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ABSTRACT

Lighting experts viewed a series of greyscale images of a typical open-plan partitioned office, and rated

them for attractiveness.  The image was projected onto a screen at realistic luminances and 54% of full

size.  The images in the series were geometrically identical, but the luminances of important surfaces

were independently manipulated.  Initially, the combinations of luminances were random, but as the

session continued a genetic algorithm was used to generate images that generally retained features of

the prior images that were rated most highly.  As a result, the images presented converged on an

individual’s preferred combination of luminances.  The results demonstrated that this technique was

effective in reaching a participant’s preferred combination of luminances.  There were significant

differences in room appearance ratings of the most attractive image compared to an image of average

attractiveness, and the differences were in the expected direction (e.g., more pleasant, more spacious).

Furthermore, factor analysis of ratings of the most attractive images revealed a factor structure similar

that obtained when people rated real office spaces.  Preferred luminances were similar to those chosen

by people in real settings.

1.  INTRODUCTION

The traditional method of exploring preferred luminous conditions involves participants evaluating full-

scale physical mock-ups of spaces lit in different ways.  While high in external validity (the fit between

the experimental condition and a real world setting), these studies are expensive, especially if one

wishes to manipulate the lighting design between evaluations.  This is not only a drawback for the

researcher:  lighting manufacturers and designers who wish to present design solutions to their clients

are often required to create expensive physical mock-ups.

Partly as a response to this, there has been some interest in other, cheaper presentation methods,

such as scale models, photographs, or renderings from computer simulation packages.  Research in

areas such as forestry and architecture [e.g. Daniel & Meitner, 2000; Danford & Willems, 1975] have

established that images can be a reasonable surrogate for the real space, particularly on ratings related

to aethestics.  The limited research in lighting on this topic concurs with this, when representing the real

space with photographs [Hendrick et al., 1977], or with highly-detailed simulations [Eissa & Mahdavi,

2001].

However, these studies have been limited to the evaluation of a limited set of predefined luminous

environments.  With this approach one can compare ratings of images to real spaces, find which of a

set of images is most preferred, and look for general trends, but one cannot easily find the optimal

luminous environment.  Johnston [1999] and Johnston & Franklin [1993] described an interesting

method using computer-generated images of faces to arrive at an optimally attractive face.  The software

initially presented a series of faces with random variations of features (e.g., hair colour, size of chin,

separation of eyes).  The participant rated each of these faces in terms of attractiveness.  Using a

genetic algorithm, the software combined the most attractive faces to produce new combinations of

faces and the rating process was repeated until a face with an optimal rating for that participant was

arrived at.  The genetic algorithm proved to be a very effective method of arriving at an optimally attractive

face from a vast combination of possible faces.  Furthermore, there was commonality among the
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optimal faces produced and the features of the preferred faces correlated well with the preferred features

from other human factors studies using real stimuli.  In this study we applied Johnston’s method to

computer-generated images of lit scenes.

This is not the first study to apply genetic algorithms to find optimal solutions to lighting problems.

Ashdown [1994] described a process for using genetic algorithms in non-imaging optics to find optimal

luminaire designs.  Eklund & Embrechts [2001] used genetic algorithms to optimize filter design to

develop energy-efficient light sources with desired spectral output.  Chutarat & Norford [2001] described

an inverse method utilising genetic algorithms to derive the physical parameters of a room to produce

desired daylighting performance.

Other inverse methods using deterministic optimization techniques, rather than genetic algorithms, have

been applied to illumination in the computer graphics domain.  Kawai et al. [1993] presented a system

whereby a user could specify certain target luminous conditions and the optimal luminaire focussing and

output would be generated.  Schoeneman et al. [1993] allowed the user to “paint” lighting patterns on a

rendered scene and then determined the light outputs and colours from a given set of fixed luminaires

that would most closely match the desired pattern.  One drawback of these automatic optimization

techniques is that they are based on the user’s pre-existing biases towards a desired solution and on

pre-programmed weightings of various performance parameters, thus reducing the exploration of novel

solutions.

Moeck [2001] developed a software tool to directly manipulate the luminance and chromaticity of certain

surfaces in a computer-generated image.  These surfaces served as light sources themselves with

realistic inter-reflections allowing for the exploration of luminous patterns independent of specific

luminaires.  The concept is very similar to the method we use in this study, except that Moeck’s

software tool was designed for trial-and-error exploration as a teaching tool, and not as an optimization

tool for research.

To sum up, other researchers have explored using images as a surrogate for real spaces, and have

explored different techniques to find optimal lighting solutions.  To our knowledge, ours is the first study

to apply genetic algorithms to directly manipulate the image’s luminous field experienced by observers,

and to use the ratings of those observers as the performance criterion rather than calculated physical

parameters.

2.  METHODS & PROCEDURES

2.1  The Image

We chose to use an image of an open-plan, partitioned office space (a “cubicle”).  We did this for a

number of reasons.  These spaces are arguably the single most common work space in North America,

and therefore of importance and common to the experience of many people.  They offer several simple

and easily isolated surfaces to be manipulated.  We are also experienced in conducting lighting

experiments in real spaces of this kind.  We used a photograph of a cubicle in the same physical space

as that studied by Veitch & Newsham [1998; 2000] because their results from participants working in

this space could then be compared to the results of this study.

The photograph was taken from the entrance to the cubicle, so that various importance surfaces

(partitions, desktop, distant boundary wall, ceiling) each occupied a reasonably large area.  We wanted

to eliminate harsh shadows and illuminate each surface as evenly as possible in order to reduce

associations with particular light sources.  For the same reason, we did not want any luminaires to be

visible in the photograph.  By experimentation, we found the best light source to achieve this was the

camera’s own flash.  Unfortunately, this meant that absolute luminances were not measurable.  The

photograph was taken with a Kodak DC260 digital camera, in high resolution mode.  The raw image was

converted to greyscale, then digitally manipulated to eliminate undesirable shadows, and to make the
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luminances of the major surfaces more equal.  The latter manipulation facilitated a greater range of

luminance variations in the experiment.  Greyscale was chosen to eliminate chromatic effects from the

evaluation of luminance, a common simplification in lighting experiments. The final base image, and the

surfaces into which it was divided, is shown in Figure 1.

2.2  The Software

2.2.1 How the genetic algorithm works

This experiment followed the general model from Johnston’s work, in which an analogy between

Darwinian natural selection and the selection of the most attractive image is the basis of the technique.

To begin the analogy of genetic survival of the fit, we need to define a “gene” for the image of a lit office

space.  In this case we have six luminous surfaces, as shown in Figure 1.  We modify the luminance of

each surface by changing the greyscale value in the digital image.  There were 32 possible levels of

luminance for each surface, arranged on an almost linear scale of increments.  Each increment was

equivalent to a change in 5 greylevels on the 256 level (8-bit) monochrome scale.  Expressed in binary

terms, the luminance of each surface varied between 00000 and 11111 (between 0 and 31 in decimal

terms, which corresponded to a greyscale range of around 70 to 230, and a luminance range of

approximately 3 cd/m2 to 110 cd/m2, as presented to the participant).  These binary expressions form a

“luminance gene sequence” for the surface. So, for example, a luminance level of 9 for a surface, would

be represented by the gene 01001, a level of 22 as 10110, and so on.  The same can be done for each

of the six surfaces, resulting in a 30-digit binary string, or in genetic language, a “phenotype”, which

uniquely represents the combination of luminance in a particular image.  Figure 3 illustrates two

examples.

In the animal kingdom, according the Darwinian evolution, it is the fit individuals that survive, have most

offspring, and thus most influence the next generation [PBS].  Applying a genetic algorithm in our

experiment means that the most attractive (our measure of fitness) images are the ones that influence

the next generation of images.  Two of the most attractive images from a “population of images” are

selected as “parent” images, and “reproduce” to create “child” images.  Just as in the animal kingdom,

these children are the product of their parents’ genes and display similarity to their parents’ features.

We mimic sexual reproduction with operations on the binary strings called crossover and mutation (see

Figure 4).  In our version, each set of two parents produces two offspring; to follow the analogy, we call

the two parents the “father” and the “mother”, and the two children the “son” and the “daughter”.  To

create the son’s phenotype, we start with the first binary digit in the father’s phenotype.  For each digit,

reading from left to right, we randomly test to see if crossover occurs, if it does not, the son’s digit is a

copy of his father’s and the next digit of the father’s phenotype is tested for crossover.  However, if

crossover does occur the son’s digit is a copy of his mother’s and the next digit of the mother’s

phenotype is tested for crossover.  In our experiment, the possibility of crossover at each digit was set

at 25%.

As in nature, there is always the (small) possibility of random mutation, which can be very helpful in

bringing in new gene combinations which otherwise would not occur.  For example, if both the father and

the mother have a “0” as the 23rd digit (as in Figure 4), their offspring could never have a “0” without

random mutation.  Random mutations usually produce less fit individuals, and less attractive luminous

scenes, but can occasionally get a gene line out of an “evolutionary dead-end”.  Each of the son’s digits

is tested for a random mutation; in our experiment, the possibility of random mutation at each digit was

set at 4%.  The creation of the daughter’s phenotype was created in exactly the same way as the

son’s, except the process begins with the mother’s phenotype.

These two children are then presented to the participant and rated for attractiveness.  If they are rated

more highly than the lowest rated members of the existing population of images then they replace these

lower rated members.  The process of parent selection and creation of children continues, and the

population, on average, becomes more attractive and more homogeneous.  Genetic algorithms have



Lighting Paper #10 IESNA Annual Conference 2002, Salt Lake City 4

proven to be a much more efficient way of finding optimal solutions when the number of possible

solutions is large, than simply searching the set of solutions by trial and error.

2.2.2 The software used in the experiment

Software was written in Visual Basic to present the images, conduct the manipulation of surface

luminances according to the genetic algorithm, to administer questionnaires, and to store data.  A flow

diagram for the software is shown in Figure 2.

After reading some introductory information, participants were first presented with a basic set of

demographic questions on: Sex, Age, Vision Correction, and Occupation.  Following this, the main task

of the session began, the rating of office images.  The participants saw an initial set of 12 images, and

were asked to rate each one for attractiveness, on a scale of 1 (least attractive possible) to 10 (most

attractive possible).  As in the entire session, images were presented one at a time, separated by at 15

seconds during which no image was present on the screen.  Each of this initial set of images was

simply a random combination of surface luminances.  This set of 12 formed the initial population of

images.

Then the genetic algorithm process began.  Parent images were selected from the population.  One

parent was always the image with the highest rating.  The second parent was selected randomly from

the population, but the chance of being selected was weighted according to the image’s attractiveness

rating.  The child images were then presented and rated.  After rating each child, an extra element was

introduced to help the participant guide the genetic process – they were able to indicate for each

surface whether they would prefer it brighter, the same, or darker (see interface in Figure 5).  The next

child was then created according to the genetic process described above, but it was also tested against

the participant’s preference for each surface.  If the child did not meet the set of preferences it was

rejected and another child created and tested.  The process continued until a satisfactory child was

created.  Nevertheless, it was not always possible, particularly as the images converged on the

participant’s optimal image, to meet the participant’s preferences for all surfaces.  In such cases the

criteria for the number of surfaces that met the preferences was decreased from six to five to four and so

on until a suitable child was created.  The approach of guiding the genetic process was adopted by

Johnston and shown to greatly increase the efficiency of the genetic algorithm [Caldwell & Johnston,

1991].

The process of parent selection and child creation continued until an end condition was reached.  There

were three conditions that ended the process:

• An image was given a rating of 10 (this could happen for one of the initial 12 images)

• A participant expressed a preference for the same brightness for all six surfaces

• Neither of the two children created from a set of parents were rated more highly than the least

attractive member of the prevailing population

Following the end condition, the participants were asked to rate the appearance of two images on a

series of semantic differential (adjective pair) scales.  The two images that were rated were the image

with the highest rating in the final population (Best image), and the image rated third highest from the

initial population (Comparison image).  We wanted to test whether the genetic algorithm had in fact led

to a preferred image that was significantly different from a non-optimal image.  It seemed sensible that

the comparison image be one of the initial random population so that its creation had not been

influenced by the guided genetic algorithm.  Nevertheless, we did not want to bias the comparison by

choosing a comparison image that had an excessively low rating.  For the appearance ratings, we

chose 14 bipolar adjective pairs (bright - dim, uniform - non-uniform, interesting - monotonous, pleasant

- unpleasant, comfortable - uncomfortable, stimulating - subdued, radiant - gloomy, tense - relaxing,

dramatic - diffuse, spacious - cramped, glaring - not-glaring, friendly - hostile, simple - complex, formal -

casual).  These adjective pairs were derived from previous research (Hendrick et al. 1977, Eissa &

Mahdavi, 2001, Loe et al., 1994, Veitch & Newsham, 1998).  The Best and Comparison images were
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presented in random order with each adjective pair presented one at a time next to the image.  The

participants gave their rating by moving a cursor between the two adjectives.

Finally, the Best image was recalled to the screen and the participant was asked to indicate, for each

surface in turn, whether they would prefer it to be A lot Brighter, a little Brighter, No Change, a little

Darker, A lot Darker.  The image did not change in response to this input.  These ratings were another

way of assessing how optimal the Best image was.

2.3  The Experimental Space

The experiment was conducted using images projected onto a viewing screen using a Sharp model PG-

C30XU LCD projector (see Figure 6 for diagram and photograph).  Participants sat in a chair and viewed

the image through a rectangular slot that could be adjusted in height.  The inside of the space into

which they looked was completely black except for the image, so there was no distracting surround.

The participant had access to a keyboard and a mouse for answering questionnaires and making

ratings.

The distance from the projector to the viewing screen affected both the size of the image and the

maximum brightness of the surfaces.  We wanted to make both as realistic as possible, but we were

limited by the capabilities of the LCD projector.  Our final choice gave an image that was 1.52m (60”)

wide and 1.02m (41”) high, such that the computer monitor in the image was 0.20m (8”) corner to

corner, or about 54% of full size.  This allowed us to created surface luminances up to around 110

cd/m2, allowing for a wide range of realistic preferences.  The luminance of the computer monitor in the

image, which was constant for all images presented, was set to 53 cd/m2, typical of the luminance we

measured for light grey on a real monitor; ANSI/IESNA RP-1 [1993] suggests typical screen luminances

of 50 cd/m2.

2.4  Physical Measurements

Prior to beginning data collection we used a Topcon BM3 luminance meter to provide a calibration

between grey level and luminance on the viewing screen.  This calibration is show in Figure 7.

2.5  Participants

The 22 participants (10 male, 12 female) were lighting experts from all over North America (IESNA QVE

committee) who were participating as part of workshop organised in conjunction with a nearby

conference.  Participation was voluntary, and there was no reward for participation. Participant

characteristics, from their self-reported demographic data, are shown in Table 1.

2.6  Experimental Procedure

At the start of the workshop potential participants were given a general description of the experiment

both verbally and on paper, and asked to sign a consent form.  We had two projection booths and so we

were able to run two experimental sessions simultaneously.  Therefore, two participants at a time were

taken from the pool of 22 in an order that was determined by a random ballot conducted after the

consent forms were signed. When not participating in the experiment, participants were either

participating in a second experiment (to be reported elsewhere), or they took part in other lighting-

related discussions as part of the workshop.  The experimenter explained the procedure to the

participants, and then invited them to take their places.  All further information, instructions and tasks

were presented on screen, though the experimenter remained close by to answer any arising questions.

The entire procedure was submitted to and approved by our organisation’s Research Ethics Board.

Completion of the on-screen part of the experimental procedure took a mean time of 20:47 (min:sec);

s.d. = 5:14.
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3.  RESULTS

We present the results of the experiment as they pertain to specific questions we wanted to address.

3.1  Did the Genetic Algorithm Lead to a Highly Rated Image?

There were two direct measures pertaining to this question: the attractiveness ratings of the Best image

(Figure 8), and the preferred changes in the Best image expressed at the end of the session (Figure 9).

The mean attractiveness rating of the best image was 8.2 (s.d. = 1.4), and the modal rating was 9.

When offered the opportunity to express a final preference for a change in surface brightnesses, almost

60% of the votes were for no change, and 95% for ‘No Change’ or ‘A little darker’ or ‘A little brighter’.

A measure of the efficiency of the algorithm in reaching the best image is the number of images seen by

the participants.  No participant gave an attractiveness rating of 10 to any of the initial 12 random

images, all progressed to the stage where images were generated according to the genetic algorithm.

The mean number of images seen was 22.5 (s.d. = 5.3).

Although the Best image was not perfectly optimal (mean attractiveness rating was 8.2, not 10), it was

rated very highly, and preferences for change were small.  The Best image was achieved after viewing

relatively few images.  To summarize, the genetic algorithm was quite successful with the promise of

future refinement.

3.2  Is the Most Attractive (Best) Image More Highly Rated than a Non-Optimal (Comparison)

Image?

For the method to be useful, it must produce optimal images that are rated differently to non-optimal

images, and in the expected manner – that is to say, observers must be able to reliably discriminate

between preferred and non-preferred images.  One way we explored this was through the semantic

differential appearance ratings of the Best and Comparison images.  Remember, both of these images

differed from participant to participant (see Section 2.2.2).  Figure 9 presents an example Best and

Comparison image for one of the participants.

Figure 10 shows the mean ratings  for the Best and Comparison images for each of the adjective pairs.

We conducted statistical analyses to check for differences between the ratings.  We first conducted an

overall multivariate analysis of variance (MANOVA) to check for an overall difference across all adjective

pairs. Statistical tests were within-subjects on a single independent variable: image type; with two

levels: Best vs. Comparison.  The overall difference was not significant (Wilks’ Λ = 0.194; R2
ave = 0.36;

F(14,8) = 2.37; p = 0.11).  The lack of significance is not surprising, given the large number of

dependent variables (14 adjective pairs) and the relatively small number of participants (22).  In fact, this

ratio of participants to dependent variables is below that normally recommended, and it is therefore

interesting to note the high value of the average variance explained (R2
ave).  It is not our usual practice to

explore univariate effects – or differences on individual adjective pair ratings – if the overall MANOVA is

not significant, as this runs the risk of Type I statistical errors.  Nevertheless, because this is a pilot

study of a new technique for lighting research, in this case we do report the results of the univariate

tests.  We believe that in this case the potential insight into the value of this new technique justifies the

choice.  The results of the statistical tests are shown in Table 2.  The Best image is significantly

brighter, more uniform, more pleasant, more comfortable, more subduing, more relaxed, less dramatic,

more spacious, less glaring, more friendly and less complex.

These differences are as expected and, indeed, desirable.  It is an important test of the method that

participants can discriminate between stimuli in the expected manner.  This result increases our
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confidence that participants view the projected images in a similar way to the way they view real

settings.

3.3  Are Images Perceived in the Same Way as Real Spaces?

Again, for this method to have value, it is important that participants interpret the patterns of light and

dark in the viewed images as lighting of a real scene.  We explored this with a factor analysis of the

semantic differential appearance ratings.  Factor analysis techniques find correlations between many

scales, based on the supposition that responses to the individual scales represent facets of a response

to a smaller number of higher level concepts.  We expected that if the participants interpreted the

images as the lighting of a real scene then the factor structure would be the same as the factor

structure derived from ratings of a real scene.  The image we used for this experiment was taken in a

mock-up office space that had been previously used for a human factors study of lighting quality [Veitch

& Newsham, 1998].  In that study nearly 300 participants experienced nine different office lighting

designs (between-subjects) for a day, doing simulated office tasks and completing a variety of

questionnaires.  The participants completed a similar set of semantic differential appearance artings on

which factor analysis was performed.

The appearance ratings from our experiment were subjected to a factor analysis (principal components).

The ratings of the best image and the comparison image were analysed independently, and the results

are shown in Table 3.  Also shown in Table 3 is the factor analysis of Veitch & Newsham [1998].  The

ratings in Veitch & Newsham included more adjective pairs than we used in this study, only shared

items are shown in the table, except for one adjective pair, ‘friendly-hostile’, which  was used in the

present study and not used in Veitch & Newsham.  To facilitate comparison with the data from Veitch &

Newsham, we forced a three factor solution on the data from this experiment.  As in Veitch & Newsham

we use a conservative criterion for factor loadings, highlighting only those unrotated loadings greater

than 0.5.

The results show that the factor structure from the Best image is very similar to the factor structure from

Veitch & Newsham, and we can be confident in using the same words to describe the concepts

associated with each factor.  The differences in structure are small: for the Best image glaring-not

glaring loads on Factor 1, whereas it did not load (>0.5) on any factor in Veitch & Newsham; dramatic-

diffuse loads on Factor 2, whereas it did not load (>0.5) on any factor in Veitch & Newsham.  For the

Best image, interesting-monotonous and subdued-stimulating load on Factor 2 as well as Factor 1,

whereas they loaded on Factor 1 only in Veitch & Newsham.

The factor structure from the Comparison image is much more complex and compares poorly with the

data from Veitch & Newsham.  There are many more adjective pairs that load on different factors, and

load on more than one factor, and simple labels for the concepts associated with these factors are

difficult to derive.

One explanation for these results is that participants did perceive the Best image as a realistic lit scene

and produced a factor structure similar to that derived from evaluations of a real scene.  On the other

hand, the Comparison image was not perceived as realistic.  Figure 9 demonstrates why this might be

so.  The pattern of light and dark surfaces in the Best image corresponds well with what might occur in

a real office space where reflectances are reasonably uniform and the lighting system is simple.  It is

clear that the pattern of light and dark surfaces in the Comparison image would be very difficult to

achieve in reality except by using very non-uniform reflectances or a set of very focussed luminaires,

both of which would be highly unusual in this setting.

The fact that the participants’ Best image seems to have been perceived as realistic supports the

validity of the method for deriving preferred luminous patterns for real spaces.
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3.4 Are Preferred Luminances and Ratios the same as Those Derived from Experiments in Real

Spaces?

Table 4 presents a summary of the luminance information from the 22 Best images.  Data is presented

for the six surfaces that were independently manipulated, for meaningful combinations of surfaces, and

for important ratios.

To check further the validity of this method we compared the preferred luminous conditions in the Best

images to those derived from human factors experiments in real spaces.  All of the studies we refer to in

this section excluded daylight and derived preferences for electric lighting only, analogous with our

study.  Veitch & Newsham [2000] conducted a study in the same laboratory space in which the

photograph used in this study was taken.  Participants had dimmable control over three lighting circuits

(one indirect and two direct) as well as on-off control over an undershelf task light.  Participants

occupied the space for an 8-hour day during which they conducted typical office tasks, predominantly

computer based.  Half the sample of 94 had control at the start of the day, the other half at the end of

the day.  One value reported was the mean luminance in an area that included the partitions behind the

computer and under a binder bin, part of the desktop and part of the binder bin – this area was chosen

to represent the 40o horizontal band of field of view from Loe et al. [1994].  The median luminance

chosen by participants in this area was 39.2 cd/m2 (min. = 11.5, max. = 61.0, s.d. = 12.0) [Veitch &

Newsham, 2000].  The nearest equivalent value from this study is probably the mean of ABCD (all the

partitions and desktop taken together, median = 46.8 cd/m2 (min. = 32.8, max. = 73.7, s.d. = 9.3).

Note that the value from Veitch & Newsham included part of the binder bin – a very dark area (< 10

cd/m2) occupying around 1/12 of the field of view, which was not included in the mean of ABCD.

Removing the binder bin from the Veitch and Newsham area would increase the median luminance to by

around 10%, making the comparison even better.

We can also make an approximate comparison of preferred desktop luminance.  Veitch and Newsham

[2000] reported illuminance at a single location.  If we assume this was representative of the average for

the whole desktop, and we assume it was a diffuse (it was actually described as low gloss, ρ=0.503),

then we can derive desktop luminance.  The luminance thus derived, median = 66.1 cd/m2 (min. = 13.3,

max. = 116.1, s.d. = 24.3), compares well with the preferred desktop luminance from this study, median

= 55.1 cd/m2 (min. = 10.3, max. = 103.5, s.d. = 28.1).

Berrutto et al. [1997] also gave participants dimming control over a variety of luminaires in small private

offices.  Exposures were limited to 20 minutes, and data were collected separately for different tasks.

They concluded that for non-VDT tasks wall luminance at eye level should be around 60-65 cd/m2, and

for VDT tasks the luminances around the screen should be equal or lower than the luminance of the

screen.  In our study, the screen luminance was 53 cd/m2 and the immediate surround luminance,

perhaps best expressed by the average of AB, had a median of 45.4 cd/m2.  They described their

furniture to include “one slightly glossy grey desk (50% reflectance).”  If we make the same diffuse

reflection assumptions as above, then, for non-VDT tasks, mean desktop luminance = 65.4 cd/m2 (min.

= 15.3, max. = 176.9), and, for VDT tasks, mean desktop luminance = 43.8 cd/m2 (min. = 9.7, max. =

87.1).  These values bracket the results from our study.

Van Ooyen et al. [1987] presented participants with different office luminous environments by

manipulating light distributions and changing the reflectivity of surfaces; working plane illuminance was

maintained at around 750 lux.  The spaces were private two-person offices, and data were collected

separately for different tasks.  For non-VDT tasks, preferred wall luminances were 30 to 60 cd/m2, and

preferred working plane luminances were 45 to 105 cd/m2.  For VDT work the values were reduced:

preferred wall luminances were 20 to 45 cd/m2, and preferred working plane luminances were 40 to 65

cd/m2. These preferred luminances correspond well with our median luminances from the Best images.

Van Ooyen et al. reported that the preferred ratio of working plane luminance to wall luminance was

1.33:1, our equivalent ratio D:ABC was 1.21:1, which is remarkably similar.
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Loe et al. [1994] had observers rate a small conference room from a point of view equivalent to the

room’s entrance.  Lighting conditions were manipulated by the experimenters using a variety of

luminaires.  They concluded that for ‘visual lightness’ the preferred average luminance in a horizontal

band of field of view 40o wide should be >= 30 cd/m2.  It is difficult to make a direct comparison to our

data as the image participants evaluated in our study did not fill the entire field of view and was entirely

encompassed by Loe et al.’s 40o band.  The median value of all six surfaces in the Best images in our

experiment was >30 cd/m2, and the mean of all six surfaces was > 30 cd/m2 for all 22 participants’ Best

images (min. = 39.7 cd/2).

Taken together, these comparisons show that the preferred luminances derived from our study compare

well with the preferred luminances from other studies using more traditional methods.

3.5  What are the Recommended Luminances Derivable from this Study?

Our study shows that that there is a wide variety in the preferences of individuals.  This is a common

finding in lighting research, which suggests that the best way to maximise satisfaction with lighting is to

offer individual control [Newsham & Veitch, 2001].  Several studies have demonstrated that individual

control over lighting can also improve overall environmental satisfaction, lower lighting energy

consumption, and allow the occupant to tailor lighting to tasks [Boyce et al, 2000; Jennings et al., 2000,

Maniccia et al., 1999; Carter et al., 1999].

Nevertheless, individual control is not always available.  When lighting is fixed and the same for all, the

recommended luminances for the space are simply the averages for each of the surfaces.  These values

are shown numerically in Table 4, and pictorially in Figure 111.  It is interesting to compare this with the

base image in Figure 1 in which each surface is in the middle of the range of possible values.  In the

average preferred image the partitions behind the computer are slightly darker, whereas the partition

below the storage bin is slightly lighter – in reality this could only be achieved with an undershelf task

light.  The desktop is slightly lighter than the partitions, as is the distant wall.  The brightest surface of

all is the ceiling.

4.  FURTHER DISCUSSION

Following data collection, which took place on a single day, many of the participants met together with

the experimenters to discuss the experiment.  Several of the participants thought that the setting and

stimulus were very artificial and doubted that the results would have meaning or be applicable in real

settings.  It is therefore particularly pleasing that the results we did obtain are very promising, and

similar to those obtained from experiments in real settings – our participants were clearly not biased

towards obtaining a positive result!

Some participants were frustrated that they could only express their preferences by guiding the

evolution process – which did not always give them exactly the result they were expecting – rather than

by directly manipulating the brightness of each surface.  However, one of the advantages of the genetic

algorithm is that it is not deterministic and includes some randomness.  This forces participants to

consider luminous environments they are not familiar with but which might have advantages, rather than

allowing them to immediately select a pattern of brightnesses according to a pre-existing bias.  Also,

this study involved the manipulation of only six surfaces, direct manipulation might not be practical in

future studies involving many more variables.

In this study we changed the luminance of objects uniformly across their surface, which emphasized the

independence of these changes from any luminaires.  In addition, the surface luminances were

independent of each other, there were no direct inter-reflections.  Furthermore, no luminaires were visible

                                                
1 The translation to the image is only approximate because the numerical average does not necessarily

correspond with an integer gene value.
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in the viewed image.  This was deliberate; we are interested in participants’ fundamental preferences of

light and dark without concern as to how this might be achieved in reality.  Nevertheless, there is a

danger in this: in reality, surface luminances can be changed via illumination or by changing reflectance,

and the two are not necessarily perceptually equivalent (see references in Moeck [2001]).  Therefore,

our approach risks confusing the participant when viewing the scene: are they observing lighting

manipulations, reflectance manipulations, or a combination of both?  This could be a mechanism for

reducing the reality of the experience.  Nevertheless, we reiterate that our results compare well with

those obtained in real settings.  It is also worth noting that natural-looking inter-reflections could be

achieved in our study indirectly.  A brighter partition would not directly produce a brighter desktop, but a

brighter desktop could be achieved in future generations of the image.  All the same, in future work we

intend to include realistic luminaires and inter-reflections.

In Section 3.3 we noted that the factor structure from the semantic differential appearance ratings for the

Best image was similar to the structure from ratings in a real setting, where as the factor structure from

the Comparison image was not.  We concluded that the Best image was perceived as realistic whereas

the Comparison image was not.  To investigate this further in future work, we plan to add a third image

to the appearance rating part of the experimental procedure.  This third image will be selected to be

realistic:  possibilities include the inverse of a participant’s Best image, the average Best image from

this study, or a suitably modified image from a real setting.  If the factor structure of the this third image

is similar to that from the Best image and to ratings from a real setting we can have more confidence

that participants perceive their preferred, Best image as realistic.

5.  CONCLUSIONS

The main findings of this experiment are:

• The genetic algorithm method is successful in obtaining participant’s preferred luminance patterns

(Best image) in a greyscale image of an office space.

• Participants were sensitive to manipulation of luminances in the image, such that appearance

ratings of a participant’s Best image and a non-optimal Comparison image were significantly

different in the expected directions.

• The factor structure of the appearance ratings for the Best image is similar to the factor structure for

ratings given by occupants of an equivalent real space.

• The preferred surface luminances from the projected images are similar to those from experiments

in real settings.

All of these findings indicate that the genetic algorithm method of deriving preferred patterns of

luminance, realised by projecting close to full-scale images at realistic luminances, has promise.

Future work should further explore this method using larger number of participants drawn from a more

representative population (i.e., not lighting experts). If future work reinforces our findings that the results

of this method are equivalent in many ways to the results from real settings, this method might be able

to replace much more expensive experiments in real settings in some instances.
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Table 1.  Participant characteristics.

Total

responses

Sex Female Male

22 12 10

Age 18-29 30-39 40-49 50-59 60-69 70+

22 1 8 7 5 1 0

Correction

Lenses

None Reading

Glasses

Distance

Glasses

Bi- or

Trifocal

Lenses

Gradual or

Multifocal

Lenses

Contact

Lenses

22 5 4 5 2 2 4

Principal

Occupation

Research Education Design Manufacturin

g
Marketing/

Sales

Other

22 4 4 6 5 2 1

Table 2.  Result of MANOVA and univariate effects on appearance ratings.  Statistical tests were

within-subjects on a single independent variable: image type; with two levels: Best vs. Comparison

Effect r2 F(1,21) p

bright - dim 0.29 8.62 <0.01

uniform - non-uniform 0.55 26.08 <0.01

interesting - monotonous n.s.

pleasant - unpleasant 0.55 25.17 <0.01

comfortable - uncomfortable 0.55 26.04 <0.01

stimulating - subdued 0.18 4.70 <0.05

radiant - gloomy n.s

tense - relaxing 0.48 19.74 <0.01

dramatic - diffuse 0.52 22.73 <0.01

spacious - cramped 0.35 11.06 <0.01

glaring - not-glaring 0.35 11.29 <0.01

friendly - hostile 0.34 10.59 <0.01

simple - complex 0.54 24.24 <0.01

formal - casual n.s.

Overall MANOVA: Wilks’ Λ = 0.194; r2ave = 0.36; F(14,8) = 2.37; p = 0.11 (n.s.)
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Table 3.  Results of factor analysis on semantic differential appearance ratings for Best image and

Comparison image.  Also shown is a similar analysis from Veitch & Newsham [1998], labelled ‘V&N’ in

the table.  A * in the table indicates an unrotated factor loading of  >0.5.

Factors & Unrotated Component Loadings

Factor 1 Factor 2 Factor 3

V&N best comp. V&N best comp. V&N best comp.

Concept associated with factor

→

Visual

Attractio

n

Visual

Attractio

n

Complexit

y

Complexit

y

Brightnes

s

Brightnes

s

ADJECTIVE PAIR ↓
friendly-hostile N/A * * N/A N/A

pleasant - unpleasant * * *

interesting - monotonous * * * *

comfortable - uncomfortable * * *

subdued - stimulating * * * *

gloomy - radiant * * * *

spacious - cramped * * *

tense - relaxing * * * *

nonuniform – uniform * * *

complex - simple * * *

bright - dim * * * *

glaring - not glaring * *

dramatic - diffuse * * *

formal - casual

% Total Variance explained

Veitch & Newsham [1998] 44.2

Best image 73.7

Comparison Image 69.3
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Table 4.  Luminances derived from the 22 Best images.  Values for the six directly manipulated

surfaces are shown, as well as combinations of surfaces, and important ratios.

Median (s.d.) Min. Max.

Left Partition (A) cd/m2 41.1 (17.2) 16.4 82.9

Right Partition (not under bin) (B) cd/m2 49.0 (18.6) 13.6 89.7

Partition (under bin) (C) cd/m2 53.3 (24.2) 2.6 94.1

Desktop (D) cd/m2 55.1 (28.1) 10.3 103.5

Distant Wall (E) cd/m2 52.6 (24.2) 10.4 101.7

Ceiling (F) cd/m2 62.7 (22.9) 14.0 95.9

mean of ABCD cd/m2 46.8 (9.3) 32.8 73.7

mean of ABC cd/m2 46.2 (12.6) 30.0 76.5

mean of AB cd/m2 45.4 (16.3) 17.4 86.3

A:B 0.88 (0.58) 0.52 3.25

B:C 1.06 (4.00) 0.18 19.46

D:ABC 1.21 (0.84) 0.18 3.17

AB:E 0.91 (0.91) 0.18 4.52

E:F 0.88 (0.85) 0.16 4.13

VDT screen:ABC 1.17 (0.29) 0.71 1.80

VDT screen:D 0.98 (1.09) 0.52 5.26

AB:F 0.70 (0.89) 0.36 4.04

D:ABCD 1.15 (0.52) 0.33 2.05
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Figure 1.  The base image used in the experiment, and the six surfaces that were independently

manipulated in luminance.
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Figure 2.  Overall flow diagram of software used in experiment
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Left Partition Right Partition
(not under bin)

Partition

(under bin)

Desktop Distant Wall Ceiling

01001 01001 10110 00101 10000 11001

Left Partition Right Partition
(not under bin)

Partition

(under bin)

Desktop Distant Wall Ceiling

10011 11001 11100 10110 01000 01100

Figure 3.  Two example combinations of surface luminances.  Below each is the binary phenotype

that represents the combinations of luminances, made up of 5-digit genes for each surface.



Lighting Paper #10 IESNA Annual Conference 2002, Salt Lake City 19

Father: 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1

Mother: 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0

Son: 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0

Figure 4.  Crossover and mutation from parents’ phenotypes (see Figure 3) to create a son phenotype;

mother’s genes are underlined.  Resulting combination of surface luminances is shown.
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occurs
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occurs

Crossover
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Crossover
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Crossover

occurs
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Mutation
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Figure 5.  Interface for the experimental task.  Participants rated the image for overall attractiveness.

They then used the boxes at the bottom to indicate their brightness preference for each surface.
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Figure 6.  Experimental set-up.  Participants viewed the projected image through a port-hole (photo on

left).  The space into which they looked was black except for the projected image (photo on right, with

front wall removed).  Diagram shows side elevation, approximately to scale.
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LCD projector

Computer
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Figure 7.  Calibration of projector screen luminance vs. image pixel grey level.

Figure 8.  Histogram of the attractiveness rating of the Best image (n=22).
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Figure 8.  Histogram of the preference for change in brightness of the six surfaces in the image, for the

Best image.  Data for all surfaces are grouped (n=132).

Figure 9.  Example of a Best image (in this case, given an attractiveness rating of 8) and its

Comparison image (which received an attractiveness rating of 6).
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Figure 10.  Comparison of mean semantic differential appearance ratings for the Best image and its

Comparison image (n=22).  A star next to the point representing the mean rating of the Best image

indicates a significant difference for that adjective pair.

Figure 11.  (Approx.) Average preferred luminance.
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