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ABSTRACT 

In multiangle elastic light scattering (MAELS) 
experiments, the morphology of aerosolized particles is inferred 
by shining collimated radiation through the aerosol and then 
measuring the scattered light intensity over a set of angles.  In 
the case of soot-laden aerosols MAELS can be used to recover, 
among other things, the size distribution of soot aggregates.  
This involves solving an ill-posed set of equations, however.  
While previous work focused on regularizing this inverse 
problem using Bayesian priors, this paper presents a design-of-
experiment methodology for identifying the set of measurement 
angles that minimizes its ill-posedness.  The inverse problem 
produced by the optimal angle set requires less regularization 
and is less sensitive to noise, compared with two other 
measurement angle sets commonly used to carry out MAELS 
experiments. 

INTRODUCTION 
In most combustion processes pyrolized fuel molecules 

coalesce into nanospheres between 10 and 100 nm in diameter, 
called primary particles, which in turn agglomerate to form soot 
aggregates.  Soot has long been a focus of combustion research, 
in large part because its formation within gas turbines and 
automotive engines is closely linked to the performance of 
these devices.  Accordingly, designing the next generation of 
clean and efficient combustion technology relies on improved 
understanding of soot formation and soot models, which in turn 
is predicated on the availability of soot measurements carried 
out within engines and flames. 

Soot also strongly impacts both human health and the 
environment through mechanisms that depend strongly on 
aggregate size.  Epidemiologists have recently discovered that 
small soot particles penetrate more deeply into the lungs and 
can even cross the pleural membrane into the bloodstream [1].  
Climatologists and atmospheric scientists have also assessed 
soot to be an extremely potent factor in climate change, second 

only to carbon dioxide [2]: soot deposited on glaciers increase 
their absorption of sunlight and hasten glacial melting [3], for 
example; while soot in the atmosphere acts as condensation 
nuclei for clouds that shield the earth from solar irradiation, 
which may drastically alter local climatic patterns [4].  
Accordingly, instrumentation for measuring both the size and 
quantity of soot produced by a combustion device is crucial for 
assessing its impact on human health and the environment, and 
its compliance to emissions regulations.  Often the size 
distribution of soot aggregates within an aerosol is quantified in 
terms of the number of primary particles per aggregate, Np.   

While it is possible to infer the size distribution of 
aggregates within a soot-laden aerosol through transmission 
electron microscopy of extracted soot aggregates, such as the 
image shown in Fig. 1, this process has a number of drawbacks.  
Perhaps foremost, charactering the soot aggregate size 
distributions requires the capture and processing of thousands 
of electron micrographs, an extremely time-intensive endeavor, 
which effectively disallows analysis of transient data.  Also, 
inferring three-dimensional structural information from 2-D 

Fig. 1:  Transmission electron micrograph of 
soot aggregates. 

100 nm 
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projections of the soot aggregates may induce certain biases in 
the results [5].  Finally, obtaining the physical access needed to 
probe an aerosol is often difficult (for example in a combustion 
chamber) and the probe itself may have a perturbing effect on 
the physical and chemical processes occurring within the 
aerosol.   

Optical diagnostics overcome many drawbacks of physical 
sampling.  One such technique is multi-angle elastic light 
scattering (MAELS) [6], in which collimated light, usually 
from a laser, is shone through the aerosol.  The aggregate size 
distribution is then inferred from the angular distribution of 
scattered light.  A schematic of this experiment is shown in 
Fig.1.  The angular distribution of the scattered light intensity, 
g, and the aggregate size distribution, PNp, are related by a 
Fredholm integral equation of the first kind,  

      
1

, p p pg C K N P N dN 


   (1) 

where C is a scaling coefficient that depends on the 
experimental apparatus, the aggregate number density, Nagg, and 
the optical properties of soot, K(,Np) is the kernel function 
derived from light scattering theory, and P(Np) is the probability 
density for the number of primary particles per aggregate.  
Equation (1) is derived from the radiative transfer equation 
using Rayleigh-Debye-Gans Polydisperse Fractal Aggregate 
(RDG-PFA) theory to provide the required scattering cross-
sections of the soot aggregates [6, 7].  Predicting the angular 
distribution of scattered light, g(), for a specified P(Np) can be 
done by carrying out the integration; this is called the forward 

problem. Solving the inverse problem, i.e. recovering PNp 
from g, on the other hand, is mathematically ill-posed due to 
the smoothing action of K(,Np). When carrying out the 
integral in Eq. (1), moderate changes in P(Np) are smoothed by 
K(, Np) into comparatively smaller changes in g().  
Conversely, then, small perturbations in g(), which are 
inevitable in an experimental setting, are amplified into large 
variations in P(Np).   

`The aggregate size distribution is usually found by 
assuming a distribution shape for P(Np),most often lognormal, 
and then solving for the distribution parameters that best 
explain the MAELS data through nonlinear regression [8].  

Information about the size distribution, including the ratio of 
moments for P(Np) can also be found by plotting the 
normalized scattering intensity as a function of the modulus of 
the scattering wave vector, q() = 2sin(/2)/, where  is the 
wavelength of light, and then identifying features of scattering 
regimes [6].  These treatments do not directly address the 
fundamentally ill-posed nature of the inverse problem, 
however. 

In a previous work [7], we demonstrated that P(Np) can be 
found by solving a matrix analogue of Eq. , Ax = b, where b 
contains the angular scattering measurements, x is a discrete 
form of P(Np) taken to be piecewise uniform over n evenly-
spaced subdomains of width Np, and Aij is derived from 
K(,Np)  The smoothing property of K(,Np makes A ill-
conditioned, which amplifies the noise contaminating the data 
into a very large error component in the recovered aggregate 
sizes.  In [7] we showed that this issue can be addressed by 
regularizing the problem, a process in which extra information 
about the assumed character of P(Np), for example smoothness 
and non-negativity, is added to the problem.  While 
regularization permits deconvolution of the MAELS data, 
however, it also inherently biases the recovered solution 
towards the analyst’s expectations, since these expectations are 
used to supplement the information content of Ax=b, which is 
inadequate by itself to specify a unique or stable solution for x. 

When the MAELS problem is written in matrix form it is 
clear that ill-posedness of the underlying experiment, and 
consequently the ill-conditioning of A, depends on the angles at 
which scattered light is measured.  Researchers often use 
uniform angular increments between the minimum and 
maximum measurement angles.  Sorensen [6] suggested, 
instead, that angles be chosen to produce uniform increments in 
the scattering wave vector modulus, q41sin(/2), where  
is the laser wavelength. This paper presents a rigorous 
methodology based on design-of-experiment theory that will 
produce a set of measurement angles that minimizes the ill-
conditioning of the deconvolution problem.    

NOMENCLATURE 
A Coefficient matrix 
b Vector of scattering intensities 
C Scaling coefficient 
dp Primary particle diameter 
f(,Rg) Scattering form factor 
g() Scattered light intensity at  
i0 Incident laser intensity 
K(,Np) Light scattering kernel 
Np Number of primary particles in an aggregate
P(Np) Probability density of Np 
q Modulus of the scattering wave vector 
RgNp) Radius of gyration 
wi ith singular value 
x Discrete vector representation of P(Np)
 Tikhonov regularization parameter 
b Error in measured data 

 

Fig. 2:  Schematic of a MAELS experiment.
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x  Error in recovered distribution 
2  Chi-squared function 
 Solid angle  
  Wavelength of laser light 
()  Scattering phase function 
 Matrix of singular values 
s,  Scattering coefficient 
  Scattering measurement angle 
 Set of scattering measurement angles 

DERIVATION OF THE GOVERNING EQUATIONS 

The scattered light incident on the detector, g(), is 
obtained by solving the radiative transfer equation [9] for the 
geometry shown in Fig. 2.  This analysis is simplified through a 
number of assumptions: absorption and emission of light by the 
medium are small relative to the intensity of the scattered light; 
i0 is vertically polarized and undergoes a single scattering 
event between the laser and the detector; background intensity 
is negligible; and finally, the laser beam is assumed to have a 
top-hat profile, i.e. a constant intensity across the beam width.  

Combined, these assumptions reduce the RTE to  

 
 

 
exp , ,0( )

sin 4
s

w
g C i


 


  

 


   (2) 

where  is the solid angle subtended by the laser viewed from 
the measurement volume, which is defined by the intersection 
of the laser and the detection optics, Cexp depends on the 
collection optics and photoelectric conversion efficiencies, s 
and () are the bulk scattering coefficient and scattering 
phase function of the aerosol.  The phase function and 
scattering coefficient are found by integrating the relevant 
scattering cross-sections of a soot aggregate of size Np over all 
possible size classes, weighted by the probability density of the 
aggregate size class, P(Np).   

The scattering cross-sections for an aggregate containing 
Np primary particles are approximated using Rayleigh-Debye-
Gans Polyfractal Aggregate (RDG-PFA) theory [6], which is 
premised on the assumption the primary particles are much 
smaller than the wavelength of laser light so that each primary 
particle “sees” a uniform wave field, and that the primary 
particles scatter independently. Through these simplifications 
Eq. (2) can be rewritten in the form of Eq. (1) with the kernel 
that depends on Np and  [7],  

  
   
 

2

,
sin

  
p g p

p

N f q R N
K N





 (3) 

where RgNp is the radius of gyration of the aggregate, f() is 
the form factor, and q() is the modulus of the scattering wave 
vector.  Due to the nature of diffusion-limited agglomeration 
the soot aggregates have a self-similar, fractal-like structure and 
consequently Rg is related to Np by a power-law relationship,  

    1
2


fD

p p f

g p

d N k
R N  (4) 

where dp is the primary particle diameter, which usually obeys a 

comparatively narrow distribution in an aerosol [10] and can 
therefore be approximated as constant, and kf2.4 and 
Df1.72 are typical values of the fractal prefactor and 
dimension for soot formed in laminar flames as well as overfire 
soot formed in turbulent flames.   

The form factor has been derived in a number of different 
ways over the Guinier and power-law scattering regimes.  The 
model chosen for this work is [11] 

        
82

88
, 1

3


 
        
 

fD

g

g p g

f

qR
f q R N qR

D
  (5) 

The remaining terms related to the primary particle size 
parameter (dp/), aggregate number density, parameters 
related to the experimental apparatus, and the bulk optical 
properties of soot are absorbed into the coefficient, C [7].   

SOLUTION BY LINEAR ALGEBRA 
The majority of techniques described in the literature for 

recovering an aggregate size distribution from MAELS data 
rely on specifying a distribution shape for P(Np) and then 
performing nonlinear regression to recover the distribution 
parameter (e.g. [8]).  Information about the aggregate sizes can 
also be obtained by plotting the normalized scattered intensity 
gfi,0 as a function of the modulus of the scattering wave 
vector, q(), shown schematically in Fig. 3.  This curve reveals 
that light scattering occurs in three distinct regimes: the 
Rayleigh regime; the Guinier regime; and the power law 
regime.  An additional transition regime is often identified 
between the Guinier and power-law regimes.  Most information 
relating to aggregate size is found from the Guinier regime, in 
which the normalized scattering intensity follows [6] 

 
 

 2 20
,

1
1

3


  
 g meas

i
R q

g q

 


 (6) 

where Rg,meas is the effective radius of gyration if the soot 
aggregates within the aerosol were monodisperse.  The 
distribution width can be inferred by the relation [6] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3:  Plotting the normalized scattering intensity versus 
the modulus of the scattering wave vector reveals that 
angular scattering from soot-laden aerosol occurs in 
distinct regimes. 

Guinier 
regime 

Rg,meas
-1

 

g
[q

(
)]

/i
0

 

Power-law 
regime 

Rayleigh 
regime 

Transition 
regime 

q() 
a

-1
 



 4 Copyright © 2011 by ASME 

 
2 2 22 2

,

2

 
Df D f

g meas f

M
R a k

M
 (7) 

where a=dp/2 is the primary particle radius.  By plotting 
g[q()]/i0 and specifying a distribution shape, then, Eqs. (6) 
and (7) can be used to infer the unknown distribution 
parameters. 

It is preferable, however, to recover P(Np) without 
imposing a distribution type.  In our previous paper [7] we 
showed that this can be done by specifying a maximum 
aggregate size, Np,max, beyond which P(Np) is assumed to be 
zero.  Next, the domain Np is discretized into n sub-domains of 
uniform width Np, as shown in Fig. 4, over each of which 
P(Np) is assumed to be uniform.  If scattered light is measured 
at a set of m angles, the deconvolution problem reduces to 
solving Ax = b, where big(i), xjP(Np,j) and A is an (mn) 
matrix having elements defined as 

  
,

,

2

* *
,

2





 
p j p

p j p

N N

ij i p p

N N

A C K N dN  (8) 

Unfortunately, the underlying ill-posedness of the 
deconvolution problem causes A to be ill-conditioned.  In the 
context of the matrix problem, deconvolution of MAELS data 
equates to solving 

        exact exact
Ax A x δx b δb b  (9) 

where b contains measurement noise.  The ill-conditioning of 
A amplifies b into a very large error term x, relative to x.    

The extent of ill-conditioning can be quantified through a 
singular value decomposition (SVD) on A,  A=UV

T, where 
the column vectors of U and V form an orthonormal basis for b 
and x, respectively, and the diagonal matrix  contains the 
singular values wj arranged in decreasing order.  Since the 
inverse of an orthonormal matrix is simply its transpose the 
solution to Eq. (9) can be written explicitly as  

 
1 1 1  

    
T T exact Tn n n
j j j

j j j

j j jj j jw w w

u b u b u δb
x v v v  (10) 

where vj and uj are column vectors of V and U, respectively.  
The rank-nullity theorem guarantees that all singular values are 
strictly positive as long as m ≥ n and the scattering 
measurements are independent (which is generally satisfied for 
unique measurement angles) but the smoothing property of 

K(Np) causes some of these singular values to be very small.  
These small singular values produce an error term (the second 
term on the RHS of Eq. (10)) that dominates x.   

The small singular values are due to the fact that the 
information content of A is barely sufficient to uniquely specify 
x from the observed angular scattering data in b, which makes 
the solution susceptible to measurement noise.  (Letting n > m 
results in a singular matrix, in which case the information 
content of A is inadequate to specify a unique solution.)  It is 
therefore necessary to use regularization, which adds extra 
information based on the expected solution attributes, including 
smoothness, small magnitude, and non-negativity, to reduce 
this ambiguity and eliminate the small singular values.  The 
drawback of regularization, however, is that it biases the 
outcome towards the analyst’s expectation, with little indication 
in the form of an elevated residual due to the ill-conditioning of 
A.  Consequently, it is often difficult to discern how reliant the 
recovered solution is on a priori assumptions about the 
solutions’ attributes.   

OPTIMAL DESIGN OF EXPERIMENTS 
Expressing the MAELS deconvolution problem in the form 

of Eq. (10) reveals that the extent of ill-conditioning is 
determined entirely by A, which in turn is a function of the set 
of measurement angles, .  It follows, then, that the choice of  
plays an important role in experimental accuracy.  Nevertheless 
many researchers simply choose uniform angular spacing 
between the minimum and maximum angles permitted by the 
apparatus.  Sorensen [6] suggested that a better approach may 
be to choose angles based on uniform increments in q() rather 
than , based on the prominence of q() in the underlying light 
scattering equations. 

The fact that it is possible to predict the extent of ill-
conditioning based on the singular values suggests that there 
may be a more rigorous way to choose the measurement angles. 
The first step is to define an objective function, f(), that is 
minimized by the set of angles that produces the least ill-
conditioned matrix.  If the measurements in b are mutually-
independent and each obeys an unbiased normal distribution 
with a standard deviation, i, a chi-squared function can be 
defined as 

  
2

2

1

 
  

 


n
i i

i i

b



a x

x  (11) 

where ai is the ith row of the A matrix.  Minimizing 2x is 
equivalent to maximizing the likelihood function, while the 
value of 2(x*) at its minimum quantifies the agreement 
between the data in b and the most probable solution 
x

*Exexact in other words, 2(x*) indicates the degree of 
agreement between modeled and measured data, in the context 
of the measure data subject to normally distributed error.   

If the rows in Ax = b is scaled so that the standard 
deviations are equal, then Eq. (11) becomes 

      2

2

1
  T


x Ax b Ax b  (12) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 4:  Discretization of P(Np). 
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which is minimized by x* = A-1
b. Substituting x = x*+x into 

Eq. (12) and simplifying gives 

  2

2

1
  T T


δx δx A Aδx  (13) 

which defines a confidence interval traced out by the vector x 
with its tail on x* for a given value of 2 corresponding to a 
tabulated probability.  For a specified value of 2, the 
confidence interval is a hyperellipse in n space [12, 13].  The 
hyperellipse volume indicates to what extent the measurement 
noise in b is amplified into a solution error, x, so the 
objective of this analysis is to design the experiment so that the 
hyperellipse volume is minimized.  Since 2 and 2 are 
constants, the vector x can only be made small by making 
A

T
A as large as possible.  There are a number of ways to 

maximize this value [12]; in this work this is done by 
minimizing the objective function 

      det     
Tf θ A θ A θ  (14) 

which is equivalent to increasing the singular values of A 

through the identity 

   2

1

det



n

T

j

j

wA A  (15) 

(By convention, optimization problems are usually cast as 
minimization problems, which is why the objective is to 
minimize det(AT

A) rather than maximize det(AT
A).)  

Geometrically, the hyperellipse corresponding to 2 = 1 has 
principle axes in the directions of the column vectors of V, 
scaled by the inverse of the corresponding singular value.  
Hence, making the singular values as large as possible 
minimizes the volume of the hyperellipse.   

An instructive 2-D example is shown in Fig. 5 
corresponding to the linear problem 

 1 1 1

22 2

24 2
2 1 1

                

exact

exact

x x b
bx x

 
Ax b  (16) 

where b1 and b2 are sampled from an unbiased normal 
distribution of width  = 0.1, and  is a heuristic parameter 
used to change A.  The case of  = 0 corresponds to a singular 
A matrix since the first row is twice the second row, and the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5:  Example of optimal design of experiments, corresponding to Eq. (14). 

4 

2 

-4 

-2 

0 

-4 -2 0 2 4 

x
2
 

x1 

4 

2 

-4 

-2 

0 

-4 -2 0 2 

x
2
 

x1 

4 

x
2
 

x1 

1 

0 

1 

1 0 1 

x
2
 

x1 

1 

0 

1 

1 0 1 

(a) 

(b) (d) 

(c) 

v2 

v1 

2
 = 1 

1/w1 
1/w2 



 6 Copyright © 2011 by ASME 

2 contours in Fig. 5 (a) show that the information content of 
A is inadequate to specify a unique solution for x; instead there 
exists a locus of solutions along the dotted red line that make 
2(x) = 0.   Setting 0.002, shown in Fig. 5 (b), admits a 
unique solution for x, but the singular values of A are very 
small and consequently x is very large.  Making  = 2, as 
shown in Fig. 5 (c), increases the singular values of A and 
decreases the ellipse volume.  The geometric relationship 
between the ellipse volume corresponding to 2 = 1, the 
column vectors of V, and the singular values, are shown in Fig. 
5 (d). 

OPTIMIZATION OF MAELS MEASUREMENT ANGLES 
The above methodology is applied to optimize a set of 23 

measurement angles for the MAELS experiment described in 
[7, 8].  Minimization started from an initial solution vector * 
filled with uniformly-spaced angles between 23° and 160°, 
which are the minimum and maximum angles permitted by the 
apparatus; these values were imposed as bound constraints 
throughout the minimization procedure.  

We initially attempted to minimize f using Newton’s 
method, but this approach failed due to its multimodal nature; 
this can be seen in Fig. 6 which is a plot of f() with all angles 
fixed at their nominal values except 20, which is varied 
between 23° and 160°.  Accordingly, we switched to simulated 
annealing; in contrast to gradient-based methods, which always 
choose a descent direction, simulated annealing periodically 
accepts an uphill direction with a probability that increases with 
a heuristically-defined annealing temperature, T.  This 
parameter is initially large enough to allow the algorithm to 
“hop” out of shallow local minima, but is progressively reduced 
as the solution hones in on a deep local minimum.  The 
performance of the algorithm is verified by using it to minimize 
f() with 20 as the only free variable and the rest held at 0.  
Figure 6 shows that simulated annealing finds the global 
minimum of this univariate problem. 

The optimal set of angles found by minimizing f() are 
shown in Table 1, along with measurement angle sets that are 
uniformly spaced in the  and q domains, the two most 

common approaches presently used in MAELS experiments.  
The singular values of the A matrix formed by each of the 
angle sets are plotted in Fig. 7, which verifies that the optimal 
angle sets produce larger singular values compared to the other 
two sets.  The smaller singular values should correspond to a 
smaller hyperellipse volume and less measurement noise 
amplification.  Equivalently, the distributions corresponding to 
larger singular values should require less regularization to 
stabilize the deconvoltuion of the MAELS data, thereby 
reducing the influence of regularization-induced biased into the 
recovered aggregate size distribution. 

EVALUATION OF MAELS MEASUREMENT ANGLES 
The performance of these three measurement angle sets are 
compared by solving synthetic MAELS experiments on three 
candidate distributions shown in Fig. 8: a bimodal distribution; 
a lognormal distribution fit to a histogram of P(Np) derived 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6:  Plot of f() allowing 20 to vary with other angles 
held at their nominal values. 

Table 1:  MAELS measurement angles
Uniform  

increments 
[degrees] 

Uniform q 
increments 
[degrees] 

Optimized 
[degrees] 

10 10 10 

23.0 14.5 11.8 

29.6 19.3 13.7 

36.1 24.2 15.3 

42.6 29.1 16.7 

49.1 34.1 18.1 

55.7 39.2 19.5 

62.2 44.4 20.8 

68.7 49.6 22.2 

75.2 54.9 23.7 

81.7 60.4 25.4 

88.3 66.1 27.1 

94.8 71.9 29.1 

101.3 78.0 31.4 

107.8 84.3 34.0 

114.3 90.9 37.1 

120.9 98.0 40.9 

127.4 105.7 45.8 

133.9 114.0 52.2 

140.4 123.5 61.3 

147.0 134.6 75.6 

153.5 149.4 102.0 

160 160 160 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Singular values of A matrices generated using the 
measurement angle sets. 
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from electron microscopy [10]; and a normal distribution 
corresponding to larger soot aggregates.  In each case, the 
specified P(Np) is substituted into Eq. (1) and the integral is 
evaluated numerically to generate three vectors containing 
unperturbed data, b

exact, corresponding to the three sets of 
measurement angles shown in Table 1.  

Even in the case of the optimized measurement angles, the 
magnitude of singular values shown in Fig. 7 indicates that, in 
the presence of measurement noise the A matrix is too ill-
conditioned to recover x by direct inversion.  To this end we 
use standard Tikhonov regularization, which augments Ax = b 
with a second equation, Ix = 0, thereby promoting a solution 
having a small Euclidean norm.  The distribution is then 
recovered by solving the linear least-squares problem 

 
2

2

arg min 0
           

A b
x x

I
 (17) 

where  is a regularization parameter, which determines the 
influence of the prior assumption, in this case a small solution 
norm, relative to the information contained in the scattering 
data.   

Regularized solutions have two error components: 
perturbation error caused by amplification of the noise in the 
data, b; and regularization error due to the fact that the prior 
information used to stabilize the inversion process is not 
entirely consistent with the true solution.  Increasing the level 
of regularization reduces perturbation error, but too much 
regularization causes oversmoothing.  A major challenge of 
inverse analysis is to identify the regularization parameter that 
minimizes the total error, which is the sum of these two 
components. 

If the exact solution is known, however, the regularization 
and perturbation errors can be determined through a 
perturbation analysis of Ax = b [14], 

  #   exact exact exact

 x x x A b δb  (18) 

which leads to an expression for the total error in x,  

  # #  exact exact

 δx x A b A δb  (19) 

where xexact is the true solution, x= A
#
b = A#(bexact+b) is the 

regularized solution, and A
# is the regularized pseudoinverse 

of A, which can be formed from the SVD of the augmented 
matrix.   The perturbation error is given by pert = A

#b, the 
regularization error is regxexactA

#
b

exact, and the total 
error is given by totx. 

We first attempt to recover x using an unperturbed dataset, 
i.e. b=bexact.  As noted above, however, even with b=0 some 
regularization must be applied to recover physically-
meaningful solutions.  The minimum level of regularization 
needed to recover each imposed distribution is shown in Table 
2 for the different sets of measurement angles.  In all cases the 
optimized measurement angles require the least amount of 
regularization to reconstruct x, since these angles produce the 
least ill-conditioned A matrices. 

Next, we attempt to recover distributions from datasets 
contaminated with artificial noise.  Each element of b is 
sampled from a normal distribution with a width of  = 0.03.  
Figure 9 shows the perturbation error, regularization error, and 
total error found using various levels of Tikhonov 
regularization to recover the bimodal distribution shown in Fig. 
8 (a).  As noted above, perturbation error decreases 
monotonically with increasing , while regularization error 
follows the opposite trend.  The total error, which is the sum of 
these two components, has a minimum at an intermediate value 
of .  The total errors for the three different distributions are 
shown in Fig. 10 (a-c); in each case, the optimal angle has the 
smallest total error, also corresponding to the least amount of 
regularization.   

Alternatively we can compare the performance of the 
measurement angle sets by choosing a constant  and then 
varying the amount of measurement noise.  Further 
manipulation of Eq. (19) and employing the identity 
ab≤|ab results in 

 # 

δx δb
A A

x b
 (20) 

Table 2: Minimum regularization required to reconstruct 

x with b = 0. 
 Bimodal Lognormal Normal 

Uniform  9.875 9.875 1.757 

Uniform q 2.232 0.233 0.233 

Optimal 0.067 0.232 0.004 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8:  Aggregate size distributions used to evaluate the measurement angle sets: (a) bimodal; (b) lognormal; and (2) normal 
distributions. 
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where A
#A is the modified condition number of A.  

Figure 10 (d-f) shows that the normalized solution error, 
xx, is indeed linearly proportional with the normalized 
measurement error, bb for solutions obtained using the  
values in Table 2, and that in all three cases the reconstructions 
obtained using the optimized measurement angles are least 
sensitive to perturbation error. 

Some physical insight into why the optimized angles 
outperform the other two sets is obtained by superimposing the 
angles over a plot of the normalized angular scattering intensity, 
g()/i0, versus q2() shown in Fig. 11.  As noted above, 

information about PNp.  Figure 10 shows that the 
measurement angles that are uniformly spaced in the q and  
domains are clustered towards large values of q2.  This part of 
the curve corresponds to power-law scattering, and should 
appear as a straight line when plotted on a log-log graph, and 
therefore can be defined from relatively few measurements; 
therefore, multiple measurements made in this regime provide 
nearly superfluous data.  On the other hand, the uniformly-
spaced angle sets (both  and q space) have comparatively few 
points allocated to define the more complex curvature of the 
transition regime, suggesting that more information could be 
extracted about P(Np) by locating measurement angles in this 
scattering regime, thereby reducing the underlying ill-
posedness of this problem.   

The set of optimized angles, in contrast, are more densely 
concentrated within the Guinier and transition regimes, in 
which the variation of scattered intensity with respect to q2 
provides the most information about P(Np), while there are 
comparatively few angles in the power-law regime.  Thus, the 
optimized measurement angles are likely to provide more 
information about P(Np) compared to the other two sets, 
resulting in the larger singular values shown in Fig. 7. 

It is interesting to note that the optimization procedure is 
independent of the soot aggregate sizes; at first this may appear 
counter-intuitive, since in practice experimentalists often 
choose measurement angles based on anticipated aggregate 
sizes in the aerosol.  Mathematically, this is because the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9:  Perturbation error, regularization error, and total 
error found using various levels of Tikhonov 
regularization to recover the bimodal distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Total errors obtained using: (a-c) a fixed amount of measurement noise and various amounts of regularization; and 
(d-f) fixed amount of regularization and varying amount of measurement noise, for the bimodal (a, d), lognormal (b, e), and 
normal (c, f) distributions. 
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underlying ill-conditioned nature of the problem is described 
fully by the A matrix; the analyst removes this parameter in the 
optimization by specifying a maximum aggregate size, Np,max, 
beyond which P(Np) is expected to be zero.  In other words, the 
measurement angle optimization seeks to maximize the 
information conveyed in A about P(Np) up to Np,max, while 
information about the true size distribution is contained entirely 
in b.   

CONCLUSIONS 
Soot aggregate sizing through MAELS involves solving an 

ill-conditioned matrix equation.  This ill-conditioning amplifies 

small amounts of noise in the light scattering measurements 
into large errors in the recovered size distribution that must be 
suppressed through regularization, but regularization introduces 
a bias into the recovered solution based on the expected 
solution attributes.  This paper showed how design of 
experiment theory can be used to derive an optimal set of 
measurement angles that minimizes the ill-posedness of the 
underlying problem.  This both reduces amplification of 
measurement noise, and avoids excessive regularization error.  

In the near future we will be extending this technique to 
address the influence of parametric uncertainty on MAELS 
experiments.  A difficulty of this experimental technique is that 
the optical properties of the soot aggregates involve some 
uncertainty.  If the uncertainty is assumed to obey a normal 
distribution, it is possible to treat it as an additional source of 
“effective measurement noise,” which may further influence the 
choice of angles as well as other parameters, such as detection 
wavelength.  The maximum likelihood approach used here also 
facilitates combination of multiple measurement techniques in a 
mathematically-rigorous way based on associated experimental 
uncertainties; we will shortly be investigating using this 
technique to integrate MAELS and laser-induced incandescence 
experiments. 
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