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Abstract

In the last few years, we have developed a fairly general adaptive finite element solution procedure which can be applied to a large variety

of problems. In this paper, this strategy is briefly recalled and applied to the solution of two-dimensional viscoelastic fluid flow problems. A

log-conformation formulation recently introduced by Fattal and Kupferman [R. Fattal, R. Kupferman, Time-dependent simulation of viscoelastic

flows at high Weissenberg number using the log-conformation representation, J. Non-Newtonian Fluid Mech. 126 (2005) 23-37] was implemented

in order to improve the convergence properties of the numerical scheme. We confirm some results obtained in Hulsen, Fattal and Kupferman

[M. Hulsen, R. Fattal, R. Kupferman, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix

logarithm, J. Non-Newtonian Fluid Mech. 127 (2005) 27-39] and in some instances, we show that mesh adaptation allows to almost automatically

reproduce accurate results obtained on very fine structured meshes.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The simulation of highly viscoelastic fluid flow problems

is still plagued with the so-called high Weissenberg problem

(HWP). The Weissenberg number We is the ratio of the magni-

tude of the elastic forces to that of the viscous forces. Most (if not

all) numerical methods lose convergence i.e. fail to generate any

result and/or fail to generate convergent solutions with respect to

mesh size, at small or moderate Weissenberg numbers, limiting

their use in industrial flow situations.

The source of the problem is partly numeric and partly

due to questionable models such as Maxwell or Oldroyd.

From a numerical standpoint, definite improvements were made

possible by the introduction of more sophisticated numerical

techniques: consistent discretisation of the different variables

as in Fortin, Guénette and Pierre [3], Marchal and Crochet [4],

etc; upwinding techniques for convective equations such as dis-

continuous Galerkin (see Fortin and Fortin [5]), SU and SUPG

methods (see Crochet [4]); the introduction of more appropri-

ate variational formulations such as the Elastic-Viscous Stress

splitting (EVSS) of Rajagopalan et al. [6], etc.

∗ Corresponding author.

E-mail address: afortin@giref.ulaval.ca (A. Fortin).

Recently, a log-conformation formulation was proposed by

Fattal and Kupferman [1] and further implemented in Hulsen,

Fattal and Kupferman [2]. The main idea is to formulate the

constitutive equation in term of the conformation tensor instead

of the extra-stress tensor. More precisely, the constitutive equa-

tion is written in terms of the logarithm of the positive definite

conformation tensor which is therefore well defined. This idea is

new for viscoelastic fluid flow problems but was already used for

the simulation of turbulent flow problems where the κ–ǫ model

is frequently rewritten in terms of the variables K = log κ and

E = log ǫ as in Ilinca, Hétu and Pelletier [7]. One of the advan-

tages is that when recovering κ = exp(K) or ǫ = exp(E), the

result is always positive which is not always the case with for-

mulations using κ and ǫ directly. This formulation has also some

good influence on the convergence properties of the numeri-

cal solver. Indeed, the logarithm of a variable presenting very

steep variations is much easier to capture with a finite element

discretisation.

Adaptive methods are now used extensively in CFD codes.

Starting from a numerical solution, the error is estimated and

the mesh is modified so that the numerical solution respects

some prescribed error level. In particular, the development of

anisotropic meshes where elements can present very large aspect

ratios has received a lot of attention in the last few years. Robust

anisotropic adaptive strategies require reliable and consistently

0377-0257/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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accurate solvers capable of dealing with strongly elongated ele-

ments appearing in unstructured meshes. This kind of solver

was certainly not available for viscoelastic flows until recently.

We believe that the introduction of the log-conformation ten-

sor formulation is a huge step in the right direction. As shall be

seen, using this formulation, it is now possible to compute com-

plex viscoelastic flows, adapt the mesh and recompute a more

accurate solution, often with fewer elements.

2. Governing equations

Let us consider the flow of a viscoelastic fluid in a spatial

region Ω, having boundary Γ . The governing equations are the

following:

Conservation of mass:

∇ · u = 0 (1)

Conservation of momentum for creeping flow:

−∇ · τ − ∇ · (2ηsγ̇(u)) + ∇p = 0 (2)

In the above equations, p is the pressure, u is the velocity vector,

γ̇(u) is the rate of deformation tensor:

γ̇(u) =
∇u + (∇u)t

2
=

L + Lt

2
(with L = ∇u)

ηs is the solvent viscosity and τ is the extra-stress tensor. The

polymer contribution can be modeled by various constitutive

equations. Two popular choices are the exponential Phan-Thien-

Tanner model [8]:

λ

(

∂τ

∂t
+ u · ∇τ − L · τ − τ · Lt

)

+ exp

(

λǫ

ηp
tr(τ)

)

τ = 2ηpγ̇(u) (3)

and the Giesekus model:

λ

(

∂τ

∂t
+ u · ∇τ − L · τ − τ · Lt

)

+τ

(

I +
αλ

ηp
τ

)

= 2ηpγ̇(u) (4)

In these constitutive equations, ηp is the viscosity of the

polymer and λ a relaxation time. The parameter ǫ is a mate-

rial constant related to the extensional viscosity. In both cases,

the extra-stress tensor is related to the conformation tensor c by

the relation:

τ =
ηp

λ
(c − I) (5)

Replacing in Eqs. (3) and (4), one can obtain a unique expression

of the evolution equation of the conformation tensor that takes

the following form:

∂c

∂t
+ u · ∇c − L · c − c · Lt = f (c) (6)

with:

f (c) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
exp(ǫ(tr(c) − 3))

λ
(c − I) (PTT)

−

(

I + α(c − I)

λ

)

(c − I) (Giesekus)

(7)

3. Log-conformation form of the constitutive equation

The log-conformation formulation has been introduced by

Fattal and Kupferman [1] and further implemented by Hulsen,

Fattal and Kupferman [1,2]. This new formulation appears as a

promising approach to overcome the high Weissenberg number

problem for viscoelastic fluid flow simulations.

In this section, we briefly recall the derivation of the log-

conformation formulation. The details can be found in references

[1,2]. Since the conformation tensor c is symmetric and positive

definite (SPD), it takes the form:

c = R · Λ · Rt (8)

where R is an orthogonal tensor (R · Rt = I) and Λ is a diagonal

tensor containing the strictly positive eigenvalues λi of c. The

logarithm of the tensor c is then well defined as:

s = log c = R · log Λ · Rt

with log Λ a diagonal matrix whose entries are log λi.

Denoting Ω the antisymmetric matrix −R · Ṙ
t
, where Ṙ

stands for the material derivative of R, the constitutive Eq. (6)

can be written along the principal axes of c:

Ω̃ · Λ + Λ · Ω̃
t
+ Λ̇ = (L̃ · Λ + Λ · L̃

t
) + f (Λ) (9)

In the above equation, the tensor f (Λ) is diagonal with entries

fi(λ1, λ2, λ3). The tensors Ω̃, L̃ are related to Ω and L by the

relations Ω = R · Ω̃ · Rt and L = R · L̃ · Rt. The constitutive

Eq. (6) can then be expressed in terms of the logarithm of c

which is the basic log-conformation form of Eq. (6):

∂s

∂t
+u · ∇s−R ·

(

Λ̇ · Λ−1+Ω̃ · log Λ+ log Λ · Ω̃
t
)

· Rt = 0

(10)

Eq. (10) is still difficult to handle due to the presence of the matri-

ces Λ̇ · Λ−1 and Ω̃ · log Λ + log Λ · Ω̃
t
that cannot be evaluated

directly. On the one hand, Λ̇ · Λ−1 is diagonal and it is easy to

show that:

λ̇iλ
−1
i = 2L̃ii +

fi(λ1, λ2, λ3)

λi

(11)

On the other hand, the matrix Ω̃ · log Λ + log Λ · Ω̃
t

is sym-

metric with zero diagonal entries and it can be shown that its

off-diagonal terms are (for i �= j):

w̃ij(log λj− log λi) =

(

log λj− log λi

λj−λi

)

(λiL̃ji+λjL̃ij) (12)

When λj �= λi, this last expression is used. However, when λj =

λi, a passage to the limit is necessary and we get:

w̃ij(log λj − log λi) = (L̃ij + L̃ji) (13)
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In practice, the condition |λj − λi| < ǫ with ǫ of the order 10−8

is applied in order to switch between the two cases. Different

values of ǫ has been tested with no significant changes.

4. Numerical discretisation

A finite element method is used for the spatial discretisa-

tion of this system of equations. In order to obtain a proper

mixed finite element formulation, a Discrete Elastic–Viscous

Split Stress (DEVSS) formulation introduced in Fortin, Fortin,

Guénette and Pierre [9,3] is used for the discretizations of the

momentum and the continuity equations as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−∇ · τ + ∇ · (2αd) − ∇ · (2(ηs + α)γ̇(u)) + ∇p = 0

d − γ̇(u) = 0

∇ · u = 0

∂s

∂t
+u · ∇s−R ·

(

Λ̇ · Λ−1+Ω̃ · log Λ+ log Λ · Ω̃
t
)

· Rt = 0

τ −
ηp

λ
(exp s − I) = 0

(14)

In this paper, the velocity is approximated by continuous

quadratic polynomials, the pressure by continuous linear poly-

nomials (the Taylor–Hood P2–P1 element). The logarithm of

the conformation tensor (s), the extra-stress (τ) and the rate of

deformation (d) have all been approximated by continuous lin-

ear polynomials. Denoting by v, q, φd , φs and φτ the weighting

functions for the variables u, p, d, s and τ respectively, the finite

element system takes the form:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

Ω

[−(∇ · τ) · v − 2αd : γ̇(v)dx

+2(ηs + α)γ̇(u) : γ̇(v) − p∇ · v]dx = 0
∫

Ω

∇ · uqdx = 0

∫

Ω

[d − γ̇(u)] : φddx = 0

∫

Ω

[

∂s

∂t
+ u · ∇s − R · (Λ̇ · Λ−1

+Ω̃ · log Λ + log Λ · Ω̃
t
) · Rt

]

: φsdx = 0
∫

Ω

[

τ −
ηp

λ
(exp s − I)

]

: φτdx = 0

(15)

An implicit Euler scheme is used to discretise the time derivative,

hence ∂s/∂t ≈ sn+1 − sn/
t and all other terms are evaluated

at time tn+1. Eq. (10) is hyperbolic and a streamline upwind

Petrov–Galerkin (SUPG) was used. It consists in replacing the

weighting functions φs by φs + αu · ∇φs in every term of the

system (15). In the above expression, α = h/U with h a char-

acteristic length-scale of the element and U is a characteristic

velocity.

The non-linearity of the constitutive equation requires a New-

ton method to achieve convergence. It is however quite difficult

to linearise this equation in a standard manner. For this reason,

the Jacobian matrix was approximated using finite differences.

Consequently, it is only necessary to be able compute the equa-

tion residual for a given value of s. This residual (see the second

to last equation in system (15)) can be computed as follows:

(1) s is first decomposed into R · log Λ · Rt;

(2) the eigenvalues λi are computed by taking the exponential

of the eigenvalues of s;

(3) L̃ is the evaluated using L̃ = Rt · L · R;

(4) matrix Λ̇ · Λ−1 is evaluated using (11);

(5) matrix Ω̃ · log Λ + log Λ · Ω̃
t
is evaluated using (12) if λi �=

λj and using (13) if λi = λj;

The complete solution procedure is the following:

At each time step;

(1) Solve for (u, p), τ, d being known;

(2) Solve for d, which is an L2-projection of γ̇(u);

(3) Solve for s using the velocity field calculated in step (1).

(4) Solve for τ, which is also an L2-projection.

For a given time step, the above steps are performed itera-

tively until all variables are converged.

5. Anisotropic mesh adaptation

Adaptive remeshing strategies are now commonly used in

CFD codes since they allow to control the error level on a

given numerical solution thus providing very accurate solutions.

The idea is simple: a first mesh is provided, the corresponding

solution is computed and the error is estimated using some a

posteriori error estimator. The mesh is then modified accord-

ingly and a new solution is computed. The process is repeated

many times until the numerical solution and the mesh no longer

change and/or some error level has been reached. One of the

basic ingredients for a successful adaptive method is a solver

capable to provide a numerical solution on various unstructured

meshes with possibly severe refinement in some regions of the

computational domain. This was not possible for viscoelastic

fluids until very recently due to convergence failure of most

numerical codes on unstructured or very refined meshes (the

high Weissenberg problem).

Adaptive remeshing strategies allow the concentration of

small elements only where needed, that is where the error

is estimated large. Moreover, our adaptive method allows for

anisotropic meshes where some elements can be stretched in

some preferential directions. Some elements can thus present

very large aspect ratio. The most important consequence is the

reduction of the number of elements needed to obtain an accu-

rate solution. In finite element textbooks, elongated elements are

often believed to give poor numerical solutions. This is true only

if they are stretched in inappropriate directions. For example, in

CFD computations, it would be ill advised to position an ele-

ment stretched perpendicularly across a shock. But if the same

element is reoriented tangentially, then the numerical solution

can be very accurate.

The anisotropic adaptive strategy used in this work was intro-

duced in Fortin, Belhamadia and Chamberland [10,11] for phase
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change problems in cryotherapy. It was also used in [12,13] for

drop deformation in two and three dimensions. The methodol-

ogy will not be recalled here and the reader is referred to these

papers for a more complete description. The mesh adaptation

strategy is general and can be used for all sorts of problems.

Based on our experience, among all the variables of the prob-

lem (u, p, c, τ and d), τ is most sensitive and the use the

Frobenius norm of τ (|τ| =
√

∑

ijτijτij) is adequate to drive

the mesh adaptation process. Denoting E|τ| the estimated abso-

lute error on |τ|, the mesh is adapted until the estimated relative

error (in L2-norm) reaches a prescribed value ep:

||E|τ|||0,Ω

||τ||0,Ω

=

(
∫

Ω
E2

|τ|dx
∫

Ω
|τ|2dx

)1/2

= ep

The value of ep was set to approximately 2% in the numerical

results.

To control the error, a reinterpolation error estimator was

used. The technique essentially relies on the assumption that a

reasonable estimate of the error can be obtained from a suitable

reinterpolation of the numerical solution (or in this case of |τ|).

Starting from a standard C0 (Lagrange) finite element solution

uh of degree k, an approximation of the first and second order

derivatives at the vertices of the triangulation is needed. Since

uh is not differentiable, this is accomplished by solving a least

square problem on a patch of elements adjacent to the given

vertex. Once the derivatives have been computed, a Hermite

finite element reinterpolation of the numerical solution is con-

structed. The error is then estimated as the difference between

this Hermite reinterpolation and the initial (Lagrange) numerical

solution.

Once the error has been estimated, the mesh is modified using

local operations on the mesh:

• edge refinement;

• edge swapping;

• vertex suppression;

• vertex displacement.

The reader is referred once again to [10] for a complete

description. As shall be seen, these local operations are sufficient

to produce anisotropic meshes when needed.

To summarise, the main steps of the adaptive procedure are

the following:

Fig. 1. Flow around a circular cylinder of radius R

• An initial mesh is provided and system (15) is solved;

• The error in the Frobenius norm of τ is estimated;

• The mesh is then modified using local operations. Nodes and

edges are swept a few times in order to perform:

◦ Edge refinement and node suppression to control the error

level;

◦ Edge swapping, and node displacement to control the qual-

ity of the elements;

◦ A new mesh is produced and the process is repeated until the

desired error level is reached.

6. Results and discussions

We consider the planar flow of a viscoelastic fluid around a

circular cylinder of radius R centered at the origin. The cylinder

is placed between two parallel plates separated by a distance 2H.

The ratio H/R is equal to 2 and the total length of the computa-

tional domain is 30 R = 15H . Symmetry considerations allow

to make the computation in a half geometry. The computational

domain Ω is presented in Fig. 1.

The flow around a circular cylinder using the Oldroyd-B

model is known as a difficult problem where many if not all

numerical methods fail to converge past a Weissenberg num-

ber around 1 i.e. either fail to give any results or the obtained

numerical solutions do not converge with mesh size. This prob-

lem has however, received a lot of attention and is therefore an

interesting (and difficult) benchmark.

Various numerical methods have been employed to solve

this problem. Étienne et al. [14] used a Lagrangian-Eulerian

approach, while Owens et al. [15] preferred a spectral method

combined with a SUPG method. Fan et al. [16] used a

Galerkin/least-square approach combined with a h–p finite ele-

ment method to produce very accurate solutions. Their results

were later confirmed by Alves et al. [17] with a finite volume

method on very fine meshes. We will also compare our results

with those of Hulsen et al. [2] who used a discontinuous Galerkin

method.

Fig. 2. Partial view of the structured mesh (9760 elements)



38 R. Guénette et al. / J. Non-Newtonian Fluid Mech. 153 (2008) 34–45

Fig. 3. Extra-stress components at We = 0.8 on the structured mesh (Oldroyd-B)

Fig. 4. Extra-stress components at We = 1.4 on the structured mesh (Oldroyd-B)
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6.1. Numerical results (Oldroyd-B model)

As already mentioned, the Oldroyd B model can be recovered

from the PTT model by setting a = 0 and ǫ = 0. For comparison

purposes with existing numerical results, we have chosen the

following dimensionless parameters: ηp = 0.41 and ηs = 0.59.

The Weissenberg number was defined as:

We =
λU

R
with U =

Q

2H

where U is the average velocity and Q is the flow rate.

The boundary conditions are as usual: no-slip (u = 0) on

the solid wall ΓD and on the cylinder ΓC; a symmetry condi-

tion uy = 0 is imposed on the symmetry axis ΓS ; the flow far

downstream from the cylinder is supposed to be fully developed

and consequently, it is reasonable to impose uy = 0 and the

natural boundary condition −p + 2ηs∂ux/∂x = 0. These two

conditions are frequently employed for Newtonian fluids. For

viscoelastic fluids, two possibilities exist depending if the term:
∫

Ω

−(∇ · τ) · vdx (16)

is integrated by parts or not. If (16) is integrated by parts, the

natural exit condition would be to impose −p + 2ηs∂ux/∂x +

τxx, which is generally unknown. For this reason, we did not

integrate (16) by parts and our exit condition is valid on ΓO.

At the inflow boundary ΓI , the velocity is imposed as a fully

established Poiseuille flow i.e.

ux =
3Q(H2 − y2)

4H3
, uy = 0

The tensor s must also be provided on the inlet boundary. For

this purpose, the expression for τ corresponding to a Poiseuille

flow is first computed. From Eq. (5), the conformation tensor c

can be obtained and decomposed into the form (8). From this,

s can be easily computed. To avoid the imposition of inlet and

outlet boundary conditions, periodic boundary conditions were

Fig. 5. τxx along the cylinder surface and in the wake on the structured mesh

(Oldroyd-B)

used in [2] but this does not modify significantly the flow in the

vicinity of the cylinder.

The drag around the cylinder was computed. This is obtained

by computing:

(Fx, Fy) =

∫

ΓC

σ · nds

where σ = −pI + 2ηsγ̇(u) + τ is the Cauchy stress tensor and

n is the unit normal to the cylinder. This quantity is a two-

dimensional vector whose vertical component Fy vanishes due

to the symmetry of the problem. This boundary integral was

computed using three Gauss points on each edge on the cylinder.

In the numerical results, we will only present dimensionless

quantities: length has been made dimensionless using R, veloci-

ties using U and stresses using (ηp + ηs)U/R. Consequently, the

dimensionless drag is defined as:

F̃x =
Fx

(ηs + ηp)UR
=

2HFx

(ηs + ηp)QR

Fig. 6. Convergence with mesh size at We = 0.6 (Oldroyd-B)
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Table 1

Dimensionless drag on structured mesh

We Present work Ref. [2] Ref. [16] Ref. [15]

0 132.358 132.36 132.357

0.1 130.363 130.36

0.2 126.51 126.626 126.62

0.4 120.48 120.596 120.59

0.6 117.70 117.792 117.77 117.775

0.8 117.31 117.373 117.32 117.237

1. 118.35 118.501 118.49 118.030

1.2 120.82 120.650 119.764

For the first computations, a 9760 elements structured mesh (see

Fig. 2) similar to mesh M5 (7680 elements) in reference [2]

was used. On this mesh, we were able to compute solutions

up to We = 1.7. This is comparable to the limit observed in [2].

These solutions were computed on one mesh and no convergence

analysis with mesh size was attempted.

Isocontours of the extra-stress tensor τ are presented in Fig. 3

at We = 0.8 and in Fig. 4 at We = 1.4. The isocontours look

very smooth and do not present spurious oscillations. Clearly,

as the Weissenberg number increases, high stresses develop on

the surface of the cylinder. The component τxx also presents

high stresses on the symmetry axis behind the cylinder as can

Table 2

Adapted meshes at We = 0.6 using (Oldroyd-B)

Mesh Number of elements

Mesh #1 9603

Mesh #2 8610

Mesh #3 7986

Mesh #4 7646

Mesh #5 7446

Mesh #6 7501

be seen in Fig. 5. These extreme values increase both on and in

the wake of the cylinder as the Weissenberg number increases.

This will have important consequences. Our results are in very

good agreement with those of reference [2].

Our drag computations are presented in Table 1 and compared

with those of references [2,15,16]. The observed differences

are very small and could be easily explained by the meshes,

the upwinding methods or the discretizations of the different

variables used in these various references.

It was argued in [2] that despite the fact that it was possi-

ble to compute numerical solutions for Weissenberg numbers

larger than 0.6, convergence with mesh size was not necessar-

ily attainable. We have thus employed our adaptive strategy for

the numerical solutions at We = 0.6, We = 0.7, and We = 0.8.

Fig. 7. Adapted meshes #2, #4 , #6 at We = 0.7.
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Fig. 8. Convergence with mesh size at We = 0.7 (Oldroyd-B)

At We = 0.6, a series of six meshes was obtained containing

approximately 7500 elements (see Table 2 for the details). As the

number of adaptations increases, the number of elements meshes

seems to converge as can be seen from the Table 2. The different

meshes present high element concentration on the cylinder. The

computed log-conformation sxx and the stress component τxx

along the cylinder and on the symmetry axis are presented in

Fig. 6. Results show a clear mesh convergence since the solu-

tions no longer evolve with the adapted meshes. Here again,

Table 3

Adapted meshes at We = 0.7 using (Oldroyd-B)

Mesh Number of elements

Mesh #1 10156

Mesh #2 9621

Mesh #3 9848

Mesh #4 10379

Mesh #5 11027

Mesh #6 11563

Table 4

Adapted meshes at We = 0.8 using (Oldroyd-B)

Mesh Number of elements

Mesh #1 12509

Mesh #2 13598

Mesh #3 17745

our results are in very good agreement with those of reference

[2].

The situation at We = 0.7 has also been addressed in [2]

where convergence with mesh size could not be reached nor

demonstrated. Here again, six adapted meshes were obtained

and the details are given in Table 3. The number of elements does

not stabilize as neatly as for We = 0.6 but does not excessively

increase either. Fig. 7 illustrates meshes #2, #4 and #6 where high

concentrations of elements on the cylinder and on the symmetry

axis in its wake can be seen. This is consistent with the results

of Alves et al. [17] who suggested that wake-refined meshes are

Fig. 9. Non convergence with mesh size at We = 0.8 (Oldroyd-B)
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Table 5

Adapted meshes using at We = 1 (Giesekus)

Mesh Number of elements

Mesh #1 7414

Mesh #2 6171

Mesh #3 7101

Mesh #4 7012

Mesh #5 7069

Mesh #6 7042

needed in order to reproduce highly accurate results such as those

of Fan et al. [16] for the same Weissenberg number. This is a clear

advantage of mesh adaptation since these important regions are

automatically detected. The computed log-conformation sxx and

the stress component τxx along the cylinder and on the symmetry

axis are presented in Fig. 8. Can we say that mesh convergence

has been achieved? From Fig. 8, the solutions no longer change

on the last two meshes. Moreover, our solutions are very close

to those obtained by Alves et al. [17] and Fan et al. [16] on

Fig. 10. cxx and sxx along the cylinder surface and in the wake on structured

mesh (Giesekus)

Table 6

Adapted meshes using at We = 5 (Giesekus)

Mesh Number of elements

Mesh #1 9436

Mesh #2 10862

Mesh #3 11875

Mesh #4 11639

Mesh #5 11600

Mesh #6 11586

much finer discretizations. This seems to confirm the results of

reference [2] who postulate that convergence with mesh size was

still possible at We = 0.7, at least using the Oldroyd-B model.

The fact that the number of elements does not stabilise as nicely

as for We = 0.6 (see the Tables 2 and 3) seems to indicate that

We = 0.7 is close to a limiting value for mesh convergence for

the Oldroyd-B model.

Fig. 11. sxx and τxx along the cylinder surface and in the wake at We = 1.

(Giesekus)
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Fig. 12. Adapted meshes #2, #4 , #6 at We = 5. (Giesekus)

The situation is indeed entirely different at We = 0.8. A sim-

ilar strategy was used with a series of adapted meshes (see

Table 4). But differently from the previous cases, although the

error level remains constant, we observed that the number of

elements in the adapted meshes always increases. We have thus

been forced to restrict the number of adaptations to three meshes.

The computed stress component τxx along the cylinder and on

the symmetry axis are presented in Fig. 9. The solutions are

similar on the cylinder but the different solutions are extremely

oscillatory on the symmetry axis behind the cylinder. The max-

imum value of the stresses also increases with each adaptation

step. Very significant differences between the regular mesh and

the adapted meshes are observed, indicating that convergence

with mesh size has not be attained at We = 0.8. We have not

tried to locate precisely the limiting Weissenberg number where

convergence with mesh size fails.

6.2. Numerical results (Giesekus model)

In the following computations, the same values of ηp and ηs

were used while α was set to 0.01 in the Giesekus model (4)

as in [2]. The same boundary conditions as for the Oldroyd-B

model were used.

The computations were first performed with the structured

mesh of Fig. 2 and no limit Weissenberg number was found.

The solution evolves smoothly with the Weissenberg number as

shown in Fig. 10 where cxx and the log matrix sxx are illustrated

on the cylinder and on the symmetry axis behind.

The question of mesh convergence was raised again. We first

consider the solution at We = 1. Six meshes were obtained and

Table 5 gives the number of elements for each mesh. This num-

ber quickly stabilises to around 7000 elements. The different

solutions are presented in Fig. 11 where sxx and τxx are traced.

The solutions on the last meshes are indistinguishable. Hence,

we consider that convergence with mesh size was attained.

In [2], convergence with mesh was not reached at We = 5 but

they conjectured that with a sufficiently refined mesh, conver-

gence could be achieved. Here again, six meshes were computed

(see Table 6) and the number of elements stabilises around 11

500. Some of these meshes are presented in Fig. 12 where it is

easily seen that the mesh adaptation procedure continues to put

more and more elements on the cylinder surface and in its wake.

The corresponding solutions are compared in Fig. 13. The dif-

ferent solution curves associated to the log matrix sxx are almost

superimposed except the one obtained on the structured mesh.

A new solution feature seems to appear right at the end of the

cylinder surface. Very steep variations of cxx and sxx are now

present that were not observed for the Oldroyd-B model (at least

at Weissenberg numbers smaller than 1). The mesh adaptation

method does a very good job at refining the mesh in that region.
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Fig. 13. cxx and sxx along the cylinder surface and in the wake at We = 5.

(Giesekus)

Despite the very refined mesh, small amplitude oscillations are

now present, barely seen on the variable cxx but very clear on

sxx at this precise location. These oscillations could possibly be

explained by the insufficient capability of the SUPG method to

deal with sharp transitions in mesh size in that region. But here

again, our results are in very good agreement with those of ref-

erence [2]. We therefore affirm that convergence with mesh size

was achieved.

7. Conclusions

Computations have been performed for the simulation of the

planar flow of a viscoelastic fluid around a cylinder using the

Oldroyd-B and the Giesekus models. This problem is representa-

tive of all the difficulties plaguing the simulation of viscoelastic

fluid flow at high Weissenberg numbers. In this work, a finite

element method based on a log-conformation formulation was

used. To further improve the accuracy of the simulations, an

anisotropic adaptive remeshing method was introduced to study

convergence with mesh size and to answer some of the ques-

tions raised in [2]. The log-conformation formulation allows the

computation of numerical solutions on the highly unstructured

meshes generated by our adaptive remeshing strategy. This kind

of computations was hardly possible before.

By the introduction of an anisotropic adaptive remeshing

strategy, we have shown that mesh convergence is possible for

the Oldroyd-B model up to at least We = 0.7. We have been

able to successfully reproduce the best numerical results found

in the literature for the same problem. This Weissenberg number

is apparently very close to the limiting value where convergence

with mesh size can be achieved. This is also confirmed by our

results at We = 0.8 where mesh convergence was lost.

For the Giesekus model however, the situation is different.

We have been able to obtain convergence with mesh size up to

at least We = 5.0, a result also conjectured in [2]. On structured

meshes, there does not seem to exist a limiting Weissenberg

number. This does not mean that convergence with mesh size

is possible for all Weissenberg numbers. As the Weissenberg

number increases, very steep variations of sxx and cxx appear

right at the end of the cylinder. Our mesh adaptation method

concentrates an increasingly large number of elements on the

cylinder and in its wake in order to maintain the same level of

accuracy on the numerical solution. The number of elements

drastically increases (and therefore the computational burden)

so that convergence with mesh size is more and more expensive

and difficult. We do not believe that we will be able to reach

convergence with mesh size at very high Weissenberg numbers.

An efficient mesh adaptation procedure will definitely help but

the number of elements will still make the computational cost

extremely high if one wants to clearly establish convergence

with mesh size. For this reason, we believe it is premature to say

that the high Weissenberg problem is entirely behind us.

We, however, believe that the introduction of the log-

conformation formulation of Fattal and Kupferman [1,2]

represents a definite improvement over classical formulations.

We are now capable of getting numbers out of the computer when

performing numerical simulations on non-trivial problems. This

does not mean at all that these numbers are valuable but at least,

we are now in a position to study the solution behaviour on

very fine and unstructured meshes. We can turn our attention

towards more complex constitutive equations and more realistic

problems.
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