
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Semantic Agent Systems: Foundations and Applications, Studies in 
Computational Intelligence; Volume 344, pp. 3-23, 2011

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=0c2ad733-a7ed-4a66-a843-0ee30643bc69

https://publications-cnrc.canada.ca/fra/voir/objet/?id=0c2ad733-a7ed-4a66-a843-0ee30643bc69

NRC Publications Archive
Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 
DOI ci-dessous.

https://doi.org/10.1007/978-3-642-18308-9_1

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Rule responder agents framework and instantiations
Boley, Harold; Paschke, Adrian



Rule Responder Agents 

Framework and Instantiations 

Harold Boley 1 , Adrian Paschke  2

1  Institute for Information Technology, National Research Council Canada 

Fredericton, NB, Canada 

harold.boley AT nrc.gc.ca 
2  Freie Universitaet Berlin, Germany 

paschke AT mi.fu-berlin.de 

Abstract   This chapter introduces Rule Responder and its applications. Rule 
Responder is a framework for specifying virtual organizations as semantic multi-
agent systems that support collaborative teams. It provides the infrastructure for 
rule-based collaboration between the distributed members of such a virtual 
organization. Human members of an organization are assisted by (semi-
)autonomous rule-based agents, which use Semantic Web rules to describe aspects 
of their owners' derivation and reaction logic. 
To implement different distributed system/agent toplogies with their 
negotiation/coordination mechanisms Rule Responder instantiations employ three 
core classes of agents - Organizational Agents (OA), Personal Agents (PAs), and 
External Agents (EAs). The OA represents goals and strategies shared by its 
virtual organization as a whole, using a rulebase that describes its policies, 
regulations, opportunities, etc. Each PA assists a group or person of the 
organization, semi-autonomously acting on their behalf by using a local 
knowledge base of rules defined by the entity. EAs can communicate with the 
virtual organization by sending messages to the public interfaces of the OA. EAs 
can be human users using, e.g., Web forms or can be automated services/tools 
sending messages via the multitude of transport protocols of the underlying 
enterprise service bus (ESB) middleware. The agents employ ontologies in their 
knowledge bases to represent semantic domain vocabularies, normative 
pragmatics and pragmatic context of conversations and actions, as well as the 
organizational semiotics.  



2  

1  Introduction 

Rule Responder1 extends the Semantic Web towards a Pragmatic Web 
infrastructure for collaborative rule-based agent networks realizing distributed 
inference services, where independent agents engage in conversations by 
exchanging messages and cooperate to achieve (collaborative) goals. Rule 
Responder can be characterized on three levels, from general to specific.   

• It models a virtual organization of agents recursively as again being a single 
agent, forming what has been called [15] a hierarchy of holons (or, a holarchy).  

• It supports different interaction/coordination models, where information is 
interchanged within a pragmatic context (e.g. language action speech acts, 
deontic norms, etc.).  

• It provides a technical Web-based multi-agent architecture which supports 
different distribution models (distributed agent system topologies).  

A virtual organization as a whole is represented by an Organizational Agent (OA), 
which uses ontologies and rules to assign and delegate incoming tasks (e.g., 
queries) to responsible Personal Agents (PAs). Rule Responder agents 
communicate in conversations that allow implementing different agent 
coordination and negotiation protocols. The interaction and interpretation is driven 
by the organizational semiotics which details how the information flow works 
within and between organizations. For instance, an OA can use a responsibility 
assignment matrix, represented as an ontology, to find an appropriate PA in its 
organization. The OA can then send a message (e.g., a query) to that PA and 
receive results (e.g., answers), typically using reaction rules. By means of 
pragmatic primitives, such as speech acts, deontic norms, etc., which are 
represented as ontologies, Rule Responder attaches the semantic and pragmatic 
context, e.g. organizational norms, purposes or goals and values, to the 
interchanged messages. 
In its multi-agent architecture Rule Responder utilizes messaging reaction rules 
from Reaction RuleML2 for communication between the distributed agent 
inference services. The Rule Responder middleware is based on modern enterprise 
service technologies and Semantic Web technologies for implementing intelligent 
agent services that access data and ontologies, receive and detect events (e.g., for 
complex event processing in event processing agent networks), and make rule-
based inferences and (semi-)autonomous pro-active decisions for reactions based 
on these representations. 
The core of a Rule Responder agent is a rule engine, such as Prova3, OO jDREW, 
DR-Device (initially in Emerald), Euler, or Drools, which implements the decision 
and behavioral reaction logic of the agents' roles. An agent can employ 
vocabularies defined as Semantic Web ontologies (e.g., based on RDFS or OWL) 
                                                       
1http://responder.ruleml.org 
2http://reaction.ruleml.org 
3http://prova.ws 



3 

to give its rules a domain-specific meaning. The vocabularies can be used within 
the conversation with other agents to enable a semantic and pragmatic 
interpretation of the messages. For the deployment of agents on the Web and for 
the communication in agent networks, Rule Responder uses the Mule-based 
enterprise service bus middleware, which supports a multitude of synchronous and 
asynchronous transport protocols ( 40) -- such as MS, SMTP, JDBC, TCP, 
HTTP, XMPP, Jade -- to transport rulebases, queries and answers between the 
agents. Reaction RuleML, the de facto standard for XML-serialized reaction rules, 
is used as a platform-independent rule interchange format for agent conversation. 

>

In summary, Rule Responder can be seen to support a digital ecosystem, evolving 
from the Semantic Web [4] to the Pragmatic Web, which consists of all the 
semantic agents in one or more virtual organizations, as well as all the other 
components of this environment with which the agents interact, such as other 
services, tools, the ESB middleware, etc. 
Several instantiations of Rule Responder have been developed, including the 
eScience infrastructure for Health Care and Life Sciences [11], the Rule-based IT 
Service Level Managment and Semantic BPM system [12, 13], multiple versions 
of the deployed SymposiumPlanner system [9], two versions of the WellnessRules 
prototype [5], and the PatientSupporter prototype.4

The rest of the chapter is organized as follows. Section 2 discusses the agent 
architecture and used technologies of the Rule Responder framework. Section 3 
explains a typical distributed agent topology for virtual organizations and the 
types agents used to implement it. Section 4 focuses on interchange between the 
semantic agents which communicate by using (Reaction) RuleML as common rule 
interchange format. Section 5 demonstrates some application use cases of Rule 
Responder by means of selected Rule Responder instantiations. Section 6 
concludes the paper. 

2  The Rule Responder Framework 

 Three interconnected architectural layers consitute the Rule Responder 
framework, listed here from top to bottom: 

• Computationally independent user interfaces such as template-based Web 
forms or controlled English rule interfaces.  

• Reaction RuleML as the common platform-independent rule interchange 
format to interchange rules, events, queries, and data between Rule Responder 
agents and other agents (e.g., Semantic Web services or humans via Web 
forms).  

• A highly scalable and efficient enterprise service bus (ESB) as agent/service-
broker and communication middleware on which platform-specific rule engines 
are deployed as distributed agent nodes (resp. semantic inference services). 

                                                       
4http://ruleml.org/PatientSupporter 



4  

These engines manage and execute the logic of Rule Responder's semantic 
agents in terms of declarative rules which have access to semantic ontologies.  

In the following, the Rule Responder framework will be refined, and explained 
from bottom to top. 

2.1  Mule Enterprise Service Bus 

To seamlessly handle message-based interactions between the Rule Responder 
agents/services and other agents/services using disparate complex event 
processing (CEP) technologies, transports, and protocols, an enterprise service bus 
(ESB) -- the Mule open-source ESB 5 -- is used in Rule Responder as the 
communication middleware. This ESB allows deploying the rule-based agents as 
highly distributed rule inference services installed as Web-based endpoints on the 
Mule object broker and supports the communication in this rule-based agent 
processing network via a multitude of transport protocols (see Figure 1). That is, 
the ESB provides a highly scalable and flexible application messaging framework 
to communicate synchronously or asynchronously amongst the ESB-local agents 
and with agents/services on the Web. 

 
Fig. 1. Distributed Rule Responder Agent Services 

 Mule is a messaging platform-based on principles of ESB architectures, but goes 
beyond the typical definition of an ESB as a transit system for carrying data 
between applications by providing a distributable object broker to manage all sorts 
of service components such as the Rule Responder agent services. The three 
processing modes of Mule are: 

• Asynchronous: many events (messages) can be processed by the same 
component at a time in various threads. When the Mule server is running 
asynchronously instances of a component run in various threads all accepting 
incoming events, though an event will only be processed by one instance of the 
component.  

• Synchronous: when a component receives an event message, in this mode the 
whole request is executed in a single thread.  

                                                       
5www.mulesoft.org 



5 

• Request-Response: this allows for a component to make a specific request for 
an event and wait for a specified time to get a response back.  

The object broker follows the Staged Event Driven Architecture (SEDA) pattern 
[20]. The basic approach of SEDA is to decomposes a complex, event-driven 
application into a set of stages connected by queues. This design decouples event 
and thread scheduling from application logic and avoids the high overhead 
associated with thread-based concurrency models. That is, SEDA supports 
massive concurrency demands on Web-based services and provides a highly 
scalable approach for asynchronous communication. 
Figure 2 shows a simplified breakdown of the integration of Mule into the Rule 
Responders framework. 

 
Fig. 2 Layering of Rule Responder on Mule ESB 

 Distributed agent services (see Figure 1), which at their core run a rule engine, are 
deployed as Mule components which listen at configured endpoints, e.g., JMS 
message endpoints, HTTP ports, SOAP server/client addresses or JDBC database 
interfaces, etc. Reaction RuleML is used as a common platform-independent rule 
interchange format between the agents (and possible other rule 
execution/inference services). Translator services are used to translate inbound 
and outbound messages from platform-independent Reaction RuleML into the 
platform-specific execution syntaxes of rule engines, and vice versa. XSLT and 
ANTLR based translator services are provided as Web forms, HTTP services and 
SOAP Web services on the Reaction RuleML Web page. 
The large variety of transport protocols provided by Mule can be used to transport 
the messages to the registered endpoints or external applications/tools. Usually, 
JMS is used for the internal communication between distributed agent instances, 
while HTTP and SOAP is used to access external Web services. The usual 
processing style is asynchronous using SEDA event queues. However, sometimes 
synchronous communication is needed. For instance, to handle communication 
with external synchronous HTTP clients such as Web browsers where requests, 
e.g. by a Web from, are sent through a synchronous channel. In this case, a 
synchronous bridge component dispatches the requests into the asynchronous 
messaging framework and collects all answers from the internal service nodes, 



6  

while keeping the synchronous channel with the external service open. After all 
asynchronous answers have been collected, they are sent back to the still 
connected external service via the HTTP-synchronous channel. 

2.2  Selected Platform-Specific Rule Engines for Rule Responder Agents 

The core of a Rule Responder agent, which is deployed as a service component on 
the Rule Responder ESB, is a platform-specific rule engine. These engines might 
differ, e.g., in their supported rule types, state representation, rule evaluation 
mechanism, conflict resolution and truth maintenance. Hence, depending on their 
expressiveness and functionalities, these rule engines might be capable of 
implementing agents in the strong sense of cognitive architectures for intelligent 
agents with goal/task-based, utility-based and learning-based functionalities, or in 
the weak sense of inference agent services with simple reflexive functionalities 
for, e.g., deductive query-answering capabilities. Following the general consensus 
defined by the strong notion of agency in [21], a Rule Responder agent, in 
addition to being (semi-)autonomous, should be capable of reactive, proactive, and 
communicative behavior. Additionally, it is often important that certain 
mentalistic notions6 can be used in the rule language for describing the agent 
behavior in an abstract and intuitive way, e.g. in the interactions between agents to 
communicate the pragmatics of the interchanged information. 
In the following, the interplay between our most often used rule engines Prova, 
OO jDREW, Euler will be discussed, although there are other engines such as DR-
Device and Drools supported by Rule Responder. 

 
Fig. 3 Rule Responder Agent 

                                                       
6The term  mentalistic notions aka  mental attitudes refers to human-like proper-
ties such as beliefs, goals, etc. when transferred to describing machine agents. 



7 

 Figure 3 shows the architecture of an intelligent cognitive Rule Responder agent 
which is implemented in Prova. Prova is an enterprise-strength, highly expressive 
distributed Semantic Web logic programming (LP) rule engine. The Prova rule 
engine supports different rule types: 

• Derivation rules to describe the agent's decision logic  
• Integrity rules to describe constraints and potential conflicts  
• Normative rules to represent the agent's permissions, prohibitions and 

obligation policies  
• Global ECA-style reaction rules to define global reaction logic which are 

triggered on the basis of detected (complex) events  
• Messaging reaction rules to define conversation-based workflow reaction and 

behavioral logic based on complex event processing  

Prova follows the spirit and design of the W3C Semantic Web initiative and 
combines declarative rules, ontologies and inference with dynamic object-oriented 
programming and access to external data sources via built-in query languages such 
as SQL, SPARQL, and XQuery. 
 
File Input / Output 
    ..., fopen(File,Reader), ... 
XML (DOM) 
    document(DomTree,DocumentReader) :-   XML(DocumenReader),... 
SQL 
    ... ,sql_select(DB,cla,[pdb_id,"1alx"],[px,Domain]). 
RDF 
    ...,rdf(http://...,"rdfs",Subject,"rdf_type","gene1_Gene"),... 
XQuery 
 ..., XQuery = 'for $name in StatisticsURL//Author[0]/@name/text() 
    return $name', xquery_select(XQuery,name(ExpertName)),... 
SPARQL 
    ...,sparql_select(SparqlQuery,... 
 
One of the key advantages of Prova is its elegant separation of logic, data access, 
and computation as well as its tight integration of Java, Semantic Web 
technologies, with service-oriented computing and complex event processing. In 
particular, Prova supports external type systems such as, e.g., Java class 
hierarchies or Semantic Web ontologies (RDFS, OWL) via its typed order-sorted 
logic [18]. For instance, in the following example all agents from an external 
OWL ontology responsibility assignment matrix (RAM) are assigned to the typed 
variable  of type  (with the namespace 

), where  is a concept defined in the 
RAM ontology. The query then selects all agent individuals of type 

 which is a subtype of , i.e. the 
query selects a subset with appropriate subtype from the bound variable. 

Agent CommitteeOrganizing _
2010ruleml CommitteeOrganizing _

irProgramCha CommitteeOrganizing _

 
 



8  

% import external ontology representing responsibility assignment 
matrix (RAM) 
import("http://2010.ruleml.org/RuleML-2010.owl"). 
% bind all agent instances of type "Organizing_Committee" from the 
RAM to the variable Agent 
agent(Agent:ruleml2010_Organizing_Committee). 
% query for all agents of type "ProgramChair" 
:- solve(agent(Agent:ruleml2010_ProgramChair) 
 
Prova can be run in a plain Java environment as stand alone application or rule 
inference service on the Rule Responder ESB, or as an OSGI component. Prova 
has a modular knowledge base to implement several different roles an agent might 
play in the same agent instance. Each role has its own set of reaction rules to 
autonomously react (potentially proactive) on detected situations (complex events) 
and its own set of decision rules to interpret goals and derive decisions according 
to conditional proofs. For instance, it is possible to consult (load) distributed 
rulebases from local files, a Web address, or from incoming messages transporting 
a rulebase. 
  
%load from a local file 
:- eval(consult("organization2009.prova")). 
% import from a Web address 
:- eval(consult("http://ruleml.org/organization2010.prova")). 
 
The rulebases are managed as modules in the knowledge base. Their module label 
can be used for asserting or retracting complete modules from the knowledge base 
and for scoping queries/goals to a particular module, i.e. the query only applies to 
the particular scoped module. In the following example the subgoal 

 applies on the modules  and not 
on the module . 

)(Agentagent provaonorganizati 2009.
provaonorganizatiorgrulemlhttp 2010././/:

  
responsible(Agent, Task) :- 
  @src("organization2009.prova") agent(Agent), 
  ...  
 
To sense the environment and trigger actions, query data from external sources 
such as databases, call external procedural code such as Enterprise Java Beans, 
and receive/send messages from/to other agents or external services, Prova 
provides a set of built-in functions and additionally can dynamically instantiate 
any Java object and call its API methods at runtime. For instance, the following 
simple rule creates a response sentence with the name using Java string 
computations and displays it via to the Java system out console. 
  
hello(Name) :- 
  S = java.lang.String("Hello, your name is "), 
  S.append (Name), 
  java.lang.System.out.println (S).  
 
Additional libraries can be imported, e.g. to represent rights and obligations of 
agents, implement conflict handling rules, or describe complex events and actions. 
In its cognitive cycle a Prova agent follows the sense-reason-act pattern. However, 



9 

Prova does not define one particular cognitive cycle, but allows configuring an 
agent with user-defined conversation-based negotiation and coordination protocols 
or workflow patterns. Via constructs for asynchronously sending and receiving 
event messages within rules, an agent interacts with the environment. The main 
language constructs of messaging reaction rules are: sendMsg predicates to send 
messages, reaction rcvMsg rules which react to inbound messages, and rcvMsg or 
rcvMult inline reactions in the body of messaging reaction rules to receive one or 
more context-dependent multiple inbound event messages: 
  
sendMsg(XID,Protocol,Agent,Performative,Payload |Context) 
rcvMsg(XID,Protocol,From,Performative,Paylod|Context) 
rcvMult(XID,Protocol,From,Performative,Paylod|Context)  
 
Here, XID is the conversation identifier (conversation-id) of the conversation to 
which the message will belong. Protocol defines the communication protocol. 
Agent denotes the target party of the message. Performative describes the 
pragmatic envelope for the message content. A standard nomenclature of 
performatives is, e.g., the FIPA Agents Communication Language (ACL). 
Payload represents the message content sent in the message envelope. It can be a 
specific query or answer or a complex interchanged rule base (set of rules and 
facts). For instance, the following rule snippet shows how a query is sent to an 
agent via the ESB and then an answer is received from this agent. 
... 
sendMsg(Sub_CID,esb,Agent,acl_query-ref, Query), 
rcvMsg(Sub_CID,esb,Agent,acl_inform-ref, Answer), 
...  
Prova does not define a specific set of mentalistic notions as first-class 
programming constructs. Instead, interchanged messages besides the 
conversation's metadata and payload also carry the pragmatic context of the 
conversation such as communicative situations/acts, mentalistic notions, 
organizational and individual norms, purposes or individual goals and values. The 
payload of incoming event messages is interpreted with respect to the local 
conversation state, which is denoted by the conversation id, and the pragmatic 
context, which is given by a pragmatic performative. For instance, a standard 
nomenclature of pragmatic performatives, which can be integrated as external 
(semantic) vocabulary/ontology, is e.g., defined by the Knowledge Query 
Manipulation Language (KQML) (Finin et al. 1993), by the FIPA Agent 
Communication Language (ACL), which gives several speech act theory-based 
communicative acts, or by the Standard Deontic Logic (SDL) with its normative 
concepts for obligations, permissions, and prohibitions. Depending on the 
pragmatic context, the message payload is used, e.g. to update the internal 
knowledge of the agent (e.g., add new facts or rulebases), add new tasks (goals), 
or detect a complex event pattern (from event-instance sequences). 
Several expressive logic formalisms are supported by Prova [17], e.g., for 
updating the knowledge base (transactional update logic), defining and detecting 
complex events (complex event algebra), handling situations/states (event 
calculus), as well as for reasoning (e.g., deontic logic for normative reasoning on 
permissions, prohibitions, obligations) and planning (abductive reasoning on plans 



10  

and goals). 
In summary, Prova agents can interchange event information, rules (tasks), and 
queries/answers in agent conversations, including information about the semantics 
and pragmatics of the interchanged information. 
Besides Prova, Rule Responder supports rule engines such as OO jDREW, Euler, 
DR-Device, and Drools for implementing such query answering agents as 
inference services in Rule Responder. 

3  Rule Responder Agents 

With the support of Prova's agent conversations, various distributed coordination 
topologies can be implemented, from centralized orchestration, executed in star-
like agent nodes, to decentralized ad-hoc choreography within the Rule Responder 
agent network. In the following, we describe a common hierarchical agent 
topology which represents a centralized star-like structure for virtual organizations 
(and many orchestrated distributed systems). Organizational Agents (OAs) act as 
central orchestration nodes which control and disseminate the information flow 
from and to their internal Personal Agents (PAs) and the External Agents/Services 
(EAs). 

3.1  Organizational Agent 

An Organizational Agent (OA) represents its virtual organization as a whole. An 
OA manages its local Personal Agents (PAs), providing control of their life cycle 
and ensuring overall goals and policies of the organization and its semiotic 
structures. OAs can act as a single point of entry to the managed sets of local PAs 
to which requests by EAs are disseminated. This allows for efficient 
implementation of various mechanisms of making sure the PAs functionalities are 
not abused (security mechanisms) and making sure privacy of entities, personal 
data, and computation resources is respected (privacy & information hiding 
mechanisms). For instance, an OA can disclose information about the organization 
to authorized external parties without revealing private information and local data 
of the PAs, although this data might have been used in the PAs to compute the 
resulting answers to the external requester. 
OAs, which require high levels of expressiveness to represent the logic of 
cognitive agents, are implemented using the Prova Semantic Web rule engine. In 
the following we will discuss some of the expressive language constructs of Prova 
that are required to implement the Rule Responder framework. 
For implementing the Rule Responder communication flows in the OAs, Prova 
messaging reaction rules are used. A typical coordination pattern implemented in a 
Rule Responder OA is the following messaging reaction rule (Prova variables start 
with an upper-case letter), which waits for an incoming query from an EA and 
delegates this query to an internal responsible PA. 



11 

  
% receive query and delegate it to another party 
rcvMsg(CID,esb, Requester, acl_query-ref, Query) :- 
  responsibleRole(Agent, Query), 
  sendMsg(Sub-CID,esb,Agent,acl_query-ref, Query), 
  rcvMsg(Sub-CID,esb,Agent,acl_inform-ref, Answer), 
  ... (other goals)... 
  sendMsg(CID,esb,Requester,acl_inform-ref,Answer). 
  
When activated by an incoming request from an EA, e.g. an HTTP request coming 
from a Web form, this messaging reaction rule first selects the responsible role for 
the query. Then the rule sends the query in a new sub-conversation to the selected 
party and waits for the answer to the query. That is, the rule execution waits until 
an answer event message is received in the inlined sub-conversation, which 
activates the process flow again, e.g. to prove further `standard' goals, e.g. with 
information from the received answer, which is assigned to variables in the normal 
logic programming way, including also backtracking to other variable 
assignments. Finally, in this example, the rule sends back the answer to the 
original requesting EA. 
The selection logic for the dissemination of queries to PAs is, e.g., implemented 
by a standard derivation rule which, e.g., accesses, via a Prova SPARQL query 
built-in, an external responsibility assignment matrix (RAM) (see section 3.4). 
The following rule selects responsible agents with a SPARQL query on a triple 
store Web interface, where the responsibility assignment matrix is stored. 
  
% receive query and delegate it to another party 
rcvMsg(CID,esb, Requester, acl_query-ref, Query) :- 
  responsibleRole(Agent, Query), 
  sendMsg(Sub-CID,esb,Agent,acl_query-ref, Query), 
  rcvMsg(Sub-CID,esb,Agent,acl_inform-ref, Answer), 
  ... (other goals)... 
  sendMsg(CID,esb,Requester,acl_inform-ref,Answer). 
  
RAMs (RACI matrices, Linear Responsibility Charts, etc.) are often in project 
management, when responsibilities are clearly defined for each role. It should be 
noted that Prova OAs can also implement other well-known agent coordination 
and negotiation mechanisms: for instance, a Contract Net coordination protocol, 
where PAs bid for the task offered by the OA and the OA selects the best PA 
according to the received bids, or a publish-subscribe protocol, where PAs are 
selected according to their subscriptions with the OA. 

3.2  Personal Agents 

Personal Agents (PAs) assist the local entities of a virtual organization. Often 
these are human roles in the orgnization. But, it might be also services or 
applications in, e.g. a service oriented architecture. A PA runs a rule engine which 
accesses different sources of local data and computes answers according to the 
local rule-based decision logic of the PA. Depending on the required 



12  

expressivness to represent the PAs rule logic arbitrary rule engines can be used as 
long as they provide an interface to ask queries and receive answers which are 
translated into the common Reaction RuleML interchange format in order to 
communicate with other agents. 
Importantly, the PAs might have local autonomy and might support privacy and 
security implementations. In particular, local information used in the PA rules 
becomes only accessible by authorized access of the OA via the public interfaces 
of the PA which act as an abstraction layer supporting security and information 
hiding. A typical coordination protocol is that all communication to EAs is via the 
OA, but the OA might also reveal the direct contact address of a PA to authorized 
external agents which can then start an ad-hoc conversation directly with the PA 
[6]. A PA itself might act as a nested suborganization, i.e. containing itself an OA 
providing access to a suborganization within the main virtual organization. This 
can be usefull to represent nested organizational structures such as departments, 
project teams, and service networks. 

3.3  External Agents 

External Agents (EAs) constitute the points-of-contact that allow an external user 
or service to query the Organizational Agent (OA) of a virtual organization. An 
EA is based, e.g., on a Web (HTTP) interface that allows such an enquiry user to 
pose queries, employing a menu-based Web form, which gets translated to an 
equivalent RuleML/XML message. An external agent -- from the point of view of 
a Rule Responder agent organization -- can be an external human agent, a 
service/tool, or another external Rule Responder organization, thus leading to 
cross-organizational Rule Responder communication. 

3.4  Responsibility Assignment Matrix 

 As one possible way for coordination in a virtual organization the Rule 
Responder framework uses a `pluggable' Responsibility Assignment Matrix 
(RAM) to support the OA in its selection of a PA and its optional participating 
profiles underneath. A RAM describes the responsibility of agent roles in 
completing certain tasks or deliverables in a virtual organization. A standard RAM 
is a RAI matrix, with 

• Responsible -- agents who do the work to achieve the task. Typically, the PAs 
are the responsible roles.  

• Accountable (also Approver or final Approving authority) -- agent who is 
ultimately accountable for the correct and thorough completion of the 
deliverable or task, and the one to whom Responsible is accountable. Typically, 
this is the OA which receives the answer from the PA and further processes it 



13 

before forwarding it to the EA.  
• Informed -- the agent who is kept up-to-date on progress, often only on 

completion of the task or deliverable; and with whom there is just one-way 
communication. Typically, this is the EA who is informed about the result by 
the OA.  

In a simple star-like Rule Responder agent topology, a single RAI matrix can be 
used in the OA to map an incoming query to the PA whose local knowledge base 
is deemed to be best suited for answering it. The RAI matrix is represented as an 
OWL ontology (OWL Lite) and can be used by a Rule Responder agent via 
querying it with the Semantic Web built-ins of Prova, binding the respective roles 
and their responsibilities to typed variables in the agent's rule logic. Many variants 
of the RAM with different role distinctions are possible such as RACI (with 
Consulted agents), RASCI (with Supporting agents) etc. - see, e.g., table 1. 

Table 1 Responsibility Assignment Matrix 

    General Chair   Program Chair   Publicity Chair  
 Symposium   responsible   consulted   supportive  
Website   accountable   responsible    
Sponsoring   informed, signs  verifies   responsible  
Submission   informed   responsible    
...   ...   ...   ...  

 
For instance, the RAM has been split so that role responsibility assignment is done 
on the `higher' level of a Group Responsibility Matrix (GRM) in the OA and on 
the `lower' level of a Profile Responsibility Matrix (PRM) in the PAs. Figure 2 
shows these two central matrices in the larger context of the Rule Responder 
architecture used in the WellnessRules instantiations (cf. Section 5.2), which has 
been further evolved for the PatientSupporter instantiation (cf. Section 5.3). 

 
Fig. 2 Rule Responder architecture instantiated to WellnessRules 



14  

The GRM maps, many-to-one, relevant kinds of queries to a PA, who may 
represent a group. The GRM is usually specified as an OWL light ontology. The 
PRM lists a PA's profiles, participating in its group, along with the format (Prova, 
POSL, N3, etc.) each profile knowledge base is written in. The PRM is specified 
as an XML document. 

4  Translation Between Rule Responder Agents 

Rule Responder permits agents to use local languages and engines, only requiring 
that all rulebases, queries, and answers will be translated to RuleML for 
transmitting them to other agents over the Mule ESB. 
Reaction RuleML provides a translator service framework with Web form 
interfaces accepting controlled natural language input or predefined selection-
based rule templates for the communication with external (human) agents on the 
computational independent level, as well as Servlet HTTP interfaces, and Web 
service SOAP interfaces, wich can be used for translation into and from platform-
specific rule languages such as Prova. 
On the computation-independent level, online user interfaces allow external 
human agents issuing queries to Rule Responder agents (typically the OA) in a 
controlled natural language or with template-driven Web forms and receive 
answers. The translation between the used controlled English rule language 
(Attempto Controlled English [14]) and Reaction RuleML is based on domain-
specific language translation rules in combination with a controlled English 
translator service. 
Queries to Rule Responder are formulated in Attempto Controlled English. The 
ACE2RML translator forwards the text to the Attempto Parsing Engine (APE), 
which translates the text into a discourse representation structure (DRS) and/or 
advices to correct malformed input. The DRS gives a logical/structural 
representation of the text. It is fed into an XML parser which translates it into a 
domain-specific Reaction RuleML representation of the query. Besides parsing 
and processing the elements of the DRS, the parser additionally employs domain-
specific transformation rules to correctly translate the query into a public interface 
call of a Rule Responder OA. 
On the platform-independent and platform-specific level, the translator services 
are using different translation technologies such as XSLT stylesheet, JAXB, etc. to 
translate from and to Reaction RuleML as a general rule interchange format. 
Reaction RuleML incorporates various kinds of production, action, reaction, and 
KR temporal/event/action logic rules as well as (complex) event/action messages 
into the native RuleML syntax. The general syntax of reaction rules is as follows: 
  
<Rule style="active|messaging|reasoning" eval="strong|weak|defeasible|fuzzy"> 
      <oid>     <!-- object id -->                         </oid> 
      <label>   <!-- meta data of the rule -->             </label> 
      <scope><!-- scope of the rule e.g. a rule module --> </scope> 
      <qualification> <!-- e.g. priorities, validity, fuzzy levels --> 
                                                           </qualification> 



15 

      <quantification> <!- e.g. variable bindings-->       </quantification> 
      <on>      <!-- event part -->                        </on> 
      <if>      <!-- condition part -->                    </if> 
      <then>    <!-- (logical) conclusion part -->         </then> 
      <do>      <!--  action part -->                      </do> 
      <after>   <!-- postcondition part after action, e.g. 
                    to check effects -->                   </after> 
</Rule> 
  

Depending on which parts of this general rule syntax are used different types of 
reaction rules can be expressed, e.g. if-then (derivation rules), if-do (production 
rules), on-do (trigger rules), on-if-do (ECA rules). For communication between 
distributed rule-based (agent) systems Reaction RuleML provides a general 
message syntax: 

  
<Message> 
  <oid>       <!-- conversation ID-->                  </oid> 
  <protocol>  <!-- used protocol -->                   </protocol> 
  <agent>     <!-- sender/receiver agent/service -->   </agent> 
  <directive><!-- pragmatic primitive, i.e. context --></directive> 
  <content>   <!-- message payload -->                 </content> 
</Message> 

  
Using these messages agents can interchange events (e.g., queries and answers) as 
well as complete rule bases (rule set modules), e.g. for remote parallel task 
processing. Agents can be engaged in long running possibly asynchronous 
conversations and nested sub-conversations using the conversation id to manage 
the conversation state. The protocol is used to defines the message passing and 
coordination protocol. The directive attribute corresponds to the pragmatic 
instruction, i.e. the pragmatic characterization of the message context broadly 
characterizing the meaning of the message. 
The Reaction RuleML translator services are configured in the transport channels 
of the inbound and outbound links of the deployed rule engines on the ESB. 
Incoming Reaction RuleML messages (receive) are translated into platform-
specific rulebases which can be executed by the rule engine, e.g. Prova, and 
outgoing rulebases (send) are translated into Reaction RuleML in the outbound 
channels before they are transferred via a selected transport protocol. 
The semantic agent architecture in Rule Responder supports privacy and security 
implementations. In particular, local information used in the PAs becomes only 
accessible by authorized access via the public interfaces of the OAs which act as 
an abstraction layer supporting security and information hiding. To achieve this, 
Prova supports an interface definition language (Reaction RuleML IDL) which 
allows descriptions of the signatures of publicly accessibly rule functions together 
with their mode and type declarations. Modes are states of instantiation of the 
predicate described by mode declarations, i.e. declarations of the intended input-
output constellations of the predicate terms with the following semantics: 

• " " The term is intended to be input  +
• " " The term is intended to be output  −
• " ? " The term is undefined/arbitrary (input or output)  



16  

For instance, the interface definition for the function 
 is )2,1,( ResultArgArgadd )),,(( ++−addinterface , i.e. the function is a 

public interface which expect two input arguments and returns one output 
argument.  would be a valid query to this public function. ,1,1)(Xadd
External agents can access the virtual organization only via these public interfaces, 
which often only reveal abstracted information to authorized users and hence hide 
local information of the organization and its PAs. 

5  Rule Responder Instantiations 

 Early instantiations of Rule Responder include the Health Care and Life Sciences 
eScience infrastructure [11], the Rule-based IT Service Level Managment, and 
Semantic BPM system [12, 13]. Recent instantiations include multiple versions of 
the deployed SymposiumPlanner system [9], two versions of the WellnessRules 
prototype [5], PatientSupporter, a reputation management system, and a SCEP 
agent network. We will here highlight the principles of Rule Responder 
instantiations with an emphasis on the recent ones. 

5.1  SymposiumPlanner 

 SymposiumPlanner is a series of deployed applications created with Rule 
Responder for the Q&A parts of the official websites of the RuleML Symposia. 
Rule Responder started to support the organizing committee of the RuleML 
Symposium [8] and was further developed to assist the yearly RuleML Symposia 
since 2007. These applications embody responsibility assignment, automated first-
level contacts for information regarding the symposium, helping the publicity 
chair with sponsoring correspondence, helping the panel chair with managing 
panel participants, and the liason chair with coordinating organization partners. 
SymposiumPlanner utilizes a single organizational agent to handle the filtering 
and delegation of incoming queries. Each committee chair has a personal agent 
that acts in a rule-governed manner on behalf of the committee member. Each 
agent manages personal information, such as a FOAF-like profile containing a 
layer of facts about the committee member as well as FOAF-extending rules. 
These rules allow the PA to automatically respond to requests concerning the 
RuleML Symposium. Task responsibility for the organization is currently 
managed through a responsibility matrix, which defines the tasks committee 
members are responsible for. The matrix and the roles assigned within the virtual 
organization are defined by an OWL (Ontology Web Language) Lite Ontology. 
Request users and personal agents can communicate by sending messages that 
transport queries, answers, or complete rulebases through the public EA interface 
of the OA (typically, an EA uses an HTTP port to which post and get requests are 



17 

sent from a Web form). The Rule Responder instantations to SymposiumPlanner 
are published and deployed online.7

5.2  WellnessRules 

 This is a Web 3.0 case study, where ontology-structured rules (including facts) 
about wellness opportunities are created by participants in rule languages such as 
Prolog and N3, and translated for interchange within a wellness community using 
RuleML/XML. The wellness rules are centered around participants, as profiles, 
encoding knowledge about their activities, nutrition, etc. conditional on the 
season, the time-of-day, the weather, etc. This distributed knowledge base extends 
fact-only FOAF profiles with a vocabulary and rules about wellness group 
networking. 
The communication between participants is organized through Rule Responder, 
permitting translator-based reuse of wellness profiles and their distributed 
querying across engines. WellnessRules interoperates between rules and queries in 
the relational (Datalog) paradigm of the pure-Prolog subset of POSL and in the 
frame (F-logic) paradigm of N3. These derivation rule languages are implemented 
in the engines OO jDREW and Euler, and connected via Rule Responder to 
support wellness communities. 
WellnessRules is a system supporting the management of wellness practices 
within a community based on rules plus ontologies. The idea is the following. As 
in Friend of a Friend (FOAF)8, people can choose a (community-unique) 
nickname and create semantic profiles about themselves, here about their wellness 
practices, for their own planning and to network with other people supported by a 
system that `understands' those profiles. As in FindXpRT [10], such FOAF-like 
fact-only profiles are extended with rules to capture conditional person-centered 
knowledge such as each person's wellness activity depending on the season, the 
time-of-day, the weather, etc. People can use rules of various refinement levels 
and rule languages ranging from pure Prolog to N3, which will be interoperated 
through RuleML/XML [3]. 
Interoperating with translators, WellnessRules thus frees participants from using 
any single rule language. In particular, it bridges between Prolog as the main 
Logic Programming rule paradigm and N3 as the main Semantic Web rule 
paradigm. The distributed nature of Rule Responder profiles, each queried by its 
own (copy of an) engine, permits scalable knowledge representation and 
processing. 
WellnessRules has recently been developed to WellnessRules2, using a fourth 
kind of agent, the Computing Agent (CA), for accessing Google weather data. 
From the point of an OA, a CA can be queried similarly to a PA. However, while 
a PA is a personal assistant to a human owner, a CA is a pure machine agent, in 
                                                       
7http://ruleml.org/SymposiumPlanner 
8http://www.foaf-project.org/ 



18  

WellnessRules2 acting as a wrapper for a Google service. 
The Rule Responder instantations to WellnessRules are further described and 
demoed online.9

5.3  PatientSupporter 

 Patients are increasingly seeking interaction in support groups, which provide 
shared information and experience about diagnoses, treatment, etc. 
PatientSupporter is an instantiation of Rule Responder that will permit a patient to 
query other patients' profiles for finding or initiating a matching group. 
Rule Responder's External Agent (EA) is a Web-based patient-organization 
interface that passes queries to the Organizational Agent (OA). The OA represents 
the common knowledge of the virtual patient organization, delegates queries to 
relevant Personal Agents (PAs), and hands validated PA answers back to the EA. 
Each PA represents the medical subarea of primary interest to a corresponding 
patient group. The PA assists its patients by advertising their interest profiles 
employing rules about diagnoses and treatments as well as interaction constraints 
such as time, location, age range, gender, and number of participants. 
PAs can be distributed across different rule engines using different rule languages 
(e.g., Prolog and N3), where rules, queries, and answers are interchanged via 
translation to and from RuleML/XML. The current implementation of 
PatientSupporter applies to a use case where the PA's medical subareas are 
defined through sports injuries structured by a partonomy of affected body parts. 
PatientSupporter uses ontologies and rules for organizing geographically 
distributed patients -- here, suffering from sports injuries -- into virtual support 
groups around classes of an ontology of injuries -- here, a sports-injury 
partonomy. The prototype is designed to help patients with a similar sports injury 
to interact with a virtual support group having that common interest. Patients in an 
online PatientSupporter virtual organization create their semantic profile referring 
to classes in a disease ontology -- here a partonomy of body parts affected by 
sports injuries. Profiles contain rules about diagnoses and treatments as well as 
interaction constraints such as time, location, age range, gender, and number of 
participants. A patient can pose queries against the semantic profiles of other 
patients in his or her virtual organization to find or initiate a matching group. 
PatientSupporter allows patients to have their profiles expressed in either Pure 
Prolog (Logic Programming rules) or N3 [2] (Semantic Web rules). Providing 
these quite different rule language paradigms permit patients to choose the 
language that best suits them. Rule Responder handles the interoperation between 
the rule languages of different patients using translators to and from 
RuleML/XML as the interchange format [7, 3]. 
Patients using the PatientSupporter Social Semantic Web portal are able to initiate 
the virtual support group about their sports injury on a global scale. They also 
                                                       
9http://ruleml.org/WellnessRules and http://ruleml.org/WellnessRules2 



19 

benefit from PatientSupporter's interoperation facility in the background -- to 
transform patient profiles between Pure Prolog and N3 through RuleML/XML. 
The system employs a partonomy of sports-injury-affected body parts (a `body 
partonomy'), which makes it easy for patients to navigate hierarchically up or 
down to increase recall or precision, respectively. A patient's queries invoke other 
patients' interaction rules, allowing him or her to narrow down the search in a 
step-wise fashion. All of this saves a patient from browsing through a large set of 
irrelevant patient profiles and permits him or her to efficiently converge on a first 
Skype call. 
The Rule Responder instantation to PatientSupporter is being described and 
demoed online.10

5.4  Reputation Management System 

 The Rule Responder reputation management system [1] is based on distributed 
Rule Responder rule agents, which use rules for implementing the reputation 
management functionalities as rule agents, and which use Semantic Web 
ontologies for representing simple or complex multi-dimensional reputation 
objects. This Semantic Web reputation ontology model enables reputation 
portability, eases the management of reputation data, mitigates risks in open 
environments, and enhances the decision making process in the reputation 
processing agents. The reputation management system computes, manages, and 
provides reputation about entities which act on the Web. It is implemented as a 
Reputation Processing Network (RPN) consisting of Reputation Processing 
Agents (RPAs) that have two different roles: 

1. Reputation Authority Agents (RAAs): Act as reputation scoring services for the 
reputee entities whose Reputation Objects (ROs) are being considered or 
calculated in the agents' rule-based Reputation Computation Services (RCSs). 
An RCS runs a rule engine which accesses different sources of reputation 
(input) data from the reputors about an entity and evaluates an RO based on its 
declarative rule-based computational algorithms and contextual information 
available at the time of computation. 

2. Reputation Management Agents (RMAs): Act as a reputation trust center 
offering reputation management functionalities. An RMA manages the local 
RAAs providing control of their life-cycle in particular, and also ensuring goals 
such as fairness. It might act as a Reputation Service Provider (RSP) which 
aggregates reputations from the reputation scores of local RAAs. Based on the 
final calculated reputation, it might also perform actions, e.g. compute trust-
worthiness, make automated decisions, or trigger reactions. It also manages the 
communication with the reputors, collecting data about entities from them, 
generates reputation data inputs for the reputation scoring, and distributes the 

                                                       
10http://ruleml.org/PatientSupporter 



20  

data to the RAAs. It might also act as central point of communication for the 
real reputee entities (e.g., persons) giving them legitimate control over their 
reputation and allowing entities the governance of their reputations.  

The agent-based approach to online reputation management ensures efficient 
automation, semantic interpretability and interaction, openness in ownership, fine-
grained privacy and security protection, and easy management of semantic 
reputation data on the Web. 

5.5  Semantic Complex Event Processing Agent Network 

 The Event Processing Network (EPN) [16] consists of Semantic Event Processing 
Agents (EPA) implemented as distributed Prova inference services which detect 
complex events using Prova's rule-based Semantic Complex Event Processing 
(SCEP) logic. [19]. The multi-agent approach allows for a highly-available 
distributed implementation with redundant Event-Calculus based state processing 
where events are processed concurrently in the EPN. 

6  Conclusion 

 Rule Responder is a framework for specifying virtual organizations as semantic 
multi-agent systems.  Characteristics of Rule Responder include 

• the coverage of the distributed processing spectrum from Web Services to 
agents in one framework  

• the recursive (holonic) modeling of a virtual organization of services and 
agents as a single agent,  

• the use of ESBs, especially Mule, as a foundation for the Semantic and 
Pragmatic Web infrastructure,  

• the use of Semantic-Pragmatic Web rules as the main knowledge 
representation, complemented by ontologies,  

• the introduction of PAs as human-assisting agents into a virtual organization, 
besides the traditional computation-performing agents (CAs),  

• the design of a `pluggable' agent-finding mechanism from role assignment to 
Semantic Service discovery.  

The Rule Responder framework, with its increasing number of users and engines 
(Prova, OO jDREW, DR-Device, Euler, and Drools), is thus being proposed as a 
reference architecture for distributed knowledge representation and processing. 

Acknowledgments   The international Rule Responder initiative has greatly 
helped us with work leading to this chapter. In particular, we want ot thank 
Alexander Kozlenkov, Benjamin Craig, Taylor Osmun, Derek Smith, Omair 



21 

Shafiq, Mahsa Kiani, Kia Teymourian, Rehab Alnemr, Irfan ul Haq, Nick 
Bassiliades, Stratos Kontopoulos, and Kalliopi Kravari. 

 References  

[1]  Rehab Alnemr and Adrian Paschke and Christoph Meinel.  Enabling 
Reputation Interoperability through Semantic Technologies.  ACM 
International Conference on Semantic Systems, 2010. ACM.  

[2]  Tim Berners-Lee and Dan Connolly and Lalana Kagal and Yosi Scharf and 
Jim Hendler.  N3Logic: A Logical Framework For the World Wide Web.  
Theory and Practice of Logic Programming (TPLP), 8(3), 2008.  

[3]  Harold Boley.  Are Your Rules Online? Four Web Rule Essentials. In A. 
Paschke and Y. Biletskiy, editors,  Proc. Advances in Rule Interchange and 
Applications, International Symposium (RuleML-2007), Orlando, Florida in 
LNCS, pages 7--24, 2007. Springer.  

[4]  Harold Boley and Elizabeth Chang.  Digital Ecosystems: Principles and 
Semantics.  Proc. IEEE Intl. Conf. Digital Ecosystems and Technologies, 
Cairns, Australia, 2007.  

[5]  Harold Boley and Taylor Michael Osmun and Benjamin Larry Craig.  Social 
Semantic Rule Sharing and Querying in Wellness Communities. In Asunción 
Gómez-Pérez and Yong Yu and Ying Ding, editors,  The Semantic Web, Fourth 
Asian Conference, ASWC 2009, Shanghai, China, December 6-9, 2009. 
Proceedings in Lecture Notes in Computer Science, pages 347--361, 2009. 
Springer.  

[6]  Harold Boley and Adrian Paschke.  Expert Querying and Redirection with 
Rule Responder. In Anna V. Zhdanova and Lyndon J. B. Nixon and 
Malgorzata Mochol and John G. Breslin, editors,  Proceedings of the 2nd 
International ISWC+ASWC Workshop on Finding Experts on the Web with 
Semantics, Busan, Korea, November 12, 2007 in CEUR Workshop 
Proceedings, pages 9--22, 2007. CEUR-WS.org.  

[7]  Harold Boley and Said Tabet and Gerd Wagner.  Design Rationale of 
RuleML: A Markup Language for Semantic Web Rules.  Proc. Semantic Web 
Working Symposium (SWWS'01), pages 381-401, 2001. Stanford University.  

[8]  Benjamin Craig.  The OO jDREW Engine of Rule Responder: Naf Hornlog 
RuleML Query Answering. In Adrian Paschke and Yevgen Biletskiy, editors,  
Advances in Rule Interchange and ApplicationsÂ· International Symposium, 
RuleML 2007, Orlando, Florida, October 25-26, 2007, Proceedings in Lecture 
Notes in Computer Science, 2007. Springer.  

[9]  Benjamin Larry Craig and Harold Boley.  Personal Agents in the Rule 
Responder Architecture. In Nick Bassiliades and Guido Governatori and 
Adrian Paschke, editors,  Rule Representation, Interchange and Reasoning on 
the Web, International Symposium, RuleML 2008, Orlando, FL, USA, October 
30-31, 2008. Proceedings in Lecture Notes in Computer Science, pages 150--
165, 2008. Springer.  



22  

[10]  Jie Li and Harold Boley and Virendrakumar C. Bhavsar and Jing Mei.  
Expert Finding for eCollaboration Using FOAF with RuleML Rules.  Montreal 
Conference of eTechnologies 2006, pages 53-65, 2006.  

[11]  Paschke, Adrian.  Rule responder HCLS eScience infrastructure.  ICPW '08: 
Proceedings of the 3rd International Conference on the Pragmatic Web, pages 
59--67, New York, NY, USA, 2008. ACM.  

[12]  Paschke, Adrian and Bichler, Martin.  Knowledge representation concepts 
for automated SLA management.  Decis. Support Syst., 46(1):187--205, 2008.  

[13]  Adrian Paschke and Alexander Kozlenkov.  A Rule-based Middleware for 
Business Process Execution.  Multikonferenz Wirtschaftsinformatik, 2008.  

[14]  Geoff Sutcliffe and Randy Goebel, editors.  Proceedings of the Nineteenth 
International Florida Artificial Intelligence Research Society Conference, 
Melbourne Beach, Florida, USA, May 11-13, 2006, 2006. AAAI Press.  

[15]  A. Koestler.   The Ghost in the Machine. Hutchinson & Co, London, 1967.  
[16]  Alexander Kozlenkov and David Jeffery and Adrian Paschke.  State 

management and concurrency in event processing.  DEBS, 2009.  
[17]  Paschke, A.  Rule-Based Service Level Agreements - Knowledge 

Representation for Automated e-Contract, SLA and Policy Management. Idea 
Verlag GmbH, Munich, 2007.  

[18]  Adrian Paschke.  A Typed Hybrid Description Logic Programming 
Language with Polymorphic Order-Sorted DL-Typed Unification for Semantic 
Web Type Systems.  CoRR, abs/cs/0610006, 2006.  

[19]  Kia Teymourian and Adrian Paschke.  Towards semantic event processing.  
DEBS, 2009.  

[20]  Welsh, M. and Culler, D. and Brewer, E. SEDA: An Architecture for Well 
Conditioned, Scalable Internet Services.  Proceedings of Eighteeth Symposium 
on Operating Systems (SOSP-18), Chateau Lake Louise, Canada, 2001.  

[21]  M. Wooldridge.   An Introduction to MultiAgent Systems. John Wiley & 
Sons, 2001.  


