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Production of functionalized
polyhydroxyalkanoates by genetically modified
Methylobacterium extorquens strains
Philipp Höfer1,2,4, Young J Choi1, Michael J Osborne3, Carlos B Miguez1, Patrick Vermette2, Denis Groleau1*

Abstract

Background: Methylotrophic (methanol-utilizing) bacteria offer great potential as cell factories in the production of
numerous products from biomass-derived methanol. Bio-methanol is essentially a non-food substrate, an
advantage over sugar-utilizing cell factories. Low-value products as well as fine chemicals and advanced materials
are envisageable from methanol. For example, several methylotrophic bacteria, including Methylobacterium

extorquens, can produce large quantities of the biodegradable polyester polyhydroxybutyric acid (PHB), the best
known polyhydroxyalkanoate (PHA). With the purpose of producing second-generation PHAs with increased value,
we have explored the feasibility of using M. extorquens for producing functionalized PHAs containing C-C double
bonds, thus, making them amenable to future chemical/biochemical modifications for high value applications.

Results: Our proprietary M. extorquens ATCC 55366 was found unable to yield functionalized PHAs when fed
methanol and selected unsaturated carboxylic acids as secondary substrates. However, cloning of either the phaC1

or the phaC2 gene from P. fluorescens GK13, using an inducible and regulated expression system based on cumate
as inducer (the cumate switch), yielded recombinant M. extorquens strains capable of incorporating modest
quantities of C-C double bonds into PHA, starting from either C6= and/or C8=. The two recombinant strains gave
poor results with C11=. The strain containing the phaC2 gene was better at using C8= and at incorporating C-C
double bonds into PHA. Solvent fractioning indicated that the produced polymers were PHA blends that
consequently originated from independent actions of the native and the recombinant PHA synthases.

Conclusions: This work constitutes an example of metabolic engineering applied to the construction of a
methanol-utilizing bacterium capable of producing functionalized PHAs containing C-C double bonds. In this
regard, the PhaC2 synthase appeared superior to the PhaC1 synthase at utilizing C8= as source of C-C double
bonds and at incorporating C-C double bonds into PHA from either C6= or C8=. The M. ex-phaC2 strain is,
therefore, a promising biocatalyst for generating advanced (functionalized) PHAs for future high value applications
in various fields.

Background
Polyhydroxyalkanoates with functional groups (functio-

nalized PHAs) have attracted increasing attention in

the last ten years or so [1-9]. It has been generally

recognized that important needs and markets exist for

various types of functionalized PHAs as advanced

materials in areas, such as tissue engineering [2,10,11],

biocomposites [12], various medical applications [5,13],

and polymers with tunable properties [6], only to

name a few.

Although many types of functionalized PHAs have

been described in the literature, generally speaking, the

quantities produced have been very modest and barely

sufficient to obtain a basic characterization of the phy-

sico-chemical properties of the new biomaterials [8].

Several reasons explain the situation and these include

high toxicity of many of the key substrates, low accumu-

lation of the desired PHAs and lack of commitment to
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developing more efficient, and productive fermentation

processes.

A commonly applied route for obtaining polyhydrox-

yalkanoates with desirable functionalities is to produce

PHAs with terminal double bonds followed by chemical

modification steps. Carbon double bonds are compara-

tively inert but can be easily transformed into reactive

functional groups under mild reaction conditions. Fol-

lowing this approach, polyhydroxyalkanoates with car-

boxyl, hydroxyl, epoxy and halogenic groups have been

produced ([14] and references therein). Pseudomonas

species have been most widely used for producing poly-

hydroxyalkanoates with double bonds in their side

chains since they generate functionalized PHAs at com-

parably high rates of productivity. The incorporation of

functional groups in PHAs by pseudomonads occurs by

oxidizing functionality-related substrates via the β-oxi-

dation pathway. The most commonly used substrate to

obtain unsaturated polymeric side chains has been 10-

undecenoic acid (C11=), likely owing to its superior

availability compared to other alkenoic acids. The β-oxi-

dation cycle is accompanied by a partial C2 reduction so

that unsaturated monomers resulting from C11= exhibit

a length of nine and, respectively, seven carbon atoms.

The production of purely unsaturated polyhydroxyalk-

anoates was reported [15]; however, since chemical

modification reactions do not require a double bond in

every side chain and saturated substrates are cheaper,

sodium alkanoate (C8) or nonanoate (C9) were often

co-fed [16-18]. Using continuous culture mode, it was

possible to produce structurally tailored poly(3-hydro-

xyalkanoate-co-3-hydroxyalkenoate)s with defined

monomeric compositions [19]. Most functionalized

PHAs that have been produced to date belong to the

family of medium-chain-length (MCL, C ≥ 6) polyhy-

droxyalkanoates, in which all monomers have six carbon

atoms or more. These PHAs are characterized by

rubber-like mechanical properties with low melting tem-

peratures (<100°C). The combination of medium-chain-

length with short-chain-length (SCL, C ≤ 5) monomers

to SCL/MCL-PHAs resulted in copolymers with

improved thermo-mechanical properties, however, with-

out functionalities [20-23].

In this study, we present data showing that some

newly developed recombinant Methylobacterium extor-

quens strains can deliver functionalized PHAs contain-

ing C-C double bonds when fed unsaturated fatty acids.

These PHAs comprised short-chainlength (SCL, C ≤ 5)

and medium-chain-length (MCL, 6 ≤ C ≤ 8) monomers

and belong to a novel class of PHAs that will likely gain

much attention due to their potential for high value

applications in various fields including tissue engineer-

ing. One reason for choosing a methylotrophic microor-

ganism for such purpose was that an important portion

of the production process would use methanol, a simple,

inexpensive, very abundant, and non-food substrate

[24-26]. Another reason was that the project would con-

tribute to establishing M. extorquens as a new cell fac-

tory, as strongly advocated in a recent review [27].

Materials and methods
Microorganisms

The proprietary, wildtype strain Methylobacterium

extorquens ATCC 55366 was used throughout this study

[24]. Fresh plates were prepared from vials stored at

-80°C. Pre-inocula or inocula were prepared from plates

stored at 4°C. The recombinant M. extorquens strains

were similarly stored except that medium contained tet-

racycline at 15 mg/L to maintain selective pressure.

Culture media

Two media were used, CHOI4 medium [25] or CHOI5

medium, depending on experiments. CHOI5 medium is

identical to CHOI4 medium except that it contained 33

wt% less ammonium chloride.

Inoculum preparation

Starting from cultures maintained on CHOI4 plates at

4°C, 250-300 mL-shake flasks containing 50 mL of

medium were inoculated and incubated at 30°C, 260

rpm, for approximately 48 h. The medium contained

0.2 vol% methanol as sole carbon source. Incubation

was extended to 72-96 h in the case of the recombi-

nant M. extorquens strains. The medium used to grow

the recombinant strains also contained tetracycline at

15 mg/L.

Cell cultivation for PHA production

Most experiments were conducted using 2 L-shake

flasks containing 500 mL of either CHOI4 medium or

CHOI5 medium. The media contained an initial con-

centration of 1 vol% methanol. Media used with the

recombinant strains contained tetracycline at 15 mg/L.

For induction of the recombinant phaC genes, cumate

(4-isopropylbenzoic acid) was added to a final concen-

tration of 20 mg/L. Whenever applicable, addition of

the secondary substrate (carboxylic acids) was usually

done after 48 or 72 h, or as specifically indicated in

the Results and Discussion section. 1 M KOH was

used for manual pH control.

Fermentation was performed in a 20 L-bioreactor

(Chemap, Switzerland) that was inoculated with 10 vol

% of a 72 h pre-culture grown in shake flasks. Upon

oxygen depletion, methanol (usually 1 vol%) was

manually added with a syringe. The co-substrate 7-

octenoic acid (C8=) was supplied by the same means.

Shortly prior to co-substrate addition, expression of

the PHA synthase gene phaC2 was induced by adding
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4-isopropylbenzoic acid to reach a final concentration

of 20 mg/L. Microbial growth was monitored by spec-

trophotometry at 600 nm.

Construction of the recombinant plasmids

To clone the two polyhydroxyalkanoic acid (PHA)

synthase genes phaC1 and phaC2 from Pseudomonas

fluorescens GK13, the genomic DNA of P. fluorescens

GK13 was isolated and subjected to PCR using, for

phaC1, the primers PhaC1FNhe (5’ -CGC TAG CAT

GAG CAA CAA GAA CAA TGA AGA CCT GCA

GCG C- 3’) (the NheI site is underlined), PhaC1RMFE

(5’ -GCA ATT GTC AAC GTT CGT GGA CAT AGG

TCC CTG G- 3’) (the MfeI site is underlined) and, for

phaC2, the primers PhaC2FNhe (5’ -CGC TAG CAT

GCG AGA GAA ACA GGT GTC GGG AGC CTT G-

3’) (the NheI site is underlined), PhaC2RMFE (5’ - GCA

ATT GTC AGC GCA CGT GCA CGT AGG TGC

CGG G- 3’) (the MfeI site is underlined), thus, yielding

1680-br and 1683-br PCR products, respectively. The

PCR products were digested with NheI and Mfel, and

cloned into pAll-gfp (Choi et al., unpublished) digested

with the same restriction enzymes to generate pAll-

phaC1 and pAll-phaC2, respectively (Figure 1).

Attempts to develop a phaC-minus M. extorquens strain

via gene knock-out

Attempts were made to engineer a phaC -minus mutant

of M. extorquens via gene knock-out of the native phaC

gene using the TargeTron™Gene Knockout system from

Sigma-Aldrich (Oakville, ON, Canada). A good number

of mutants were obtained and PCR detection of the

integrated intron in 9 randomly selected mutants

showed the presence of the insert in all of them and its

absence in the wildtype M. extorquens strain. However,

all the mutants grew very poorly on methanol and,

therefore, they could not be employed for further

genetic engineering work.

Electroporation of M. extorquens

Competent M. extorquens cells were prepared as pre-

viously described [28,29]. Competent cells were mixed

in an Eppendorf tube with 1.0 g of recombinant plasmid

DNA (pAll-phaC1 or pAll-phaC2 ) and the tubes placed

on ice for 20 min. The mixtures were transferred to an

ice-cold electroporation cuvette and treated in a Bio-

Rad electroporator (25 μF, 200 Ω, 5 ms, 2.5 kV/cm).

Immediately thereafter, 1 mL of CHOI medium [25]

was added to the cuvette. The cell suspension was trans-

ferred to a 15 mL tube and incubated at 30°C for 5 h,

then, 100 μL of culture was spread on selective plates

(CHOI agar with 35 μg of tetracycline per mL). The

plates were incubated at 30°C for 48 h until colonies

appeared. Typically, about 300-500 transformants per

plate were obtained.

SDS-polyacrylamide gel electrophoresis

Crude extracts of recombinant M. extorquens cultures

were prepared using a French press and protein concen-

tration was estimated by the method of Bradford [30]

using the Bio-Rad protein assay kit, with bovine serum

albumin as standard. The cell extract samples were

diluted in SDS-PAGE Loading Buffer and they were

loaded at 10 μg per well on a 4-12% NuPAGE Novex

gel (Invitrogen Corp. Carlsbad, CA, USA). Gels were

stained with Coomassie Brilliant Blue R-250.

Extraction, purification and solvent fractioning of PHAs

Culture samples were centrifuged and the resulting pel-

lets were washed in distilled water, methanol and, again,

in distilled water followed by re-centrifugation after

each washing step. Finally, the biomass was resuspended

in water and freeze-dried (LyoStar, Model MNL-055-A,

FTS Systems, Stone Ridge, NY). Lyophilized biomass

was leached in approximately 20× volume (v/w) of

chloroform overnight in a rotary shaker at 30°C. The

soaked cells were then filtered through Whatman #4

paper (Maidstone, UK) and the filtrate purged with

nitrogen. Resulting polymer gels were re-dissolved in

chloroform and subjected to precipitation overnight in

10× volume (v/v) methanol at 4°C. Finally, precipitates

were filtered through one sheet of Fisher Scientific P5

paper (Hampton, NH) and air-dried.

Freeze-dried biomass resulting from fermentation was

leached in 20× volume (v/w) of chloroform or acetone

for at least 6 h in a Branson model 5200 sonicator

pAll PhaC1 (9,049 bp) 

or 

pAll PhaC2 (9,052 bp)

TetR

TetA

TrfA

cymR
PhaC1 

or

PhaC2

OriV
TraJ'

Pkm

PmxaF

OriT
Operator

Mfe I

Nhe I

Figure 1 Expression vector. Genetic construction of recombinant
plasmids containing the P. fluorescens GK13 polyhydroxyalkanoate
(PHA) synthase genes phaC1 and phaC2, respectively.
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(Danbury, CT) at 60°C. The soaked cells were then

vacuum-filtered through Whatman #4 paper (Maidstone,

UK) and the filtrate boiled down in a Rotavapor (Büchi,

Switzerland). Resulting polymer gels were re-dissolved in

chloroform and subjected to precipitation overnight in

10× volume (v/v) methanol at 4°C. Finally, precipitates

were vacuum-filtered through two sheets of Fisher Scien-

tific P5 paper (Hampton, NH) and air-dried. Chloroform-

extracted PHAs were fractioned by hot acetone in a

Soxhlet apparatus as previously described [31].

Analysis of the PHAs

GC-FID

GC-FID analysis was carried out as follows. Biomass

samples were centrifuged in 50 mL conical Sarstedt

tubes (Nümbrecht, Germany) and the pellets lyophilized.

Methanolysis was used for analyzing the intracellular

PHA content. Briefly, the dry biomass was treated with

acidified methanol in the presence of benzoic acid as

internal standard at 100°C for 3 h to convert 3-hydro-

xyalkanoate monomers to the corresponding methyl

esters. The methyl esters were extracted in chloroform

for subsequent analysis in a gas chromatographic system

(Agilent 6890 GC-FID; Agilent Technologies, Wilming-

ton, CA). PHBV from Sigma-Aldrich (Oakville, ON,

Canada) and PHBHx from Procter & Gamble (Cincin-

nati, OH) were used as PHA standards. Purified biopo-

lyesters were analyzed by the same method.

NMR

Equipment and general conditions used Solution

NMR spectra were acquired at 25°C on samples dis-

solved in deuterated chloroform on a Varian Inova 600

MHz spectrometer equipped with a HCN coldprobe and

Z gradient. 1H 1D spectra were acquired with a sweep

width of 12000 Hz and 128 transients. Assignment of
1H and 13C resonances were achieved via 1H-13C corre-

lated spectra detecting naturally abundant 13C. The
1H-13C Heteronuclear Single Quantun Coherence

(HSQC) [32] and multiplicity edited HSQC spectra were

acquired with 2048(t2) × 200(t1) complex points and 1H

and 13C sweep widths of 10000 and 27145 Hz, respec-

tively. Broadband 13C decoupling was achieved during

acquisition using WURST2 decoupling over 140 ppm.

Typically, 128 scans were acquired for each t1 value.

HMBC (Heteronuclear Multiple Bond Correlation, [33])

and H2BC (Heteronuclear 2-Bond Correlation, [34])

experiments were acquired with 200 complex (H2BC)

and real (HMBC) points in t1 with 1H and 13C sweep

widths of 10000 and 36192 Hz, respectively and 256

transients. All 2D spectra were processed with nmrPipe

[35] and analyzed using NMRView [36]. PPM values are

quoted relative to TMS. A detailed description for an

example of applied NMR analysis is provided as

Appendix.

Chemicals

Pentanoic acid (C5) was obtained from A & C American

Chemicals Ltd. (Saint-Laurent, QC, Canada), 99% purity;

5-hexenoic acid (C6=) was obtained from either Sigma-

Aldrich or TCI America (Portland, OR), both at 98%

purity; 7-octenoic acid (C8=) was from Richman Chemi-

cal Inc. (Lower Gwynedd, PA), 98% purity. The follow-

ing carboxylic acids were all from Sigma-Aldrich:

10-undecenoic acid (C11=), 98% purity; 4-pentenoic

acid (C5=), 97% purity; trans-2-pentenoic acid (t - C5=),

98% purity; hexanoic acid (C6), 99% purity.

Results and Discussion
Production of unsaturated PHAs using the wild-type

strain

The potential of the pink facultative methylotroph

M. extorquens ATCC 55366 was tested to utilize various

fatty acids including fatty acids with C-C double bonds.

The assays were performed in shake flasks using med-

ium CHOI4 or medium CHOI5. Nearly 100 shake flask

assays were conducted. The M. extorquens cultures were

grown first on methanol as sole carbon and energy

source and the fatty acid of interest was added at some

point to the growing cultures, generally at a final con-

centration in the 0.1-0.3% range. A summary of the sub-

strates tested and of the results obtained is presented in

Table 1. Only the homopolymer PHB or the copolymer

PHBV was detected in the cultures as no other peaks

apart from 3-hydroxybutyrate (3HB) and 3-hydroxypen-

tanoate (3HP = 3HV) were seen in GC chromatograms.

As can be seen, feeding of C5-fatty acids led to accumu-

lation of the copolymer PHBV solely and, unfortunately,

no trace of C-C double bounds could be detected in the

PHAs produced upon feeding C5-fatty acids containing

a C-C double bond. Control of pH is a key factor when

cultures are fed free carboxylic acids. In the present

study, efforts were made to minimize pH effects by reg-

ular, manual addition of 1 M KOH in order to maintain

pH within a reasonable range favorable for growth and

substrate utilization. Given the extent of our screening

efforts, it may be reasonably concluded that the wildtype

M. extorquens ATCC 55366 strain was unable to accu-

mulate functionalized PHAs containing C-C double

bonds. As a consequence, the next step consisted in

developing M. extorquens strains harboring heterologous

PHA synthase genes allowing for biosynthesis of the

wanted functionalized PHAs.

Metabolic engineering of M. extorquens for modifying its

PHA-synthesizing machinery

The inability of the wildtype M. extorquens strain to

yield the desired PHAs was assumed to be due to a too

narrow substrate specificity of the wildtype PHA

synthase enzyme. As done by several research groups
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[37-44], we then decided to engineer M. extorquens

strains harboring different PHA synthase (phaC) genes

known or assumed to code for PHA synthases of

broader substrate specificity. After careful review of the

literature, the phaC1 and phaC2 genes present in the

P. fluorescens GK13 strain were selected because the

PHA synthesis machinery of this bacterium is able to

also produce longer PHA chains [23,45], an indication

of broader substrate specificity. In a first step, the

phaC1 and phaC2 genes were successfully isolated using

PCR and the isolated genes were identical to the

reported sequences [45]. In a second step, the two phaC

genes were cloned into the pAll plasmid (Figure 1) and

inducible expression was driven by the cloned methanol

dehydrogenase (PmxaF) of M. extorquens under control

of regulatory elements of P. putida F1. This new tech-

nology for inducible and regulated gene expression was

developed by our group for M. extorquens [28,29]. It

may be described as follows: (A) In the absence of the

chemical inducer (p-isopropylbenzoate = cumate), the

repressor protein cymR is bound to the operator site

upstream of the gene of interest and transcription is

blocked; (B) addition of cumate as inducer leads to for-

mation of the cymR-cumate complex, followed by

detachment of cymR from the operator and activation

of the transcription of the downstream gene.

The two recombinant M. extorquens strains, M. ex-

phaC1 and M. ex-phaC2, as well as the M. extorquens

wildtype strain were grown in CHOI medium containing

methanol, plus tetracycline in the case of the two

recombinant strains. As shown in Figure 2, addition of

cumate, the inducer, led to expression of both the

phaC1 gene (lane 4) and of the phaC2 gene (lane 6).

Both protein bands indicated a molecular mass of

approximately 62 kDa. Interestingly, a strong band, with

an apparent molecular mass of 40 kDA, was present in

the samples for noninduced M. ex-phaC1 cells (lane 3)

or M. ex-phaC2 cells (lane 5). The same band was quasi

inexistent in induced cells of the same recombinant

strains. This additional band is certainly not related to

the insert (phaC gene) since it has been observed with

other recombinant M. extorquens strains harboring dif-

ferent and various inserts. Ideally, the two recombinant

phaC genes should have been introduced into a phaC

-minus mutant of M. extorquens. Unfortunately,

although we were able to obtain such mutants, the

mutants grew very poorly in the culture media contain-

ing methanol as sole carbon source. A similar observa-

tion on the growth of strain AMI of M. extorquens on

C1 and C2 compounds was also reported by Korotkova

Table 1 Utilization of various fatty acids, unsaturated

or saturated, for growth and PHA accumulation by

M. extorquens ATCC 55366

Co-substrate Monomeric composition of the produced PHA1

C4:0
[mol%]

C5:0
[mol%]

C5 30.4 69.6

C5=2 100 -

C5= > 99 tr3

t-C5= > 99 tr

t-C5= 87.9 12.1

C6 > 99 tr

C6 > 99 tr

C6 100 tr

C6=4 100 -

C8= 98.7 1.2

C8=5 100 -

C11=6 > 99 tr

C11=7 100 -

1CX:Y = double bond at position Y of monomeric chain length X;
2Three (3) similar samples were analyzed;
3tr = detected in trace quantity;
4Six (6) similar samples were analyzed;
5Three (3) similar samples were analyzed;
6Eight (8) similar samples were analyzed;
7Three (3) similar samples were analyzed.

kDa

97

62

49

38

28

17

Figure 2 SDS-PAGE (4-12%) of M. extorquens cell-free extracts

from shake flask cultures. Lane M, standard marker mixture; lane
1, wildtype M. extorquens before induction; lane 2, wildtype M.

extorquens after induction with cumate; lane 3, M. ex-phaC1 before
induction; lane 4, M. ex-phaC1 after induction; lane 5, M. ex-phaC2

before induction; lane 6, M. ex-phaC2 after induction. The arrows
indicate the putative presence of recombinant PhaC1 or PhaC2
enzyme, which showed an approximate molecular mass of 62 kDa.
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and Lidstrom [46]. Consequently, because of the pre-

sence of the native PHA synthase, PHA blends com-

prised of PHB and functionalized PHAs could be

expected.

Growth of the two recombinant M. extorquens strains

As illustrated in Figure 3, the two recombinant strains

grew well on methanol but maximal growth of the two

strains was inferior to that of the wildtype strain. At 70-

72 h, addition of a mixture of methanol + 10-undece-

noic acid (C11=) resulted in further growth for the

three strains but growth, as measured by optical density,

rapidly reached a plateau in all three cases. The M. ex-

phaC2 strain appeared to grow better than the M. ex-

phaC1 strain under the conditions used. Phase contrast

microscopy of the cultures showed the presence of gran-

ules, tentatively identified as PHB (or PHA) granules, in

cells from the three M. extorquens strains and the gran-

ules increased in size over time. The appearance of the

granules occurred between 68 h and 74 h and it coin-

cided with the addition of the methanol + C11= mixture

(Figure 3, arrow).

Many shake flask studies were conducted using var-

ious feeding strategies to verify the growth behavior in

the presence of alkenoic acids. Cultures were started

using methanol as main substrate and, at desired times,

the selected unsaturated carboxylic acid was added to

favor accumulation of a functionalized PHA. To mini-

mize pH effects, attempts were made to maintain pH by

manual addition of 1 M KOH. The growth results for

strain M. ex-phaC1 are shown in Figure 4 while those

for strain M. exphaC2 are shown in Figure 5. Pulse

addition of the carboxylic acid is indicated by arrows.

The two M. extorquens strains (Figure 4A and Figure

5A) continued to grow, although more slowly, upon

addition of 5-hexenoic acid (C6=) and “respectable” bio-

mass levels (OD600nm) were obtained, between 8 and

11, with all flasks except for one case. The pH profile

varied with each flask but pH values were always

between 6.2 and 7.7. The growth results on 7-octenoic

acid (C8=) are illustrated in Figure 4B (M. ex-phaC1)

0

2

4

6

8

10

12

14

0 50 100 150
Time [h]

O
D

 [
6
0
0
 n

m
]

Addition of methanol and 

10-undecenoic acid.
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unsaturated carboxylic acids. Cultures were grown first on
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pulse-wise (indicated by arrows). Partial control of pH was done
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and in Figure 5B (M. ex-phaC2). The results were simi-

lar to those obtained with 5-hexenoic acid (C6=) except

that the OD600nm profiles varied significantly more

between flasks. As with 5-hexenoic acid, the pH profile

varied with each flask but pH values were always

between 6.2 and 7.6. With 10-undecenoic acid (C11=),

however, growth appeared even more “erratic” as there

was significant variation in the OD600nm profile

between flasks (Figure 4C and Figure 5C for strains M.

exphaC1 and M. ex-phaC2, respectively). Maximal

OD600nm values varied between only 4 and almost 10

(Figure 4C). Overall, most of the biomass was obtained

from methanol, i.e., before addition of the respective

carboxylic acid, due to the well-known toxicity of such

acids. Probably due to the lack of acceptable pH control,

significant differences in optical density profiles were

observed between shake flasks, especially when C11=

was fed (Figures 4C and 5C). Interestingly, in several

cases, growth continued after addition of the “toxic” car-

boxylic acid. Several examples are depicted in Figures 4

and 5. The optical density values obtained are very com-

parable to values found in the recent literature for simi-

lar work [15,17,37-39,47]. In this study, as in many

others, emphasis was on strain development, not on

process optimization. With C11= as co-substrate, man-

ual maintenance of the pH was also more problematic,

pH values lower than 6 were recorded with both strains,

reaching even near 4.5 at one point with strain M. ex-

phaC2.

Determination of the monomeric composition of

polyhydroxyalkanoates

Selected PHA samples were chosen as representatives

and submitted to 1D and 2D NMR analysis for obtain-

ing proof that C-C double bonds were present and that

at least some of the C-C double bonds were located in

the PHA side chains. Analysis of the NMR results con-

firmed both the presence of unsaturated PHA compo-

nents in the samples and the presence of C-C double

bonds in the side chains.

Consequently, the representative PHA samples,

including a PHA sample produced by the wildtype M.

extorquens strain, were submitted to 1D and 2D NMR

analyses (see Materials and Methods) to further identify

which unsaturated components might be present. The

results are summarized in Table 2. The two samples

derived from C11= yielded poor quality spectra. As

representative example, the results for a PHA that was

produced by M. ex-phaC2 on methanol and 7-octenoic

acid will be presented in more detail:

1. The 1H 1D spectrum indicated that 3HB was the

major component comprising over 96% of the total

signal (spectrum not shown). Using natural abun-

dance 2D 1H-13C correlation spectra (Figure 6), it

was possible to identify at least 5 minor components

present which were assigned to 3HP, 3HHx, 3HO,

3HHx= and 3HO=. Chemical shift assignments for

these components are shown in Table 3. Finally, at

very low contour levels, we were able to detect and

assign resonances at the terminus of polymer (these

are too weak to detect in Figure 6 but assignments

are listed in Table 3);

2. A notable feature of the 2D HSQC spectrum was

the presence of high frequency 1H (5.0 ppm and 5.7
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Figure 5 Growth of the M. ex-phaC2 strain on selected

unsaturated carboxylic acids. Cultures were grown first on
methanol, then, the selected unsaturated carboxylic acid was added
pulse-wise (indicated by arrows). Partial control of pH was done
using 1 M KOH to prevent intolerable extremes in pH. Closed
symbols: OD at 600 nm, open symbols: pH. (A) 5-hexenoic acid
(C6=); (B) 7-octenoic acid (C8=); (C) 10-undecenoic acid (C11=).

Höfer et al. Microbial Cell Factories 2010, 9:70

http://www.microbialcellfactories.com/content/9/1/70

Page 7 of 13



ppm) and 13C (115 ppm and 135 ppm) resonances

indicative of double bonds. These were assigned to

the 3HHx= and 3HO= monomers. Further analysis

of the NMR observations indicated that the double

bond for these two monomers must be at the end of

the alkyl chain;

3. Using the C3 resonances in the HSQC, we

obtained a ratio of 3HB:3HO= (1:0.06), 3HB:3HHx=

(1:0.05), 3HB:3HP (1:0.02), 3HB:3HHx (1:0.008, com-

paring methyls), 3HB:3HO (1:0.008, comparing

methyls).

Table 2 1D and 2D NMR analysis of selected PHA samples1

Co-substrate 1D Analysis 2D Analysis

C6=2 3HB as major peak (> 90%), 3HHx=3 Not performed.

C8=4 3HB as major peak (> 96%) At least 5 minor components: 3HP, 3HHx, 3HHx=, 3HO and 3HO=.

C11=5 Poor quality spectra.

- 3HB, 3HP (very minor) No detectable unsaturated bonds

1These samples were chosen as representatives due to availability of enough material and equipment;
2Three (3) similar samples were analyzed;
3Since C6= was the co-substrate, it was concluded that the detected double bonds belonged to 3HHx=;
4Three (3) similar samples were analyzed;
5Two (2) similar samples were analyzed.

Figure 6 Overlay of the 2D spectra for a PHA sample derived from methanol and 7-octenoic acid metabolism. The 2D 1H-13C HSQC,
HMBC and H2BC spectra are shown as black, red and blue contour plots, respectively. Single and multiple bond correlations for HP (3HP), HH
(3HHx), HH= (3HHx=), HO (3HO) and HO= (3HO=) are indicated according to the following nomenclature. Multiple bond (HMBC) and 2-bond
(H2BC) correlation cross peaks are identified by two numbers: the first corresponding to the 1H atom and the second relating to the 13C atom, e.
g., HH6,4 describes the cross peak between H-6 and C-4 of 3-hydroxyhexanoate. Single correlation (HSQC) cross peaks are denoted by a single
number (e.g., HP5, corresponds to the correlation of H-5 and C-5 for 3-hydroxypentanoate). Detailed analysis are provided as Appendix.
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Unfortunately, 2D NMR could not be performed with

every sample due to cost and equipment availability.

However for GC-FID analysis, it was now obvious that

3-hydroxyalkanoate monomers derived from 5-hexenoic

acid would result in peaks for 3HHx= and 3HHx, while

peaks for 3HP, 3HHx=, 3HHx, 3HO= and 3HO could

be expected from metabolism with 7-octenoic acid.

Consequently, GC-FID was routinely used thereafter to

determine the composition of the PHAs produced and

to look for the presence of C-C double bonds. Peaks for

3HB, 3HP and 3HHx were identified from correspond-

ing methanolized PHA standards (see Materials and

Methods). Since methyl esters resulting from 3-hydro-

xyalkenoates have a lower molecular weight compared

to their saturated analogs, the peak that was recorded

shortly prior to 3HHx was identified as 3HHx=. In addi-

tion to thereby related peaks for 3HB, 3HP, 3HHx= and

3HHx, GC chromatograms of PHA samples derived

from methanol and 7-octenoic acid metabolism showed

two more peaks that eluted at later time. From 2D

NMR analysis it was concluded that these remaining

peaks had to correspond to 3HO= and, eluted

immediately thereafter, to 3HO. Peak areas were used to

calculate the proportional monomeric compositions.

Potential of the two recombinant strains for producing

functionalized PHAs

From the start, our intention was to develop M. extor-

quens strains capable of accumulating functionalized

PHAs harboring C-C double bonds within the side

chains. As done by others, the production of such PHAs

requires feeding an unsaturated carboxylic acid in the

hope that a portion of the acid will be incorporated into

the PHA molecule by the recombinant PhaC1 or PhaC2

enzyme, thus, leading to the potential presence of C-C

double bonds in the PHA side chains.

Numerous shake flask studies were conducted using var-

ious unsaturated carboxylic acids, various feeding regimes

and process conditions in the hope of identifying initial

conditions that could lead to maximization of functiona-

lized PHA production. Resulting PHA samples were gen-

erated and analyzed according to NMR and/or GC-FID

analysis. As Table 4 indicates, the M. ex-phaC1 strain was

able to produce PHA containing a small percentage, 0.75%

+/- 0.57%, of C6:5 bond-containing material starting from

C6=. The same strain, however, was very poor at incorpor-

ating C-C double bonds when either C8= or C11= was fed;

only trace amounts of C-C double bonds were detected.

Interestingly, the M. ex-phaC1 strain was able to incorpo-

rate significant quantities of a C5 unit starting from C8=.

In this regard, C8= appeared much superior as chemical

donor. Due to the high toxicity of the carboxylic acids

used, cell densities were always low, generally between 1

and 2 g/L, on a dry weight basis.

As illustrated in Table 4, the M. ex-phaC2 strain

appeared better than the M. ex-phaC1 strain at incor-

porating C6:5 bonds into PHA (C-C double bond at

position 5 of C6 monomer chain length). An average of

Table 3 Summary of the 13C-NMR shift values for a PHA

sample derived from methanol and 7-octenoic acid

metabolism

Carbon 3HB 3HP 3HHx 3HHx= 3HO= C-terminus

1 169.2 169.3 169.21 169.21 169.21 -

2 40.7 38.9 39.3 39.5-40.81 39.5-40.81 43.2 (CH2)

3 67.7 71.9 70.7 70.06 70.8 64.5 (CH)

4 19.7 26.9 35.9 38.2 33.3 22.5 (CH3)

5 - 9.4 18.4 132.7 24.2 -

6 - - 13.8 118.9 33.2 -

7 - - - - 138.3 -

8 - - - - 115.2 -

1Actual value is uncertain due to overlap from major component (3HB).

Table 4 Chemical composition of the PHAs extracted from recombinant M. extorquens cells grown on methanol +

various unsaturated carboxylic acids1

Monomeric composition of the produced PHA2

Strain Substrate
[mol/L]

DCW
[g/L]

C4:0
[mol%]

C5:0
[mol%]

C6:5
[mol%]

C6:0
[mol%]

C8:7
[mol%]

C8:0
[mol%]

phaC1 C6 = 3 16.82 1.59 +/- 0.23 98.11 +/- 0.89 - 0.75 +/- 0.57 1.14 +/- 0.34 - -

C8 = 4 6.61 1.65 +/- 0.31 97.35 +/- 1.69 2.65 +/- 1.68 tr5 tr tr tr

C11 = 6 3.43 1.11 +/- 0.28 100 - - - - -

phaC2 C6 = 3 16.82 1.64 +/- 0.46 91.24 +/- 5.23 - 4.76 +/- 2.94 4.00 +/- 2.30 - -

C8 = 4 6.61 1.65 +/- 0.31 84.69 +/- 4.87 5.28 +/- 1.13 2.66 +/- 0.98 2.36 +/- 0.98 5.01 +/- 1.82 tr

C11 = 6 3.43 0.91 +/- 0.07 100 - - - - -

1The PHA samples presented here were obtained from experiments shown in Figures 4 and 5;
2CX:Y = double bond at position Y of monomeric chain length X;
3Average +/- standard deviation, n = 3;
4Average +/- standard deviation, n = 3;
5tr = detected in trace quantity;
6Average +/- standard deviation, n = 2.
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4.76% +/- 2.94% of the PHA was made up of C6:5 bond-

containing units upon feeding of C6=. The same strain

appeared also better at incorporating a C6 monomer

from either C6= or C8=. When C8= was fed, four of the

five samples showed the obvious presence of C8:7 bond-

containing units. The concentrations of C6:5 material

and those of a C6 monomer were also significantly

higher. A C5 monomer was detected in the samples

derived from C6= but it was much more prevalent

when C8= was fed, an observation valid for both recom-

binant strains. Feeding of C11=, as with the first strain,

did not lead to production of PHA containing significant

percentages of C-C double bonds. Cell densities, again,

were quite low. Table 4 indicates that PHA containing

small quantities of C6:5 material could be obtained with

both strains after feeding C6= but only the M. ex-

phaC2 strain could generate both C6:5 material and

C8:7 material when fed C8=.

The results listed in Table 4 show that PHA material

containing modest concentrations of unsaturated C-C

bonds could be obtained with the two strains. Three

strong conclusions may be drawn from the results. (1)

Strain M. ex-phaC2 was better at producing PHA mate-

rial containing C-C double bonds; (2) the same strain

was better at producing PHA material containing C-C

bonds from C8=; (3) both strains gave very poor results

with C11=. Several groups have observed or hypothe-

sized that PhaC2 synthases have a lower substrate speci-

ficity than PhaC1 synthases [37,38,40]. Other groups

have suggested that PhaC1 and PhaC2 synthases have

different functions [43,44,48]. Contrary to observations

made with other bacteria, our M. extorquens strains

gave poor results with C11= and, therefore, only C6= or

C8= proved to be adequate secondary substrates.

Initial bioreactor studies: validation of shake flask results

Growth of recombinant M. ex-phaC2 and production of

PHAs in shake flasks were successfully validated in a 20

L-bioreactor (14 L as working volume). A total of 11

mL of 7-octenoic acid was added throughout the fer-

mentation in four individual additions starting at 29 h

of running time. After 96 h the final dry cell weight

(DCW) reached 5 g/L with a 37% PHA content on a dry

cell weight basis (data not shown). Polymers were

extracted from biomass with chloroform and subjected

to routine structural analysis. The monomeric composi-

tion reflected the results from shake flask experiments

when 7-octenoic acid was fed (Tables 4 and 5). As dis-

cussed previously, PHAs produced by recombinant M.

extorquens strains with two different PHA synthases

were most likely blends of homo- and copolymers. To

test for this hypothesis, extracted polymers were soaked

in acetone to possibly separate SCL-PHAs from MCL-

3HA-containing PHAs. As opposed to MCL-PHAs, poly

(3-hydroxybutyrate) (PHB) is only soluble in acetone

when it is amorphous [49,50]. PHB separated from bio-

mass, however, is crystalline and insoluble in acetone.

As listed in Table 5, Soxhlet extraction was accompa-

nied by a loss in PHA material. The remaining polymers

were resolved into two different fractions by hot acet-

one. As expected, M. ex-phaC2 produced blends made

up of SCL-PHAs and SCL/MCL-PHAs. Since the native

PhaC enzyme is not capable of incorporating monomers

other than SCL-3HA, the production of SCL/MCL-

PHAs must have resulted from the action of the recom-

binant PhaC2 enzyme. Random abundance of the differ-

ent monomers is likely the reason why some MCL-3HA

units remained in the acetone-insoluble fraction. It is

suggested here that the MCL-3HA content was very

small in some copolymeric chains so that they could not

dissolve in acetone.

Our experimental PHA samples from shake flask and

fermentation experiments exhibited mainly SCL-3HA

monomers (3HB, C4 and 3HP = 3HV, C5). Due to the

presence of two unrelated phaC genes in our recombi-

nant strains, we conclude that a major portion of the

Table 5 Solvent fractionation to separate SCL/MCL-PHAs from SCL-PHAs

Monomeric composition of PHA1

PHA sample Portion2 [%] C4:0
[mol%]

C5:0
[mol%]

C6:5
[mol%]

C6:0
[mol%]

C8:7
[mol%]

C8:0
[mol%]

Blend3 - 91.36 +/- 1.18 0.83 +/- 0.02 3.26 +/- 1.00 1.31 +/- 0.05 3.24 +/- 0.11 tr4

Acetone(-)5 90.84 96.55 0.48 1.47 0.47 1.03 -

Acetone(+)6 4.63 55.85 +/- 6.43 3.33 +/- 0.70 21.72 +/- 7.81 6.98 +/- 1.56 12.12 +/- 3.48 tr

Loss7 4.52 - - - - - -

1CX:Y = double bond at position Y of monomeric chain length X;
2Portion after Soxhlet fractionation;
3Chloroform extract from biomass (n = 2);
4tr = detected in trace quantity;
5Acetone-insoluble fraction (n = 1);
6Acetone-soluble fraction (n = 3);
7PHA loss during Soxhlet extraction.
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materials consisted of PHB or PHBV resulting from the

native PHA synthase. Since the PHA synthase coded by

the phaC2 gene of P. fluorescens GK13 was shown to

have a broad substrate specificity [23], we conclude that

the remaining biopolyesters of the polymer blends

belonged to the highly valuable class of short-chain-

length/mediumchain-length PHAs (SCL/MCL-PHAs,

4 ≤ C ≤ 14) that have been proposed for many applica-

tions due to their desirable thermo-mechanical proper-

ties [23]. For this reason, PHBHx with a 3HHx content

of 20% and less is currently under investigation for its

potential to function as tissue engineering material ([14]

and reference therein). Based on our results, we have

successfully added functionality to this highly regarded

class of PHAs by incorporating MCL-3HA units bearing

terminal double bonds.

Conclusions
It was found that the wildtype M. extorquens ATCC

55366 strain could not produce functionalized PHAs

starting from a methanol + unsaturated carboxylic acid

mixture. As a consequence, a metabolic engineering

approach was used to convert the wildtype strain into a

“cell factory” capable of producing functionalized PHAs

containing C-C double bonds. The presence of the C-C

double bonds in the PHA side chains was confirmed by

NMR. It was also found that the M. extorquens cell fac-

tory harboring the phaC2 gene appeared superior at uti-

lizing unsaturated carboxylic acids and at incorporating

C-C double bonds into PHA starting from either C6=

or C8=. Our two M. extorquens cell factories were able

to produce functionalized short-chain-length/medium-

chain-length PHAs (SCL/MCL-PHAs), which combine

desirable functionality of some MCL-PHAs with, report-

edly, superior thermo-mechanical properties of inert

SCL/MCL-PHAs. Double bonds may be used to induce

side chain crosslinking and to covalently bind small or

macromolecules upon chemical or enzymatic modifica-

tions. To date, the advantage of exhibiting functionality

has been exclusively reserved for MCL- and LCL-PHAs.

Appendix
Detailed analysis of NMR results

Selected PHA samples were submitted to 1D and 2D

NMR analyses to further identify which unsaturated

components might be present. As example, the treat-

ments for a PHA that was produced from methanol and

7-octenoic acid will be presented in detail. The 1H 1D

spectrum indicated that 3HB was the major component

comprising over 96% of the total signal (spectrum not

shown). Using natural abundance 2D 1H-13C correlation

spectra (Figure 6), it was possible to identify at least 5

minor components present which were assigned to

3HP,3HHx, 3HO, 3HHx= and 3HO=. Chemical shift

assignments for these components, based on the1H-13C

Heteronuclear Single Quantum Coherence(HSQC), Het-

eronuclear Multiple Quantum Coherence (HMQC) and

Heteronuclear 2-Bond Correlation(H2BC) 2D spectra

(shown in Figure 6 as black, red and blue contour plots,

respectively), are shown in Table 3. The 2D spectra indi-

cated that 5 methyl groups were present. In addition to

3HB, the other methyl resonances were assigned to

3HP, 3HHx and 3HO, and the terminal methyl. All

expected single double and multiple bond correlations

were observed for 3HP and 3HHx. Further confirmation

for 3HP was observed by the multiple, 3-bond correla-

tion in the HMBC from the methyl protons (H5)to the

C3 methine 13C chemical shift at 71.9 ppm. Two other

C methyl resonances at 13.8 ppm, were alleviated by

their 1H shifts at 0.91 and 0.88 ppm. The slightly higher

frequency peak was assigned to3HHx and can be traced

to the distinct C3 13C chemical shift via the HMBC/

H2BC spectra (Figure 6). Based on the 13C shifts for the

H2BC (22.6 ppm) and HMBC (31.8 ppm) cross-peaks

and comparison with previously published data [51,52],

the slightly lower frequency 1H methyl resonance origi-

nated from a longer chained 3-hydroxyalkanoate. We

have assigned this to 3HO (based on the fact that we

observed the related 3HO= polymer, see below)

although we cannot exclusively rule out other longer

chained monomers. Finally, at very low contour levels,

we were able to detect and assign resonances at the ter-

minus of polymer (these are too weak to detect in Fig-

ure 6 but assignments are listed in Table 3).

A notable feature of the 2D HSQC spectrum was the

presence of high frequency 1H (5.0 ppm and 5.7 ppm)

and 13C (115 ppm and 135 ppm) resonances indicative

of double bonds. These were assigned to the 3HHx=

and 3HO= monomers based on the following reasoning.

Firstly, the sign of these resonances in the multiplicity-

edited HSQC (data not shown)showed the higher fre-

quency 1H peaks (5.7 ppm) tobe CH resonances (C5,

3HHx= and C7, 3HO=) and the peaks at 5.0 ppm to

arise from CH groups (C6 and C8 for 3HHx= and

3HO=, respectively). The H2BC spectrum (blue, Figure

6) showed a clear 2-bond correlation between, for exam-

ple, the H of C8 and C7 of 3HO= (marked HO = 8,7 on

Figure 6) and the H of C6 and C5 of 3HHx= (marked

HH = 6,5 on Figure 6). Thus, the double bond for both

monomers must be at the end of the alkyl chain. The

3HHx = monomer was assigned based on the character-

istic chemical shift value for C3 in 3-hydroxyalkanoate-

monomers of 70.5, and the observation of a 3-bond

HMBC correlation between the 1H of C5 and a 13C

peak at 70.06, which must be C3 (labeled HH = 5,3 on

Figure 6). This correlation was confirmed by the obser-

vation of the remaining expected multiple and single

bond correlations for 3HHx= which are shown on
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Figure 6. In contrast to 3HHx=, in 3HO=, the =CH

resonance (C7 in 3HO=) showed a 3-bond HMBC cor-

relation to a 13C peak at 24.2 ppm (labeled HO = 7,5 in

Figure 6) which must belong to a CH (confirmed by the

multiplicity edited HSQC experiment), indicating the

alkyl chain is longer for this monomer. Assignment to

3HO= was once again based on the characteristic che-

mical shift of C3 andH3 at 70.5 ppm and 5.2 ppm,

respectively. Notably, the C5 resonance just assigned

showed a 3-bond correlation to a 1H resonance at 5.18

ppm, which is probably H3. This was confirmed by the

observation of the H5 resonance exhibiting a 3-bond

correlation in the HMBC to 70.9 ppm, which must

belong to C3. Further analysis of the HMBC and H2BC

spectra confirmed this assignment, showing almost all

the expected single and double bond correlations. Using

the C3 resonances in the HSQC we obtained a ratio of

3HB:3HO= (1:0.06), 3HB:3HHx= (1:0.05), 3HB:3HP

(1:0.02), 3HB:3HHx (1:0.008, comparing10methyls),

3HB:3HO (1:0.008, comparing methyls).

Abbreviations

3HA: 3-hydroxyalkanoate; 3HB (C4:0): 3-hydroxybutyrate; 3HHx (C6:0): 3-
hydroxyhexanoate; 3HHx= (C6:5): 3-hydroxyhex-5-enonate; 3HO (C8:0): 3-
hydroxyoctanoate; 3HO= (C8:7): 3-hydroxyoct-7-enoate; 3HP (C5:0): 3-
hydroxypentanoate; 3HV (C5:0): 3-hydroxyvalerate; C5: pentanoic acid; C5=:
4-pentenoic acid; t-C5=: trans-2-pentenoic acid; C6: hexanoic acid; C6=: 5-
hexenoic acid; C8:= 7-octenoic acid; C11=: 10-undecenoic acid; CX:Y: double
bond at position Y of monomeric chain length X; DCW: dry cell weight; GC-
FID: gas chromatography-flame ionization detector; H2BC: Heteronuclear 2-
Bond Correlation; HMBC: Heteronuclear Multiple Bond Correlation; HMQC:
Heteronuclear Multiple Quantum Coherence; HSQC: Heteronuclear Single
Quantum Coherence; KOH: potassium hydroxide; LCL: long-chain-length;
MCL: medium-chain-length; MeOH: methanol; NMR: Nuclear Magnetic
Resonance spectroscopy; OD: optical density; PHB: poly(3-hydroxybutyrate);
PHA: polyhydroxyalkanaote; PHBV: poly(3-hydroxbutyrate-co-3-
hydroxyvalerate); PHBHx: poly(3-hydroxybutyrate-co-3-hydroxyhexanoate);
PPM: parts per million; SCL: short-chain-length; TMS: tetramethylsilane.
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