
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Rule-Based Modeling and Computing on the Semantic Web: 5th International
Symposium, RuleML 2011– America, Ft. Lauderdale, FL, Florida, USA, November
3-5, 2011. Proceedings, Lecture Notes in Computer Science; no. 7018, pp. 17-32,
2011-11-10

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=0fce25cb-109b-4077-a38e-81241369fdf8

https://publications-cnrc.canada.ca/fra/voir/objet/?id=0fce25cb-109b-4077-a38e-81241369fdf8

NRC Publications Archive
Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.1007/978-3-642-24908-2_9

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Design and implementation of highly modular schemas for XML:

customization of RuleML in relax NG
Athan, Tara; Boley, Harold

Design and Implementation of Highly Modular

Schemas for XML:

Customization of RuleML in Relax NG

Tara Athan1, Harold Boley2

1 Athan Services, Ukiah, CA, USA
taraathan AT gmail.com

2 Institute for Information Technology, National Research Council Canada
Fredericton, NB, Canada

harold.boley AT nrc.gc.ca

Abstract. We present a re-conceptualization and re-engineering of the
non-SWSL portion of the Derivation Rules subfamily of RuleML in the
Relax NG Compact (RNC) schema syntax. The benefits arising from
RNC schemas include decreased positional sensitivity and greater flexi-
bility in modularization (from fine-grained modular to monolithic), as
well as unification of human-readable (“Content Models”) and machine-
readable (XSD/XML) versions. We introduce a Relax NG schema design
pattern, enforced by RNC meta-schemas, that guarantees monotonicity
(grammatical extension implies syntactic containment) when any of a
large number of small expansion modules are merged. The original fif-
teen Derivation RuleML sublanguages are thus embedded in a syntactic
lattice with hundreds of thousands of languages with semantics inherited
from the top language. The original RuleML sublanguages are available
through links, and customized languages are available through a GUI
web-app. The GUI serves as the front end to a PHP-specified parameter-
ized schema that takes a selection of customization options and returns
a schema driver file. These options are encoded to facilitate determi-
nation of syntactic containment between any pair of languages. As in
earlier (Derivation) RuleML language hierarchies, (logical) expressivity
forms the backbone of the language lattice. The (parameterized) RNC
schema serves as a pivot format from which XSD schemas, statistically-
random XML test instances, monolithic simplified RNC content models,
and HTML documentation are automatically generated. The RNC-based
re-engineering of Derivation RuleML has already led to the discovery and
patching of errata in RuleML versions 0.91 and 1.0, as well as to sug-
gested enhancements of version 1.0 and a newly conceived version 1.1.
The specifications of the RNC-based RuleML schemas are maintained at
http://wiki.ruleml.org/index.php/Relax_NG.

1 Introduction

RuleML is a family of languages for Web rule interchange that was originally
specified in Document Type Definitions (DTDs) [W3C98], then switched to XML

2 Tara Athan, Harold Boley

Schema Definition Language (XSD) schemas [TBMM04]. Here we present a
re-engineering of the non-SWSL portion of the Derivation Rules subfamily of
RuleML in the Relax NG Compact (RNC) schema syntax [ISO08] on the ba-
sis of lattice [Nat] and hedge automaton theory (cf. [Mur98]). This novel, RNC
schema formalism has already supported the re-conceptualization and transition
from RuleML version 0.91 to 1.0, and gave insights for its evolution to version
1.1 and beyond.

Goals A re-engineering of the RuleML schemas was undertaken to achieve the
following:

– Maximize Alignment with Semantics: to the extent possible, semantic con-
straints should be incorporated into the schema.

– Maximize Customizability: A fine-grained, highly cohesive, and loosely-
coupled modular schema design will allow a user to custom-build a RuleML
sublanguage by assembling a selection of modules.

– Maximize Automation: The assembly of custom schemas and the production
cycle of schema releases should be automated as much as possible.

– Maximize Reliability: The new schemas should be exhaustively tested against
the existing hand-written XSD schemas and instances, e.g. via automatically-
generated testing instances as well as hand-written exemplary instances for
‘near-miss’ (invalid) and ‘corner’ (valid) cases.

– Maximize Extensibility: The schemas should enable extension by users, as
well as RuleML developers.

An Example of Customizable Schema Definition: Equations In the
original RuleML 0.91 family of languages, equations are available from Horn
logic languages up, which also include, e.g., negations, disjunction, and quantifi-
cation. However, equations are also desirable from Hornlog down, e.g. between
individual constants in Datalog, even when Datalog is further specialized to only
binary relations or to only facts. Hence, in RuleML 1.0, equations should be freely
combinable with the other RuleML sublanguages. Similarly, languages with only
binary relations in RuleML 0.91 are just allowed for Datalog, but in RuleML 1.0
should be also allowed up the family tree. We thus propose a method to per-
mit free combinations of fine-grained modular features for customizable schema
definition.

Of course, it is always possible to author or validate with a more permis-
sive schema, i.e., a schema defining a language that syntactically contains the
language of interest. However, a minimal schema improves the efficiency of vali-
dation, enhances authoring in a content-completion environment, and improves
reliability when a minimal feature set is mandated by specification.

In the previous modularization approach, a significant redefinition of the
XSD schema would be required to add equations to a smaller sublanguage, such
as bindatagroundfact. With the re-engineered Relax NG schema, we may ac-
complish this task with the following steps:

Highly Modular Schemas for XML: RuleML in Relax NG 3

1. Open the GUI1 and select only the language features desired. For the smallest
language with equations, we select the first options in the radio button sets
(Expressivity - Atomic Formulas, Default Attributes - Required to be Absent,
and Term Sequences - None) and deselect all checkboxes except Equations.

2. Click the Refresh Schema button to see the corresponding schema driver file
and the URL that may be used to perform validation. This long URL has
base http://ruleml.org/1.0/relaxng/schema_rnc.php, which points to
the PHP-specified parameterized schema, and a query string ?backbone=

x0&default=x5&... that encodes the selected language options. Notice the
schema driver file contains only nine modules, out of over fifty available.

3. Associate the schema driver file with an xml file using the xml-model pro-
cessing instruction [GK10], where the value of href is the URL obtained in
step 2 with all ampersands escaped as &.

4. Edit the xml file with an xml-model processor, such as oXygen2, to create
equations such as3:

<?xml-model href=
"http://ruleml.org/1.0/relaxng/schema_rnc.php?backbone=x0&default=x5&termseq=x0&
lng=x1&propo=x0&implies=x0&terms=x10&quant=x0&expr=x0&serial=x0"
type="application/relax-ng-compact-syntax"?>
<RuleML xmlns="..."><Assert><formula>

<Equal>
<left><Ind>Lady Gaga</Ind></left>
<right><Ind>Stefani Joanne Angelina Germanotta</Ind></right>

</Equal>
</formula></Assert></RuleML>

The Original Fifteen Languages as a Lattice A partially-ordered set
(poset) in which every pair of elements has both a greatest lower bound (glb,
infimum) and a least upper bound (lub, supremum) in the set is called a lat-
tice. The fifteen languages in the non-SWSL4 portion of the Derivation RuleML
language subfamily satisfies the lattice conditions with respect to the partial or-
dering imposed by syntactic containment, as shown in Figure 1 and may be em-
bedded in the larger lattice described in Section 2.1. The binary numbers below
each named language demonstrate how a code can be used to identify unnamed
languages uniquely as well as facilitate the determination of order by bit-wise
comparison. These codes were generated from the lattice diagram, starting from
the bottom and proceeding through the diagram upward and left-to-right, as
shown below. Given a language whose code has not yet been determined:

1. determine the conjunction (i.e. bit-wise maximum) of all of its sublanguages;
2. if the conjunction is not equal to any other code assigned so far, it may be

selected as the code, but if the language contains features that are not in
any of its sublanguages, one may choose to proceed to step 3;

1 GUI: http://ruleml.org/1.0/gui/.
2 oXygen: http://www.oxygenxml.com/.
3 The RuleML 1.0 namespace is still open; it will appear at http://ruleml.org/1.0/.
4 An extension of Hornlog RuleML was developed to serialize SWSL (Semantic Web
Services Language) in XML, whose syntax goes significantly beyond the other lan-
guages (http://www.w3.org/Submission/SWSF-SWSL/#sec-markup), and so cannot
be accommodated in the lattice shown in Figure 1.

4 Tara Athan, Harold Boley

3. otherwise add a 1 at the least-significant ‘unused’ (i.e. so far not used any-
where else in the lattice) bit to the conjunction from step 1.

The choices made in step 2 of this non-deterministic procedure when applied to
generating the ‘original fifteen’ are seen in Figure 1 (note caption for caveat).
Overview of the Relax NG Language The Relax NG language was
chosen for this re-engineering effort because of its decreased positional sen-
sitivity and its greater flexibility in modularization (from fine-grained modu-
lar to monolithic), as well as unification of human-readable (“Content Mod-
els”) and machine-readable (XSD/XML) versions. These benefits are achieved
through unique features of the Relax NG schema language [ISO08], including the
notAllowed reserved word to create abstract patterns, definitions with combine

attributes (|=, &= in the compact syntax) to merge definitions that are de-
composed across modules, and the interleave operator & (a generalization of the
xsd:all group) to create order-insensitive content models. Because Relax NG
is theoretically grounded in hedge automaton theory, modularization is always
possible since regular hedge languages are closed under the operations of inter-
section, union and complement [Mur98].

Fig. 1. Hasse diagram of the ‘original fif-
teen’ language lattice with arrows, and il-
lustrative binary codes, indicating syntactic
containment. The code assignment was gen-
erated by the procedure described in Sec-
tion 1, but is not unique for this poset,
as it depends on the way the Hasse di-
agram has been drawn (as a 2-D projec-
tion of a unique Directed-Acyclic Graph),
as well as choices made in the implemen-
tation of the non-deterministic procedure.
When the partial order of post-schema vali-
dation infoset (PSVI) containment (see Sec-
tion A) is considered, the ‘original fifteen’
violate the lattice conditions due to the use
of default attributes. Therefore, the imple-
mented schemas use a different coding that
reflects grammatical, syntactic, and PSVI
containment, described in Section 2.1.

bindatagroundfact
(1)

bindatalog
(111)

bindatagroundlog
(11)

nafdatalog
(11111)

negdatalog
(101111)

nafnegdatalog
(111111)

hornlog
(1001111)

datalog
(1111)

hornlogeq
(101001111)

dishornlog
(11001111)

folog
(1011101111)

fologeq
(1111101111)

naffolog
(1011111111)

naffologeq
(1111111111)

nafhornlog
(1011111)

2 Design of the RuleML Relax NG Schema

The design consists of several components with different levels of abstraction. For
the beginning user, URL redirects5 provide default access to serializations6 of the
original fifteen RuleML sublanguages. For the advanced user, the GUI web-app

5 E.g., the URL for Datalog in relaxed-form RNC: http://ruleml.org/0.91/

relaxng/datalog_relaxed.rnc.
6 See the ‘Serialization’ subsection of Section 2.1.

Highly Modular Schemas for XML: RuleML in Relax NG 5

allows selection among many syntactic options and computes the URL of the
dynamically-generated driver file for the customized language. A PHP-specified
parameterized schema7 implements the mapping from the syntactic options to
the corresponding subsets of modules.

2.1 GUI Web-App and Language Options Encoding

The GUI web-app consists of an XHTML form that accepts a user’s input of
language options through radio buttons and check boxes. A URL that points to
a PHP script, described in the next section, with a query string of the language
options encoded compactly, is generated by the form and may be used directly
for validation of instance documents.

The language options are organized into facets of semantically-related di-
mensions. Each dimension is Boolean, and the dimensions are freely combinable,
although some are ‘dormant’ (produce no syntactic or semantic change) unless
an ‘activating option’ is also selected. For example, the slot cardinality attribute,
card, is dormant unless slotted arguments are included, because this attribute is
only allowed on the slot element. In the GUI, each dormant option is disabled
unless at least one of its activating options is selected. For each group of options
(e.g. backbone, default, ...), the Boolean values are treated as bits of a hexadec-
imal number. The full selection of options is assembled as a hexadecimal-valued
query string8 e.g.

backbone=x3f&termseq=x7&default=x3&serial=xf&propo=x3f}
&implies=x7&terms=xf3f&quant=x7&expr=xf&lng=x1

to form a unique syntactic code for each language. Bit-wise dominance between
two codes is equivalent to syntactic containment of the corresponding languages.
The option facets are described in the following subsections, with the facet pa-
rameter name(s) given parenthetically in the title of each subsection.

Backbone (backbone) The logical connectives of propositional logic and the
variables and quantifiers of predicate logic are implemented in independent mod-
ules so that a great variety of expressivities may be constructed by ‘mixing-in’
various schema modules. However, only certain combinations of these modules
are accessible from the GUI, corresponding to an unbranched hierarchy from
ground atomic formulas to full first-order logic, which we call the “backbone” of
the language lattice (see Figure 2).

Positional Arguments (termseq) In Atomic formulas and in Expressions, the
sequence of positional arguments (as opposed to the bag of slotted arguments)
may be necessarily empty (None), limited to empty or length two (Binary), or
allowed to be of arbitrary finite length (Polyadic) (see Figure 3).

7 PHP: http://ruleml.org/0.91/relaxng/schema_rnc.php.
8 When the query string is used in an href attribute, & should be escaped as &.

6 Tara Athan, Harold Boley

Ground
Facts

(11=x3)

Datalog
(1111=xf)

Ground
Logic

(111=x7)

Atomic
Formulas

(1=x1)

Horn
Logic

(11111=x1f)

Disjunctive
Logic

(111111=x3f)

Full First-Order Logic
(1111111=x7f)

empty
(0=x0)

and, or
(10=x2)

variables
(100=x8)

functions
(1000=x10)

rules
(100=x4)

disjunctive
rules

(10000=x20)

unrestrained
compounding
(100000=x40)

101 1001

1011 10011

1100000

10111

101111

1011111

10001 100001 1000001

100011 1000011

100111 1000111

1001111

1110000

1111000

1111100

1111110... bit strings with 6 "1"s ...

... bit strings with 5 "1"s ...

... bit strings with 4 "1"s ...

... bit strings with 3 "1"s ...

... bit strings with 2 "1"s ...

Fig. 2. Hasse diagram of the backbone sublattice with binary and hexadecimal codes.
The options within solid ovals are available from the GUI, the others can be accessed
through the parameterized schema, as described in Section 2.2.

Attributes with Default Values (default) In the RuleML XSD schemas,
certain attributes are defined with default values. In some situations it may
be advantageous to eliminate the default values so that the language is more
compact; this is the first option, “Required to be Absent”. The second option,
“Required to be Present”, allows the Relax NG schema to emulate the post-
schema validation infoset (PSVI) of instances validated against XSD schemas,
by requiring attributes having default values to be present. This constraint is
necessary for PSVI emulation because Relax NG validation does not allow mod-
ification of the info-set, in contrast to XSD validation, which inserts attributes
having default values when they are absent in the instance document. The third
alternative, “Optional”, allows such attributes to be absent or present, and thus
is the join (w.r.t. lattices, the least upper bound) of the former two languages.

Highly Modular Schemas for XML: RuleML in Relax NG 7

11=x3

Unary
(1=x1)

None
(0=x0)

Binary
(10=x2)

Ternary
and more
(100=x4)

110=x6101=x5

Polyadic
(111=x7)

Fig. 3. Hasse diagram for the term se-
quence facet. Options available from the
GUI include polyadic term sequences, bi-
nary term sequences, and the absence of
term sequences (“None”), the latter cor-
responding to propositional and frame-
like languages. Additional options such as
unary term sequences are not yet avail-
able, but are accommodated in the pa-
rameter encoding for this facet for future
implementation.

Serialization (serial) Only three serialization forms are implemented in the
URL redirects: the “relaxed-”, “normal-” and “mixed- form” serializations. Ad-
vanced users have additional options available through the GUI web-app. The
normal-form serialization, corresponding to all of the serialization options
unchecked, realizes canonical ordering of child elements and required ‘striping’9

as well as the “Required to be Present” treatment of attributes with default val-
ues described above in Section 2.1. The relaxed-form serialization, corresponding
to all of the serialization options checked, is maximally insensitive to the order
of child elements while still retaining unambiguous semantics, and has optional
striping, as well as the “Optional” treatment of attributes with default values.10

A mixed-form schema is also implemented to reproduce the syntax of the original
XSD schemas for testing purposes, but is not available from the GUI.

Mix-Ins (propo, implies, terms, quant, expr) Additional syntactic op-
tions include equivalence, meta-logic, negations, semantic variants of implica-
tions, expressions and equations, slots, rest variables, object identifiers, resource
identifiers (IRIs), degree of uncertainty, explicit typing, reification, and skolem
constants.

Alternate Names (lng) The default abbreviated English element and at-
tribute names may be replaced by long English names. The modules implement-
ing that replacement serve as a template for other alternate name sets, enabling
internationalization. Expansion modules are used to add the alternate names,
and contraction modules are required to remove the default names. The language
lattice of the alternate name set is isomorphic to that of the default name set.

9 Striping: the alternation of ‘Node’ (upper-cased ‘Type-tag’) elements with ‘edge’
(lower-cased ‘role-tag’) elements.

10 Additional options for disabling explicit datatyping and the schema location at-
tribute are necessary for the normal form as a workaround to a bug in the translator
from Relax NG to XSD schemas.

8 Tara Athan, Harold Boley

2.2 Parameterized Schema

The parameterized schema is implemented as a PHP script which accepts lan-
guage options encoded in a query string11 and generates the driver file. This file
assembles the grammar by inclusion of modules, and contains only namespace
declarations, start and include statements, and comments. The PHP script per-
forms a monotonic transformation of the parameters passed in the query string
into Boolean variables, each indicating the inclusion of one or more modules. In
a few cases, a pair of modules is replaced by one syntactically equivalent module
so that simpler grammar patterns may be employed.

The start pattern of the driver file determines the elements allowed as a
document root. In general, the specification of document root in Relax NG does
not translate to XSD schemas, where any global element may be the document
root. In the RuleML driver files, the start pattern is constructed as a choice
among all globally defined elements, in order to maintain equivalence to XSD
schemas, and to allow RuleML fragments to validate.

2.3 Design Patterns for Modules

The modularization of the parameterized schema is constrained by the require-
ment of realizing the original fifteen languages. However, there is still consider-
able freedom in the design. Certain design decisions influence the nature of the
“enriched” lattice by altering the coverage of the new languages that are cre-
ated. Our design pattern has a number of aspects in common with the XHTML
2.0 Relax NG schema [IG09], but is significantly more constrained in order to
maximize both decoupling and monotonicity of the modular system.

Module Decoupling. Like XHTML2.0 and the existing RuleML XSD schemas,
the Relax NG schema uses a flat schema design pattern, which declares all the
elements globally using named patterns, enhancing extensibility. There are many
ways to decouple such patterns in Relax NG, including using abstract patterns,
unreachable patterns and ‘linking modules’. For example, in RuleML a Negation
formula (strong negation) is allowed to occur within a Naf formula (weak nega-
tion, Negation as failure), provided both kinds of negation are included in the
language. The RNC code that activates this coupling is

NafFormula.choice |= Negation-node.choice

We call definitions of one pattern as a formula of other named patterns linking
definitions, to distinguish them from definitions that explicitly define elements
or attributes. We can place this linking definition in the Negation As Failure

module naf module.rnc or the Negation module neg module.rnc, or poten-
tially another module.

Unreachable Patterns: The linking definition may be placed in the Negation

11 The query string may be manually edited to obtain some options not directly avail-
able from the GUI.

Highly Modular Schemas for XML: RuleML in Relax NG 9

module. If a language includes strong but not weak negation, the
NafFormula.choice pattern is valid but unreachable. This approach is efficient
in lines of code, but can be hard to read in modular form, since the definition of
some patterns, in this case NafFormula.choice, is fragmented across modules.

Abstract Patterns: If the linking definition is not placed in the Negation As

Failure module, the module where it occurs will be invalid on its own unless
we add an additional definition to make the Negation-node.choice pattern
abstract. In Relax NG Compact (RNC) syntax, an abstract pattern is created
with the notAllowed reserved word as follows:

Negation-node.choice |= notAllowed

If we place the linking definition into the Negation module, then the abstract
pattern is overridden whenever this module is included, and the link is activated
if both negation modules are included in the language. Having a large number of
notAllowed definitions causes the code to look cluttered and to be more difficult
to maintain, so these definitions are collected into a single ‘initialization’ module,
which is included in every schema driver file. Similarly, patterns combined with
the interleave attribute are initialized empty.

Linking Modules: If the linking definition is placed in a third ‘linking’ mod-
ule, the greatest flexibility would be attained, allowing the decision to couple the
two kinds of negation to be made independent of their inclusion in the language.
Linking modules contain linking definitions, but no new element or attribute
definitions. The patterns on both sides of the link must be defined in the ini-
tialization module to ensure that the modules may be combined freely to form
a valid grammar.

In RuleML/RNC, we use the Linking Module design whenever feasible, as
this provides maximum modularity. In particular, this design pattern is used to
implement the transition from the Datalog / Horn logic languages to the full
first-order logic languages without resorting to redefinition, by placing linking
definitions for unrestricted formula compounding into a folog expansion module.

Monotonicity from Segregated Names. In Relax NG schemas, pattern
names are the non-terminal symbols used to write production rules. One of
the features of our schema design pattern is segregation of pattern names ac-
cording to the allowed value of the combine attribute of their definitions. The
segregated naming design pattern has been specified in a set of meta-schemas12

in the RNC language, that can be used to validate base grammars, and expan-
sion and contraction modules after translation into the XML-based Relax NG
syntax. To illustrate the constraints on these categories, we draw examples from
several RuleML modules.

An extension point and several abstract patterns for equality are initialized
in init expansion module.rnc as follows:

12 http://www.ruleml.org/1.0/designPattern.

10 Tara Athan, Harold Boley

Equal-node.choice |= notAllowed # for alternate names of equality element
Equal-datt.choice |= notAllowed # for required attributes of equality element
reEqual.attlist &= empty # for optional attributes of equality element
Equal.header &= empty # for modifying children of equality element
Equal.main |= notAllowed # for main content of equality element

In equal expansion module.rnc, the above patterns are assembled as follows:

Equal-node.choice |= Equal.Node.def
Equal.Node.def =

element Equal { (Equal-datt.choice & reEqual.attlist), Equal.header, Equal.main }
Equal.header &= SimpleFormula.header?
Equal.main |= leftSide-edge.choice, rightSide-edge.choice

Additional definitions provide the patterns for the left- and right-hand sides. In
long name expansion module.rnc we have

Equation-node.choice |= Equation.Node.def
Equation.Node.def =

element Equation { (Equal-datt.choice & reEqual.attlist), Equal.header, Equal.main }

In short name contraction module.rnc we have

Equal.Node.def &= notAllowed

These schema snippets illustrate the full range of definitions permitted in the
Relax NG schema design pattern. We utilize three categories of pattern names.

Choice Combine: In base grammars and expansion modules, patterns with
names from the choice category must be defined with the choice combine opera-
tor |=. In the example above, Equal.choice and Equal.main are names in the
choice category. In practice, choice patterns are defined as notAllowed in the
initialization expansion module, and then overridden in expansion modules, as
shown above. Choice combine definitions are not allowed in contraction modules.

No Combine: In base grammars and expansion modules, patterns with names
from the no-combine category must be defined, with =. In base grammars and
contraction modules, it is permitted to have definitions having names from this
category with the combine attribute interleave, whose pattern is the notAl-
lowed reserved word. We use this construction in the alternate names modules,
as shown above, to remove abbreviated element names when they are replaced
with long or internationalized names. Because neither of the definitions

Equal.Node.def &= empty
Equal.Node.def |= notAllowed

would be permitted in the intialization expansion module, the names in the no-
combine category are never initialized. This introduces limitations on how ab-
stract components may be defined. To define abstract elements and attributes,
we introduce a more abstract choice pattern, such as Equal-node.choice, as
shown above. Such choice patterns are extension points that hold alternate name
elements or alternate constructions that serve the same role in the grammar, and
unify elements that have similar semantics.

Interleave Combine: In base grammars and expansion modules, patterns with

Highly Modular Schemas for XML: RuleML in Relax NG 11

names from the interleave combine category must be defined with the interleave
combine operator &=. Names from the interleave combine category may not be
defined in contraction modules. The interleave combine is used to initialize in-
terleave patterns, such as lists of optional attributes, as empty. Other uses are
to add attributes to an attribute list, and, in the order-insensitive syntaxes, to
add children to the interleave header patterns, as shown above for the Equal

element. An additional constraint is required to attain monotonicity. In an ex-
pansion module, the right-hand side of a definition with a combine attribute of
interleave must be optional (?), zero-or-more (*), or empty, as shown above for
the reEqual.attlist pattern.

2.4 Transformation

The RNC parameterized schema serves as a pivot format from which XSD
schemas, statistically-random XML test instances, monolithic simplified RNC
content models, and HTML documentation are automatically generated.

Auto-generated Normal Form XSD. The Jing/Trang software is used to
transform the parameterized schema and included modules into monolithic normal-
form or mixed-form XSD schemas as follows:

– Jing13 with switch s is used for simplification of modular RNC schemas into
monolithic Relax NG XML syntax (RNG);

– Trang13 is used for transformation of RNG schemas into XSD.

The XSDs corresponding to the original fifteen RuleML sublanguages are made
available for remote validation14 or download in a zip archive that also includes
the PHP script for the parameterized schema and Windows batch scripts for
transformation and validation.15

Instance Generation. The oXygen software package is used to generate in-
stances from XSD schemas. Instances generated from the original XSD schemas
are used to exhaustively test that the RNC relaxed-form languages syntacti-
cally contain the corresponding original RuleML language, while instances of
the normal- and mixed-form XSD schemas auto-generated from RNC are simi-
larly employed for testing for syntactic containment or equivalence, respectively,
relative to the original languages.

13 http://code.google.com/p/jing-trang/.
14 Horn logic in normal-form XSD: http://www.ruleml.org/0.91/xsng/hornlog_

normal.xsd.
15 Normal-form Zip Archive: http://ruleml.org/0.91/relaxng/ruleml0-91_normal_

rnc.zip.

12 Tara Athan, Harold Boley

Simplified RNC as Content Model. The jing -s transformation described
in Section 2.4 is also the first step in generating the simplified, monolithic RNC
schemas that serve as auto-generated content-model documentation, replacing
error-prone hand-generated documentation, the second step being transforma-
tion by trang back into RNC. The jing -s simplification is a by-product of the
validation process, and so does not provide the ideal documentation, as mean-
ingful pattern names, e.g. formula-Query.Node.def, are replaced by simplified
names, e.g. formula 3, that somewhat obfuscate meaning in the translation.
Nevertheless, this is an easy and highly reliable method for condensing the mod-
ular grammar into a monolithic, and more human-readable, form.

HTML Documentation of Syntax and Semantics. Absent an application
to generate documentation directly from Relax NG schemas, chaining Trang

transformation into XSD with oXygen documentation tools for XSD schemas
provides this capability to some extent. Relax NG annotations, which are pre-
served under Trang transformation, provide the semantics of components. The
documentation need only by prepared for the top language16, as sublanguages
inherit their semantics from the top language.

3 Implementation of the RuleML Schema Design

The RNC-based re-engineering of Derivation RuleML has already led to the
discovery and patching of errata in RuleML versions 0.91 and 1.0, as well as to
suggested enhancements of version 1.0 and a newly conceived version 1.1.

3.1 Implementation in RuleML 0.91

The RNC implementation for RuleML 0.91 reproduces the previously released
RuleML 0.91 sublanguages, with the exception of the following patches, which
fix errata17 discovered during the Relax NG re-engineering:

– Accidental omission of type declarations in the content model of Rulebase,
unexpectedly allowing arbitrary content in some elements.

– Relaxation of order sensitivity resulted in an overly general content model for
atomic formulas, expressions, and some types of generalized lists, allowing
semantically-incorrect multiple occurrences of rest variables.

In addition to the fifteen original RuleML 0.91 sublanguages, the language lattice
generated by the parameterized RNC schema permits many other languages. A
few notable features of the thus enriched language lattice are listed here:

– Equations are made available at all levels of expressivity.

16 http://www.ruleml.org/0.91/relaxng/naffologeq_relaxed.rnc.
17 http://wiki.ruleml.org/index.php/XSD-Errata0.91#RuleML_0.91_XSD_Errata.

Highly Modular Schemas for XML: RuleML in Relax NG 13

– A short URL (http://ruleml.org/0.91/rnc) for the top RuleML lan-
guage redirects to the parameterized schema of the most inclusive language
(except for alternate element names).

– Propositional languages are introduced by allowing an option that requires
positional argument sequences to be empty. To realize this, the pattern for
the positional arguments in atomic formulas is initialized as empty, and only
extended in optional modules for binary and polyadic term sequences.

– Expansions of the propositional languages with slots and/or object identifiers
provide a pure frame-like and/or object-oriented syntax.

– The option to restrict positional argument sequences to zero or two members
(as in the RuleML bin languages) is made available at all backbone levels.
At present, the restriction is applied simultaneously to atomic formulas,
expressions and plexes (generalized lists); this may be relaxed later.

– More alternatives are available for stripe-skipping and child order in Implies

and Entails, including skipping the stripe of only one child (body or head
in 0.91, if or then in 1.0) and simultaneously relaxing the order constraints
on these children. Canonical ordering (body before head) is only imposed
when both stripes are skipped. The GUI allows stripe-skipping and order-
insensitivity to be selected independently.

3.2 Implementation in RuleML 1.0

The Relax NG schemas for Derivation RuleML 1.0 are a relatively small upgrade
from the 0.91 versions. We adopt several name changes already incorporated into
the RuleML 1.0 XSD schemas [BPS10]. Beyond Derivation RuleML, we consider
Relax NG versions of all of Deliberation RuleML, including higher order logic
and modal logic, as well as of Reaction RuleML, including actions and events.

3.3 Preview of Proposed RuleML 1.1

A primary goal of the proposed RuleML 1.1 revision is alignment with seman-
tics, including removal of semantically-invalid constructs that were previously in-
cluded because of limitations of XSD. Such constructs can be identified through
a more formal specification of the semantics, as in PSOA RuleML [Bol11] and
the planned Common Logic (CL) RuleML, and a mapping of syntactic sugar to
the corresponding traditional first-order logic statements.

– The entire Fuzzy RuleML specification [DPSS06] will be implemented, where
all formulas, not only Atoms, may have a degree (of uncertainty) child.

– Following the recommendations from [Vli03], for all terminal elements ex-
cept Data and also for all attributes with arbitrary values, the xs:string

datatype will be replaced by xs:token, which has the same lexical space as
xs:string, but its value space consists of lists of tokens separated by single
spaces. This is appropriate because RuleML is for the most part a ‘data-
oriented’ application where white space is not significant, other than as a
token separator. This will allow users, e.g., to more easily extend the schema
to a restricted vocabulary without concern for white-space multiplicity.

14 Tara Athan, Harold Boley

– Within Entails, elements if and then will be allowed formulas as children,
in addition to formulas wrapped in a Rulebase element, increasing module
independence.

– The performatives module will be decomposed to separate the definition of
the Query element from the definitions of Assert and Retract, allowing the
creation of a knowledge-base language (Assert and Retract performatives
only) and a query language. These languages are already being used in OO
jDREW [BBH+05].

– The content model of Reify will be restricted to Node elements, to remove
the meaningless reification of edge elements.

– The Data element will be split into two (namely, Data and Structure), one
having simple content (cf. XML Schema Part 2, Datatypes [BM04]) and the
other complex content (cf. XML Schema Part 1 and Relax NG). This will
give Data back its original ‘leaf-level’, Individual-like meaning and reserve
the new Structure for ‘tree-level’, Expression-like content. This is necessary
to allow the restriction of Reify described above while maintaining auto-
translation from RNC normal-form to XSD, and is also desirable to avoid a
definition for Data that mixes simple and complex types.

– Context-sensitive constraints, such as “Functions within Equals within an
Equivalent must be either interpreted (per value) on both sides or un-
interpreted (per copy) on both sides”, will be realized in RNC schemas,
but are not translatable to XSD (without Schematron), as they require non-
deteriministic patterns.

4 Conclusions

Through the re-conceptualization and re-engineering of the RuleML schemas,
considerable progress has been made towards the goals stated in Section 1:

To increase alignment with the semantics, names were assigned to recurring
grammar patterns, e. g. formulas allowed in conclusions, enabling pattern reuse.

In order to increase customizability, a schema design pattern was developed
which allowed us to build a system with over fifty freely combinable modules,
leading to more than 250 > 1015 grammars generating an estimated 300,000 dif-
ferent (and meaningful) languages. Further, we used the partial-order relations
of containment (of grammars and languages) to organize the resulting gram-
mars and their generated languages into lattices, related by order-preserving
mappings, and labeled by codes that facilitate the determination of containment
between any pair of grammars or languages.

To increase automation and reliability, we developed a GUI, a PHP-specified
parameterized schema, scripts for transformation and validation, and meta-
schemas to enforce the schema design.

To increase extensibility, numerous extensions points have been introduced,
as named patterns. The use of such extension points has been illustrated by
modules that implement an alternate element name set. Further development of
the RuleML languages will take advantage of this extensibility to introduce new
features in versions 1.1 and beyond.

Highly Modular Schemas for XML: RuleML in Relax NG 15

References

[BBH+05] Marcel Ball, Harold Boley, David Hirtle, Jing Mei, and Bruce Spencer. The
OO jDREW Reference Implementation of RuleML. In Asaf Adi, Suzette
Stoutenburg, and Said Tabet, editors, Rules and Rule Markup Languages
for the Semantic Web, First International Conference (RuleML 2005), Gal-
way, Ireland, November 10-12, 2005, Proceedings, volume 3791 of Lecture
Notes in Computer Science, pages 218–223. Springer, 2005.

[BM04] P.V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation, W3C, October 2004. http://www.w3.

org/TR/xmlschema-2/.
[Bol11] Harold Boley. A RIF-Style Semantics for RuleML-Integrated Positional-

Slotted, Object-Applicative Rules. In Proc. 5th International Symposium
on Rules: Research Based and Industry Focused (RuleML-2011), Barcelona,
Spain, July 2011, Lecture Notes in Computer Science. Springer, 2011.

[BPS10] Harold Boley, Adrian Paschke, and Omair Shafiq. RuleML 1.0: The Overar-
ching Specification of Web Rules. In Proc. 4th International Web Rule Sym-
posium: Research Based and Industry Focused (RuleML-2010), Washing-
ton, DC, USA, October 2010, Lecture Notes in Computer Science. Springer,
2010.

[DPSS06] Carlos Viegas Damasio, Jeff Z. Pan, Giorgos Stoilos, and Umberto Straccia.
An approach to representing uncertainty rules in ruleml. In Proc. of the
2nd International Conference of Rules and Rule Markup Languages for the
Semantic Web (RuleML-2006). 2006.

[GK10] Paul Grosso and Jirka Kosek. Associating schemas with xml documents
1.0 (first edition). http://www.w3.org/TR/xml-model, 2010.

[IG09] Masayasu Ishikawa and Markus Gylling. XHTML 2.0 RELAX NG
Definition. http://www.w3.org/TR/xhtml2/xhtml20_relax.html\#a\

_xhtml20_relaxng, 2009.
[ISO08] ISO. ISO/IEC 19757-2: Document Schema Definition Language (DSDL)

Part 2: Regular-grammar-based validation - RELAX NG. http:

//standards.iso.org/ittf/PubliclyAvailableStandards/c052348_

ISO_IEC_19757-2_2008(E).zip, 2008.
[Mur98] Makoto Murata. Hedge automata: a formal model for xml schemata. http:

//www.horobi.com/Projects/RELAX/Archive/hedge_nice.html, 1998?
[Mur11] Makoto Murata. Re: Theory question: sub-grammars and sub-languages.

http://tech.groups.yahoo.com/group/rng-users/message/1345, 2011.
[Nat] J. B. Nation. Notes on lattice theory. http://www.math.hawaii.edu/~jb/

lat1-6.pdf.
[TBMM04] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-

sohn. XML Schema Part 1: Structures. World Wide Web Consortium,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/, 2004.

[Vli03] Eric van der Vlist. RELAX NG. O’Reilly, 2003.
[W3C98] W3C. Guide to the W3C XML Specification (”XMLspec”) DTD, Ver-

sion 2.1. World Wide Web Consortium, http://www.w3.org/XML/1998/
06/xmlspec-report.htm, 1998.

A Language Lattices

Informal Definitions of Containment. There is a variety of levels at which
we may define a partial ordering on a family of XML markup languages and

16 Tara Athan, Harold Boley

their grammars (schemas). We list here informal definitions of three of the
containment-based partial orderings that are relevant to the RuleML language
lattices. Formal definitions of these and other orderings and their mathematical
consequences are provided on the RuleML Language Lattice Wiki Page18.

– PSVI Containment: A language L1 is a PSVI sublanguage of another lan-
guage L2 if every valid document in L1 can be mapped to a valid document
in L2 with the same post-schema-validation infoset.

– Syntactic Containment: A language L1 is a syntactic sublanguage of an-
other language L2 if every grammatically-valid document of L1 is also a
grammatically-valid document of L2.

– Grammar Containment: A language L1 is a grammatical sublanguage of
another language L2 if the grammar of L2 is an extension of the grammar of
L1 created by adding new production rules and/or new terminal symbols.

Monotonicity from Schema Design Pattern. In general, these partial-order
relations are not equivalent. We introduced above a schema design pattern that
guarantees syntactic containment given grammar containment.

We consider the operation of merging two grammars as modules that are
both included, without overrides, by a driver file. According to [Mur11], if the
Relax NG syntax did not include the interleave combine attribute, the merger
operation would be monotonic; that is, any valid instance of one of the modules
would also be a valid instance of the merged grammar. Such monotonicity is very
powerful, but at a high price – the fine-grained modularization we seek would
be impossible without the interleave combine.

Our objective can be met with a compromise – we aim for a weaker mono-
tonicity and allow a restricted usage of the interleave combine. Consider the
operation of merging two grammars, one being the base grammar and the other
we call an expansion module. If any valid instance of the base grammar is also
a valid instance of the merged grammar, then we have a one-sided monotonicity
that is sufficient to establish the correspondence between the subset of included
modules and the lattice of languages generated by syntactic containment par-
tial order. This monotonicity also provides modular extensibility with backward
compatibility, i.e., a grammar may be extended by including an expansion mod-
ule without invalidating previously valid instance documents.

The segregated names schema design pattern described in Section 2.3 pro-
vides the desired monotonicity property. The use of an interleave combine with
an optional child in an expansion module can be shown to preserve monotonic-
ity by transforming the base grammar and expansion module pair to a pair of
modules without interleave combine whose merger is equivalent to the merger of
the first pair. For example, the two interleave combine definitions

x.interleave &= a
x.interleave &= y?

are equivalent to the following choice combine definitions:
x.choice |= a
x.choice |= a & y

18 http://wiki.ruleml.org/index.php/Language_Lattice.

