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Abstract 

3D anthropometric data obtained from 3D imaging technology provide unprecedented information about the 

human shape. At the same time, 3D data present tremendous new challenges. New software tools and analytical 

methods have to be designed to realize the full potential of the 3D data. One prominent character of the 3D data 

is that they are a collection of coordinates in 3-space and do not have a natural order. This poses problems for 

performing statistical analysis. In order to make sense about this new type of data, 3D points have to be 

registered such that meaningful correspondences across all the models can be established. Other issues include 

data completion, compression, and visualization. In this paper, we describe a framework and the techniques 

involved in processing the 3D anthropometric data for the purpose of making them usable for designing products 

that fit the human shapes. 
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1. Introduction 

Anthropometry, the study of human body 

measurement, provides information about the 

human shape variation to industrial design. 

Traditionally, simple tools like tape measures and 

calipers were used to measure linear distances 

between landmarks or circumferences at specific 

locations. Although these tools are inexpensive and 

easy to use, they only provide limited shape 

information. Meanwhile, during the past twenty 

years, 3D imaging technology has matured to the 

point that we can digitize the full surface of the 

human body with reasonable accuracy and 

efficiency. Around the world, there have been many 

3D anthropometry surveys. For example, the 

CAESAR project is the earliest and one of the 

largest (Robinette and Daanen 1997). 

3D anthropometry opens up new opportunities to 

understand the human shape variability. Initially, 

the most obvious uses of the 3D data include 

visualizing the 3D shape and performing repeated 

measurements on the 3D shapes. However, as the 

3D data accumulate, it becomes clear that we need 

to build statistical models in order to realize the full 

potential of these data. In this paper, we describe a 

framework of processing the 3D anthropometric 

data to understand the human shape variability. 

One prominent character of the 3D data is that 

they are a collection of coordinates in 3-space. In 

contrast to the traditional anthropometric 

measurement, the geometry of the human body is 

represented directly in the three-dimensional 

Euclidean space. A geometric approach toward 

representing and analyzing shapes, called geometric 

morphometrics, was first developed in biological 

sciences, where variation of biological forms and 

their relations to functionality are studied. 

Bookstein applied multivariate statistics to 

manually placed landmark coordinates (Bookstein 

1997; Zelditch et al. 2004). Meanwhile, Kendall 

and other statisticians developed a theoretical 

foundation (Kendall 1984; Kendall 1989; Dryden 

and Mardia 1998) for statistical shape analysis. This 

new type of statistics retains the surface geometry 

and reveals shape variations that are impossible to 

capture with the traditional measurements. The 

results can also be visualized in an intuitive way 

using modern computer graphics techniques. 

In principle, we can apply the geometric 

morphometric approach to 3D scans. However, the 

difficulty is that each scan has a different number of 

points and these points do not have a natural order. 

In order to perform statistical shape analysis, we 

need to register the 3D points such that meaningful 

correspondences across all of the models can be 

established. In other words, we need to 
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parameterize the data models such that they all have 

the same number of vertices and the same 

topological structure. 

Techniques from computer graphics, computer 

vision, and machine learning can be used to solve 

the correspondence problem. One way of 

establishing a correspondence across the models is 

to fit a generic surface model to each scan such that 

the key anatomical points are in correspondence. 

The fitting can be guided by the anthropometric 

landmarks. However, placing the landmarks on the 

subjects prior to scanning is a tedious and time-

consuming task. We show that it is possible to 

locate the landmarks automatically. The method is 

based on statistical learning. Local surface 

properties and distances between landmarks are 

used to learn the parameters of a probabilistic 

graphical model. The prediction of the landmark 

locations is formulated as finding the maximum 

likelihood configuration of the landmark labeling. 

Once we have parameterized the data models, we 

are ready to perform statistical shape analysis. 

Multivariate statistics can be applied to the 

coordinates of the vertices. Since a typical 3D scan 

consists of 100,000 to 500,000 points, the shape 

space is high dimensional. Well-known statistical 

techniques such as Principal Component Analysis 

(PCA) can be used to reduce the dimensionality. It 

turns out that there is usually a low-dimensional 

subspace for human shape data. Thus we can obtain 

a compact representation of the space of human 

shapes. 

Figure 1 illustrates the framework of processing 

and analyzing the 3D anthropometric data. The goal 

is to prepare the data such that we can build a 

statistical model of the human shape. From this 

model, we can develop a variety of applications 

such as data exploration tools for understanding the 

shape variability, or design and simulation tools for 

solving specific engineering problems. 

2. Geometry Processing 

2.1. Data parameterization 

The goal of data parameterization is to establish a 

correspondence among the models. An early 

attempt to solve this problem adopts a volumetric 

approach (Ben Azouz et al. 2003, Ben Azouz et al. 

2006). Each model is embedded in an m x n x k 

regular grid. By carefully orienting and normalizing 

the models, a correspondence in the ambient space 

and thus a correspondence among the models is 

established. The advantage of this method is that it 

is landmark-free. It is also easy to implement. The 

drawback, however, is that the correspondence it 

produces is not accurate. Holes have to be filled 

before a model can be embedded into a grid. This 

proved to be a difficult task because certain parts of 

the model, for example, the area under the arms, 

have large holes. In some parts, like the hands and 

ears, up to 50% of the information is missing. 

A more effective approach is to fit a generic 

mesh model to each data scan (Allen et al. 2003; 

Mochimaru et al. 2000; Mochimaru et al. 2005; 

Amberg et al. 2007; Yeh et al. 2011). This model is 

complete and has well-shaped and well-distributed 

triangles. The fitting deforms the generic model to 

each scan such that the two models are made 

geometrically equivalent. When deforming the 

generic model, the correspondence between the 

anatomical parts has to be maintained. This is 

achieved by using landmarks, which serves as the 

initial conditions for the solution of the problem. 

When deforming the generic model, we have to 

carefully maitain the smoothness of the surface. 

Otherwise, the triangles can go into each other, 

causing invalid meshes and consequently leading to 

the failure of the deformation algorithm. 

Deforming a generic mesh smoothly to a data 

scan can be formulated as an optimization problem. 

 
 

Figure 1. 3D anthropometric data processing framework 
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Here, the variables we need to solve are the x, y, 

and z coordinates of the generic model. The initial 

solution can be simply the generic model. Given an 

intermediate solution, the cost function is defined 

by estimating the difference between the solution 

and the target data model. This includes three kinds 

of errors: (1) the landmark error, which accounts for 

the sum of the distances between the known 

corresponding landmarks; (2) the smoothness error, 

which quantifies the local smoothness at every 

mesh point; and (3) the data error, which measures 

the sum of the distances between every pair of 

corresponding points. 

Figure 2 shows examples of fitting a generic 

model (left column) to two different data scans 

(middle and right columns). The texture mapped 

figures show that while the parameterized models 

have different shapes, they have the same structure.  

 

2.2. Landmark locating 

In the CAESAR dataset, each scan contains 73 

anthropometric landmarks. Placing these landmarks 

on the subjects involves palpating the subjects and 

requires special skills. The accuracy of the position 

varies between different operators. Furthermore, not 

all of the datasets have landmarks, and in the future, 

it is unlikely that a lot of 3-D anthropometry 

surveys will have landmarks data. 

Dekker et al. (2001) attempted to locate the 

landmarks automatically. They define a set of rules 

for each landmark based on its local surface 

properties, such as curvature or distances to certain 

feature points. Then locating the landmarks 

becomes a classification problem. The problem of 

this approach is that the rules are based on intuitive 

observations. Because of the variations among 

humans, there are always exceptions and therefore 

the number of the rules quickly becomes too large 

to handle. More principled ways of specifying the 

landmarks are necessary. 

Ben Azouz et al. (2006) introduced an approach 

that is based on statistical learning. They used a 

subset of the CAESAR dataset as a training set. A 

graphical probabilistic model is used to model the 

positions of the landmarks. A node of the graph 

represents a landmark and an edge of the graph 

represents the relationship between a pair of 

neighboring landmarks. Figure 3 shows the graph 

of the landmarks. The probability of a surface point 

to be a particular landmark depends on the local 

surface properties as well as its relationships with 

other landmarks. These constraints are naturally 

modeled by Markov Random Field (MRF) or 

Markov network. In the training stage, the 

distributions of surface geometric properties such as 

the SPIN image (Johnson 1997), and the relative 

positions of landmarks are computed. In the 

subsequent matching stage, landmarks are located 

by identifying the surface points that maximizes the 

joint probability defined by the Markov network. 

The probability of placing a landmark at a 

particular position depends on two types of 

information. One is the local surface property of 

that landmark. Another is the relationship to its 

neighboring landmarks. We use Euclidean distance 

to measure this relationship. Both kinds of the 

probability distributions can be learned from the 

training data. We may also use geodesic distance. 

But since the landmarks are usually placed on the 

joints, the geodesic distance is usually proportional 

to the Euclidean distance. 

The probability optimization problem has a 

prohibitively large search space; exact computation 

is infeasible. An approximate method, called belief 

propagation, is used to solve this problem. Belief 

propagation is an efficient technique for solving 

large probabilistic optimization problem. When the 

graph has no loops, that is, when it is a tree, the 

solution is exact. When the graph has loops, we can 

only have an approximate solution. Our landmark 

graph contains loops. But in practice it works well. 

Figure 4 shows the results of the predicted 

landmarks. On average, the algorithm predicts the 

landmark locations within 2.0 cm of the experts’ 

 
 

Figure 2: tempate fitting. 

 
 

Figure 3: Landmarks and landmark graph. 
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locations. Note that these landmarks are used for 

guiding the template fitting; they are not accurate 

enough for dimensional measurements. 

3. Statistical Shape Analysis 

Having established the correspondence among all 

of the models, we can perform statistical shape 

analysis. At this point, we have a set of 

parameterized models, each has the same number of 

points and the same mesh topology. The variables 

on which we perform statistics are the coordinates 

of the vertices on the meshes. In general, the 

models may live in different coordinate frames. 

Procrustes alignment can be used to transform them 

into a single coordinate frame. 

Principal Component Analysis (PCA) is the most 

often used statistical technique for understanding 

high-dimensional data. To perform PCA, a shape 

vector is formed for each model by concatenating 

all of the coordinates of the model and the mean 

vector and the covariance matrix are computed. The 

eigenvectors of the covariance matrix form a basis 

of the shape space. This eigen analysis transforms 

the data into a new coordinate system in which the 

modes of variations are ordered from large to small. 

The absolute values of the eigenvalues determine 

the significance of the corresponding variations 

(principal components). Many of them are 

negligibly small. It turns out that for full body and 

head datasets, fewer than 50 principal components 

can explain more than 90% of the shape variability. 

Therefore, PCA gives us a compact way of 

describing the shape variability by using a small 

number of parameters. 

4. Data Exploration 

One of the advantages of statistical shape 

analysis is that it provides an intuitive visualization 

of the shape variation. Since we use a dense point 

set on the surface to perform PCA, each principal 

component can be visualized by an animation 

produced by varying the parameter of the 

component. Figure 5 shows the first 2 components. 

As the models are parameterized by a generic 

model, analysis can be performed on segments of 

the body such as the head, torso, arms and legs (Xi 

et al. 2007). 

Designers are intrinsically visual people. A 

statistical model of the shape space allows us to 

build intuitive visualization tools for understanding 

the shape variability of a dataset. Using computer 

animation techniques, we are able to interactively 

manipulate the coefficients of the PCA components 

and see shape changes continuously along those 

components. A demonstration version of a 

software, called Procrustica, can be downloaded 

from www.humanshape.net.  

It is interesting to note that the human eyes are 

extremely sensitive to moving elements in the 

display. Therefore animation is a powerful tool for 

exploring shape varation. 

5. Conclusions 

Processing 3D anthropometry data requires 

 
 

Figure 4: Results of automatic landmark 

locating. The green dots indicate the predicted 

locations and the red dots are the landmarks 

placed by the operators. 

 

 

 
Figure 5: The first two principal components 
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special techniques in geometry processing. We have 

drawn tools from computer vision, computer 

graphics, and machine learning to solve the 

problem of correspondence. Statistical shape 

analysis reveals patterns of changes in the human 

shape. The detailed and intuitive visualization gives 

designers a powerful tool for making decisions. At 

the same time, these new tools also pose challenges. 

The PCA components do not always correspond to 

everyday measurements of shape changes. Effective 

use of them remains a research problem. 

A more challenging problem is analyzing human 

shapes in different postures. This allows the study 

of the human shape in dynamic environments. 

Again, the essential problem is establishing a 

correspondence among the models. Several authors 

have made some initial progresses in this area 

(Wuhrer et al. 2007, 2011; Anguelov et al. 2005; 

Bronstein et al. 2007). However, much research 

remains to be done to find more robust and efficient 

algorithms. 
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