in Ẽi

e∗t = arg maxe∈Ẽi

[

~wt · ~hi(e) + BLEUi(e)
]

e′t = arg maxe∈Ẽi

[

~wt · ~hi(e) − BLEUi(e)
]

// Update weights

∆t = BLEUi(e
∗
t) − BLEUi(e

′
t)

ηt = min

[

C,
∆t+~wt·

(

~hi(e
′

t)−
~hi(e

∗

t)
)

||~hi(e∗t)−~hi(e′t)||
2

]

~wt+1 = ~wt + ηt

(

~hi(e
∗
t) −

~hi(e
′
i)

)

// Update statistics

BG = γBG+ BLEU stats for e∗t and Ri

t = t + 1
end for

~wavg
j = 1

nj

∑nj
t′=1 ~wt′

end for

return ~wavg
j that maximizes training BLEU

Cost is also defined in terms of the maximal BLEU,

∆i(e) = max
e′∈Ẽi

[

BLEUi(e
′)
]

− BLEUi(e).

Finally, loss is defined as:

ℓi(~w) = maxe∈Ẽi

[

∆i(e) + ~w · ~hi(e)

− maxe∗i ∈Ẽi∗

(

~w · ~hi(e
∗
i)

)]

This loss is 0 only if some hypothesis in the oracle

set is separated from all others by a margin propor-

tional to their BLEUi differentials.

With loss defined in this manner, we can mini-

mize (4) to local minimum by using an alternating

training procedure. For each example i, we select

a fixed e∗i ∈ Ẽi∗ that maximizes model score; that

is, ~w is used to break ties in BLEU for oracle selec-

tion. With the oracle fixed, the objective becomes

a standard structured SVM objective, which can be

minimized using a cutting-plane algorithm, as de-

scribed by Tsochantaridis et al. (2004). After doing

so, we can drive the loss lower still by iterating this

process: re-select each oracle (breaking ties with the

new ~w), then re-optimize ~w. We do so 10 times. We

were surprised by the impact of these additional iter-

ations on the final loss; for some sentences, Ẽi∗ can

be quite large.

Despite the fact that both algorithms use a struc-

tured hinge loss, there are several differences be-

tween our SVM and MIRA. The SVM has an ex-

plicit regularization term λ that is factored into its

global objective, while MIRA regularizes implicitly

by taking small steps. The SVM requires a stable

objective to optimize, meaning that it must forgo the

pseudo-corpus used by MIRA to calculate ∆i; in-

stead, the SVM uses an interpolated sentence-level

BLEU (Liang et al., 2006).4 Finally, MIRA’s oracle

is selected with hope decoding. With a sufficiently

large ~w, any e ∈ Ẽ can potentially become the ora-

cle. In contrast, the SVM’s local oracle is selected

from a small set Ẽ∗, which was done to more closely

match the assumptions of the Latent SVM.

To solve the necessary quadratic programming

sub-problems, we use a multiclass SVM similar to

LIBLINEAR (Hsieh et al., 2008). Like Batch MIRA

and PRO, the actual optimization is very fast, as the

cutting plane converges quickly and all of [Ẽ]n1 can

be loaded into memory at once.

3.3 Qualitative Summary

We have reviewed three tuning methods and intro-

duced three tuning methods. All six methods em-

ploy sentence-level loss functions, which in turn em-

ploy sentence-level BLEU approximations. Except

for online MIRA, all methods plug nicely into the

existing MERT architecture. These methods can be

split into two groups: MIRA variants (online, batch

k-best, batch lattice), and direct optimizers (PRO,

MR and SVM). The MIRA variants use pseudo-

corpus BLEU in place of smoothed BLEU, and

provide access to richer hypothesis spaces through

the use of online training or lattices.5 The direct

optimizers have access to a tunable regularization

parameter λ, and do not require special purpose

code for hope and fear lattice decoding. Batch

4SVM training with interpolated BLEU outperformed add-1

BLEU in preliminary testing. A comparison of different BLEU

approximations under different tuning objectives would be an

interesting path for future work.
5MR approaches that use lattices (Li and Eisner, 2009;

Pauls et al., 2009; Rosti et al., 2011) or the complete search

space (Arun et al., 2010) exist, but are not tested here.

k-best MIRA straddles the two groups, benefiting

from pseudo-corpus BLEU and easy implementa-

tion, while being restricted to a k-best list.

4 Experimental Design

We evaluated the six tuning strategies described

in this paper, along with two MERT baselines,

on three language pairs
(

French-English (Fr-En),

English-French (En-Fr) and Chinese-English (Zh-

En)
)

, across three different feature-set sizes. Each

setting was run five times over randomized variants

to improve reliability. To cope with the resulting

large number of configurations, we ran all experi-

ments using an efficient phrase-based decoder simi-

lar to Moses (Koehn et al., 2007).

All tuning methods that use an approximate Ẽ per-

form 15 iterations of the outer loop and return the

weights that achieve the best development BLEU

score. When present, λ was coarsely tuned (trying 3

values differing by magnitudes of 10) in our large-

feature Chinese-English setting.

• kb-mert : k-best MERT with 20 random

restarts. All k-best methods use k = 100.

• lb-mert : Lattice MERT (Machery et al., 2008)

using unpruned lattices and aggregating only

those paths on the line search’s upper envelope.

• mira : Online MIRA (§2.1). All MIRA vari-

ants use a pseudo-corpus decay γ = 0.999 and

C = 0.01. Online parallelization follows Mc-

Donald et al. (2010), using 8 shards. We tested

20, 15, 10, 8 and 5 shards during development.

• lb-mira : Batch Lattice MIRA (§3.1).

• kb-mira : Batch k-best MIRA (§3.1).

• pro : PRO (§2.3) follows Hopkins and May

(2011); however, we were unable to find set-

tings that performed well in general. Reported

results use MegaM6 with a maximum of 30 it-

erations (as is done in Moses; the early stop-

ping provides a form of regularization) for our

six English/French tests, and MegaM with 100

iterations and a reduced initial uniform sam-

ple (50 pairs instead of 5000) for our three En-

glish/Chinese tests.

• mr : MR as described in §2.4. We employ a

learning rate of η0/(1 + η0λt) for stochastic

6Available at www.cs.utah.edu/∼hal/megam/

corpus sentences words (en) words (fr)

train 2,928,759 60,482,232 68,578,459

dev 2,002 40,094 44,603

test1 2,148 42,503 48,064

test2 2,166 44,701 49,986

Table 1: Hansard Corpus (English/French)

corpus sentences words (zh) words (en)

train1 6,677,729 200,706,469 213,175,586

train2 3,378,230 69,232,098 66,510,420

dev 1,506 38,233 40,260

nist04 1,788 53,439 59,944

nist06 1,664 41,782 46,140

nist08 1,357 35,369 42,039

Table 2: NIST09 Corpus (Chinese-English). Train1 cor-

responds to the UN and Hong Kong sub-corpora; train2

to all others.

gradient descent, with η0 tuned to optimize the

training loss achieved after one epoch (Bottou,

2010). Upon reaching a local optimum, we re-

shuffle our data, re-tune our learning rate, and

re-start from the optimum, repeating this pro-

cess 5 times. We do not sharpen our distribu-

tion with a temperature or otherwise control for

entropy; instead, we trust λ = 50 to maintain a

reasonable distribution.

• svm : Structured SVM (§3.2) with λ = 1000.

4.1 Data

Systems for English/French were trained on Cana-

dian Hansard data (years 2001–2009) summarized

in table 1.7 The dev and test sets were chosen

randomly from among the most recent 5 days of

Hansard transcripts.

The system for Zh-En was trained on data from

the NIST 2009 Chinese MT evaluation, summarized

in table 2. The dev set was taken from the NIST

05 evaluation set, augmented with some material re-

served from other NIST corpora. The NIST 04, 06,

and 08 evaluation sets were used for testing.

4.2 SMT Features

For all language pairs, phrases were extracted with

a length limit of 7 from separate word alignments

7This corpus will be distributed on request.

template max fren enfr zhen

tgt unal 50 50 50 31

count bin 11 11 11 11

word pair 6724 1298 1291 1664

length bin 63 63 63 63

total 6848 1422 1415 1769

Table 3: Sparse feature templates used in Big.

performed by IBM2 and HMM models and sym-

metrized using diag-and (Koehn et al., 2003). Con-

ditional phrase probabilities in both directions were

estimated from relative frequencies, and from lexical

probabilities (Zens and Ney, 2004). Language mod-

els were estimated with Kneser-Ney smoothing us-

ing SRILM. Six-feature lexicalized distortion mod-

els were estimated and applied as in Moses.

For each language pair, we defined roughly equiv-

alent systems (exactly equivalent for En-Fr and Fr-

En, which are mirror images) for each of three

nested feature sets: Small, Medium, and Big.

The Small set defines a minimal 7-feature sys-

tem intended to be within easy reach of all tuning

strategies. It comprises 4 TM features, one LM, and

length and distortion features. For the Chinese sys-

tem, the LM is a 5-gram trained on the NIST09 Gi-

gaword corpus; for English/French, it is a 4-gram

trained on the target half of the parallel Hansard.

The Medium set is a more competitive 18-feature

system. It adds 4 TM features, one LM, and 6 lex-

icalized distortion features. For Zh-En, Small’s TM

(trained on both train1 and train2 in table 2) is re-

placed by 2 separate TMs from these sub-corpora;

for En/Fr, the extra TM (4 features) comes from a

forced-decoding alignment of the training corpus, as

proposed by Wuebker et al. (2010). For Zh-En, the

extra LM is a 4-gram trained on the target half of the

parallel corpus; for En/Fr, it is a 4-gram trained on

5m sentences of similar parliamentary data.

The Big set adds sparse Boolean features to

Medium, for a maximum of 6,848 features. We used

sparse feature templates that are equivalent to the

PBMT set described in (Hopkins and May, 2011):

tgt unal picks out each of the 50 most frequent tar-

get words to appear unaligned in the phrase table;

count bin uniquely bins joint phrase pair counts with

upper bounds 1,2,4,8,16,32,64,128,1k,10k,∞; word

pair fires when each of the 80 most frequent words

in each language appear aligned 1-1 to each other, to

some other word, or not 1-1; and length bin captures

each possible phrase length and length pair. Table 3

summarizes the feature templates, showing the max-

imum number of features each can generate, and the

number of features that received non-zero weights in

the final model tuned by MR for each language pair.

Feature weights are initialized to 1.0 for each of

the TM, LM and distortion penalty features. All

other weights are initialized to 0.0.

4.3 Stability Testing

We follow Clark et al (2011), and perform multiple

randomized replications of each experiment. How-

ever, their method of using different random seeds

is not applicable in our context, since randomization

does not play the same role for all tuning methods.

Our solution was to randomly draw and fix four dif-

ferent sub-samples of each dev set, retaining each

sentence with a probability of 0.9. For each tuning

method and setting, we then optimize on the origi-

nal dev and all sub-samples. The resulting standard

deviations provide an indication of stability.

5 Results

The results of our survey of tuning methods can be

seen in Tables 4, 5 and 6. Results are averaged over

test sets (2 for Fr/En, 3 for Zh/En), and over 5 sub-

sampled runs per test set. The SD column reports the

standard deviation of the average test score across

the 5 sub-samples.

It may be dismaying to see only small score

improvements when transitioning from Medium to

Big. This is partially due to the fact that our Big fea-

ture set affects only phrase-table scores. Our phrase

tables are already strong, through our use of large

data or leave-one-out forced decoding. The impor-

tant baseline when assessing the utility of a method

is Medium k-best MERT. In all language pairs, our

Big systems generally outperform this baseline by

0.4 BLEU points. It is interesting to note that most

methods achieve the bulk of this improvement on the

Medium feature set.8 This indicates that MERT be-

gins to show some problems even in an 18-feature

8One can see the same phenomenon in the results of Hop-

kins and May (2011) as well.

Table 4: French to English Translation (Fr-En)

Small Medium Big

Tune Test SD Tune Test SD Tune Test SD

kb-mert 40.50 39.94 0.04 40.75 40.29 0.13 n/a n/a n/a

lb-mert 40.52 39.93 0.11 40.93 40.39 0.08 n/a n/a n/a

mira 40.38 39.94 0.04 40.64 40.59 0.06 41.02 40.74 0.05

kb-mira 40.46 39.97 0.05 40.92 40.64 0.12 41.46 40.75 0.08

lb-mira 40.44 39.98 0.06 40.94 40.65 0.06 41.59 40.78 0.09

pro 40.11 40.05 0.05 40.16 40.07 0.08 40.55 40.21 0.24

mr 40.24 39.88 0.05 40.70 40.57 0.14 41.18 40.60 0.08

svm 40.05 40.20 0.03 40.60 40.56 0.08 41.32 40.52 0.07

Table 5: English to French Translation (En-Fr)

Small Medium Big

Tune Test SD Tune Test SD Tune Test SD

kb-mert 40.47 39.72 0.06 40.70 40.02 0.11 n/a n/a n/a

lb-mert 40.45 39.76 0.08 40.90 40.13 0.10 n/a n/a n/a

mira 40.36 39.83 0.03 40.78 40.44 0.02 40.89 40.45 0.05

kb-mira 40.44 39.83 0.02 40.94 40.35 0.06 41.48 40.52 0.06

lb-mira 40.45 39.83 0.02 41.05 40.45 0.04 41.65 40.59 0.07

pro 40.17 39.57 0.15 40.30 40.01 0.04 40.75 40.22 0.17

mr 40.31 39.65 0.04 40.94 40.30 0.13 41.45 40.47 0.10

svm 39.99 39.55 0.03 40.40 39.96 0.05 41.00 40.21 0.03

Table 6: Chinese to English Translation (Zh-En)

Small Medium Big

Tune Test SD Tune Test SD Tune Test SD

kb-mert 23.97 29.65 0.06 25.74 31.58 0.42 n/a n/a n/a

lb-mert 24.18 29.48 0.15 26.42 32.39 0.22 n/a n/a n/a

mira 23.98 29.54 0.01 26.23 32.58 0.08 25.99 32.52 0.08

kb-mira 24.10 29.51 0.06 26.28 32.50 0.12 26.18 32.61 0.14

lb-mira 24.13 29.59 0.05 26.43 32.77 0.06 26.40 32.82 0.18

pro 23.25 28.74 0.24 25.80 32.42 0.20 26.49 32.18 0.40

mr 23.87 29.55 0.09 26.26 32.52 0.12 26.42 32.79 0.15

svm 23.59 28.91 0.05 26.26 32.70 0.05 27.23 33.04 0.12

40

41

42

43

44

45

lb-mira

svm

mr

40

40.2

40.4

40.6

40.8

lb-mira

svm

mr

Tune Test

Figure 1: French-English test of regularization with an over-fitting feature set. lb-mira varies C ={1, 1e-1, 1e-2, 1e-3}, its default

C is 1e-2; svm varies λ ={1e2, 1e3, 1e4, 1e5}, its default λ is 1e3; mr varies λ ={5, 5e1, 5e2, 5e3}, its default λ is 5e1.

setting, which can be mitigated through the use of

Lattice MERT.

When examining score differentials, recall that

the reported scores average over multiple test sets

and sub-sampled tuning runs. Using Small features,

all of the tested methods are mostly indistinguish-

able, but as we move to Medium and Big, Batch

Lattice MIRA emerges as our method of choice. It

is the top scoring system in all Medium settings,

and in two of three Big settings (in Big Zh-En, the

SVM comes first, with batch lattice MIRA placing

second). However, all of the MIRA variants per-

form similarly, though our implementation of on-

line MIRA is an order of magnitude slower, mostly

due to its small number of shards. It is interest-

ing that our batch lattice variant consistently outper-

forms online MIRA. We attribute this to our paral-

lelization strategy, Chiang et al.’s (2008) more com-

plex solution may perform better.

There may be settings where an explicit regular-

ization parameter is desirable, thus we also make a

recommendation among the direct optimizers (PRO,

MR and SVM). Though these systems all tend to

show a fair amount of variance across language and

feature sets (likely due to their use sentence-level

BLEU), MR performs the most consistently, and is

always within 0.2 of batch lattice MIRA.

The SVM’s performance on Big Zh-En is an in-

triguing outlier in our results. Note that it not only

performs best on the test set, but also achieves the

best tuning score by a large margin. We suspect

we have simply found a setting where interpolated

BLEU and our choice of λ work particularly well.

We intend to investigate this case to see if this level

of success can be replicated consistently, perhaps

through improved sentence BLEU approximation or

improved oracle selection.

5.1 Impact of Regularization

One main difference between MIRA and the direct

optimizers is the availability of an explicit regular-

ization term λ. To measure the impact of this param-

eter, we designed a feature set explicitly for over-

fitting. This set uses our Big Fr-En features, with the

count bin template modified to distinguish each joint

count observed in the tuning set. These new fea-

tures, which expand the set to 20k+ features, should

generalize poorly.

We tested MR and SVM on our Fr-En data us-

ing this feature set, varying their respective regular-

ization parameters by factors of 10. We compared

this to Batch Lattice MIRA’s step-size cap C, which

controls its regularization (Martins et al., 2010). The

results are shown in Figure 1. Looking at the tuning

scores, one can see that λ affords much greater con-

trol over tuning performance than MIRA’s C. Look-

ing at test scores, MIRA’s narrow band of regular-

ization appears to be just about right; however, there

is no reason to expect this to always be the case.

6 Conclusion

We have presented three new, large-margin tuning

methods for SMT that can handle thousands of fea-

tures. Batch lattice and k-best MIRA carry out their

online training within approximated search spaces,

reducing costs in terms of both implementation and

training time. The Structured SVM optimizes a sum

of hinge losses directly, exposing an explicit reg-

ularization term. We have organized the literature

on tuning, and carried out an extensive comparison

of linear-loss SMT tuners. Our experiments show

Batch Lattice MIRA to be the most consistent of the

tested methods. In the future, we intend to inves-

tigate improved sentence-BLEU approximations to

help narrow the gap between MIRA and the direct

optimizers.

Acknowledgements

Thanks to Mark Hopkins, Zhifei Li and Jonathan

May for their advice while implementing the meth-

ods in this review, and to Kevin Gimpel, Roland

Kuhn and the anonymous reviewers for their valu-

able comments on an earlier draft.

References

Abhishek Arun, Barry Haddow, and Philipp Koehn.

2010. A unified approach to minimum risk training

and decoding. In Proceedings of the Joint Workshop

on Statistical Machine Translation and MetricsMATR,

pages 365–374.

Leon Bottou. 2010. Large-scale machine learning with

stochastic gradient descent. In International Confer-

ence on Computational Statistics, pages 177–187.

David Chiang, Yuval Marton, and Philip Resnik. 2008.

Online large-margin training of syntactic and struc-

tural translation features. In EMNLP, pages 224–233.

David Chiang, Kevin Knight, and Wei Wang. 2009.

11,001 new features for statistical machine translation.

In HLT-NAACL, pages 218–226.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.

Smith. 2011. Better hypothesis testing for statistical

machine translation: Controlling for optimizer insta-

bility. In ACL, pages 176–181.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-

Shwartz, and Yoram Singer. 2006. Online passive-

aggressive algorithms. Journal of Machine Learning

Research.

Kevin Gimpel and Noah A. Smith. 2012. Structured

ramp loss minimization for machine translation. In

HLT-NAACL, Montreal, Canada, June.

Eva Hasler, Barry Haddow, and Philipp Koehn. 2011.

Margin infused relaxed algorithm for moses. The

Prague Bulletin of Mathematical Linguistics, 96:69–

78.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-

ing. In EMNLP, pages 1352–1362.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya

Keerthi, and S. Sundararajan. 2008. A dual coordinate

descent method for large-scale linear svm. In ICML.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.

Statistical phrase-based translation. In HLT-NAACL,

pages 127–133.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris

Callison-Burch, Marcello Federico, Nicola Bertoldi,

Brooke Cowan, Wade Shen, Christine Moran, Richard

Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-

stantin, and Evan Herbst. 2007. Moses: Open source

toolkit for statistical machine translation. In ACL,

pages 177–180, Prague, Czech Republic, June.

Zhifei Li and Jason Eisner. 2009. First- and second-order

expectation semirings with applications to minimum-

risk training on translation forests. In EMNLP, pages

40–51.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and

Ben Taskar. 2006. An end-to-end discriminative

approach to machine translation. In COLING-ACL,

pages 761–768.

Chin-Yew Lin and Franz Josef Och. 2004. Orange: a

method for evaluating automatic evaluation metrics for

machine translation. In COLING, pages 501–507.

Wolfgang Machery, Franz Josef Och, Ignacio Thayer, and

Jakob Uszkoreit. 2008. Lattice-based minimum er-

ror rate training for statistical machine translation. In

EMNLP, pages 725–734.

André F. T. Martins, Kevin Gimpel, Noah A. Smith,

Eric P. Xing, Pedro M. Q. Aguiar, and Mário A. T.

Figueiredo. 2010. Learning structured classifiers with

dual coordinate descent. Technical Report CMU-ML-

10-109, Carnegie Mellon University.

Ryan McDonald, Keith Hall, and Gideon Mann. 2010.

Distributed training strategies for the structured per-

ceptron. In ACL, pages 456–464.

Franz Joseph Och and Hermann Ney. 2002. Discrimi-

native training and maximum entropy models for sta-

tistical machine translation. In ACL, pages 295–302,

Philadelphia, PA, July.

Franz Joseph Och. 2003. Minimum error rate training

for statistical machine translation. In ACL, pages 160–

167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

Jing Zhu. 2002. BLEU: a method for automatic eval-

uation of machine translation. In ACL, pages 311–318.

Adam Pauls, John Denero, and Dan Klein. 2009. Con-

sensus training for consensus decoding in machine

translation. In EMNLP, pages 1418–1427.

Antti-Veikko Rosti, Bing Zhang, Spyros Matsoukas, and

Richard Schwartz. 2011. Expected bleu training for

graphs: BBN system description for WMT11 system

combination task. In Proceedings of the Sixth Work-

shop on Statistical Machine Translation, pages 159–

165.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.

Discriminative reranking for machine translation. In

HLT-NAACL, pages 177–184, Boston, Massachusetts,

May 2 - May 7.

David A. Smith and Jason Eisner. 2006. Minimum risk

annealing for training log-linear models. In COLING-

ACL, pages 787–794.

Ioannis Tsochantaridis, Thomas Hofman, Thorsten

Joachims, and Yasemin Altun. 2004. Support vec-

tor machine learning for interdependent and structured

output spaces. In ICML, pages 823–830.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki

Isozaki. 2007. Online large-margin training for statis-

tical machine translation. In EMNLP-CoNLL, pages

764–773.

Joern Wuebker, Arne Mauser, and Hermann Ney. 2010.

Training phrase translation models with leaving-one-

out. In ACL.

Chun-Nam John Yu and Thorsten Joachims. 2009.

Learning structural SVMs with latent variables. In

ICML.

Richard Zens and Hermann Ney. 2004. Improvements in

phrase-based statistical machine translation. In HLT-

NAACL, pages 257–264, Boston, USA, May.

Richard Zens, Sǎsa Hasan, and Hermann Ney. 2007. A

systematic comparison of training criteria for statisti-

cal machine translation. In EMNLP, pages 524–532.

