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Evolutionary Computation Based Nonlinear Transformations to

Low Dimensional Spaces for Sensor Data Fusion and Visual Data

Mining

Julio J. Valdés, Senior Member, IEEE

Abstract— Data fusion approaches are nowadays needed and
also a challenge in many areas, like sensor systems moni-
toring complex processes. This paper explores evolutionary
computation approaches to sensor fusion based on unsupervised
nonlinear transformations between the original sensor space
(possibly highly-dimensional) and lower dimensional spaces.
Domain-independent implicit and explicit transformations for
Visual Data Mining using Differential Evolution and Genetic
Programming aiming at preserving the similarity structure of
the observed multivariate data are applied and compared with
classical deterministic methods. These approaches are illus-
trated with a real world complex problem: Failure conditions
in Auxiliary Power Units in aircrafts. The results indicate that
the evolutionary approaches used were useful and effective at
reducing dimensionality while preserving the similarity struc-
ture of the original data. Moreover the explicit models obtained
with Genetic Programming simultaneously covered both feature
selection and generation. The evolutionary techniques used
compared very well with their classical counterparts, having
additional advantages. The transformed spaces also help in
visualizing and understanding the properties of the sensor data.

I. INTRODUCTION

Data fusion in general and sensor data fusion in particular,

are necessary. The progress in sensor and communication

technologies demand generic and robust combination of

monitored data coming from sensor nodes and networks [1].

It becomes increasingly important in large scale sensor

system to make data transmission, storage and interpretation

more efficient. In this sense dimensionality reduction [2] and

relevant information finding while preserving as much inter-

nal properties of the data as possible, becomes a challenging

but important goal. The reduction of the dimensionality of the

data benefits the application of many processing techniques

as it alleviate the curse of dimensionality and makes the

application of the methods more efficient and effective. On

the other hand, it makes possible the visual interpretation

of the data and allows a more direct involving of domain

experts and decision makers, in the spirit of Visual Data

Mining and Exploratory Analysis. Another important benefits

are the reduction of the noise level and redundancies in the

data.

Two main approaches are feature selection and feature

generation. Whereas in the former the objective is to find

(smaller) subsets of the original features with as much
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descriptive or discriminatory power as possible, the later tries

to produce new (fewer) features as functions of the original

ones, hence creating a new space of dimension equal to the

number of created features. Mathematically, feature selection

works with subspaces of the original one, whereas feature

generation works with new spaces created by transformations

of the original. These mappings may be linear, like the

classical principal components of factor analysis [3], or

nonlinear, which are more flexible and powerful, but also

more complex. A generic nonlinear approach to sensor data

aggregation was introduced in [4] and applied to real-world

complex sensor data from auxiliary aircraft engines. Using

classical (deterministic) optimization methods it was shown

that a substantial dimensionality reduction can be achieved.

This paper extends the study to the use of computational

intelligence methods (in particular, evolutionary computa-

tion algorithms (EC)) for nonlinear transformations into

low dimensional spaces with dimensionality reduction and

Visual Data Mining purposes. Differential Evolution (DE)

and Genetic Programming (GP) are used to obtain implicit

and explicit mappings. The preliminary results show that

dimensionality reduction can be achieved at levels totally

equivalent to those obtained with classical deterministic

methods. Also, feature selection is achieved when using

explicit analytic models from which the relevant variables

can be readily exposed and their importance quantified. The

paper is organized as follows: Section II reviews the use of

nonlinear transformations for data fusion with classical meth-

ods. Section III introduces two evolutionary approaches for

the same purpose (DE and GP). Section IV briefly presents

the case study (Auxiliary Power Units (engines) in aircrafts).

Section V describes the experimental framework. Section VI

presents the results and Section VII the conclusions.

II. NONLINEAR SPACE TRANSFORMATIONS FOR

INFORMATION FUSION

The construction of a smaller feature space can be per-

formed via a nonlinear transformation that maps the original

set of N -dimensional objects under study O into another

space Ô of smaller dimension d̂ < N . An intuitive metric

should be used for Visual Data Mining purposes, besides

dimensionality reduction. A feature generation approach of

this kind implies information losses and non-linear trans-

formations (' : O → Ô) are required. This approach has

been used for data representation and Visual Data Mining

(knowledge and data exploration) [5]. There are essentially



three kinds of spaces generally sought [6]: i) spaces pre-

serving the structure of the objects as determined by the

original set of attributes or other properties (unsupervised

approach), ii) spaces preserving the distribution of an existing

class or partition defined over the set of objects (supervised

approach), and iii) hybrid spaces. Data structure is one of the

most important elements to consider and it can be approached

by looking at similarity relationships [7], [8] between the

objects, as given by the set of original attributes [5]. From

this point of view, transformations ' can be constructed that

minimize error measures of information loss [9], based on

similarities or distances.

If �(x⃗, y⃗) is a dissimilarity measure between any two

objects x⃗y⃗ ∈ O , and �(ˆ⃗x, ˆ⃗y) is another dissimilarity measure

defined on objects ˆ⃗x, ˆ⃗y ∈ Ô (ˆ⃗x = '(x⃗), ˆ⃗y = '(y⃗)), a

frequently used error measure associated to the mapping '
is the Sammon error [9]:

Se =
1

∑

x⃗ ∕=y⃗

�(x⃗, y⃗)

∑

x⃗ ∕=y⃗

(

�(x⃗, y⃗)− �(ˆ⃗x, ˆ⃗y)
)2

�(x⃗, y⃗)
(1)

A. Computation of the Nonlinear Space with Classical Meth-

ods

In order to optimize Eq. 1 the classical Fletcher-Reeves

algorithm (FR) is used, which is a well known technique

used in deterministic optimization [10]. It assumes that the

function to optimize can be approximated as a quadratic

form in the neighborhood of a N dimensional point P and

exploits the information contained in the partial derivatives

of the objective function. This kind of optimization is prone

to local extrema entrapment, therefore it is recommended to

try different random initial parameter vectors.

The ' mappings obtained using the previously described

approach are implicit, as the images of the transformed

objects are computed directly and the algorithm does not

provide a function representation. The accuracy of the map-

ping depends on the final error obtained in the optimization

process. Explicit mappings can however be obtained from

these solutions using neural networks, genetic programming

(Section III-A), and other techniques. In general ' is a

nonlinear function and in order to compare results from

transformations obtained with different algorithms or dif-

ferent initializations, a canonical representation is preferred.

It can be obtained by performing a principal component

transformation P after ', so that the overall transformation

is given by the composition

'̂ = (' ▪ P) (2)

referred to as the canonical mapping. Since P does not

change the dimension of the new space, an advantage of

the canonical mapping is to make easier the comparison of

different solutions. It also contributes to the interpretability

of the new variables, as they have a monotonic distribution

of the variance. The images of the mapped objects can be

used for the construction of a 3D model (e.g. using virtual

reality), for visual data mining and data exploration (pattern

detection, cluster assessment, etc), as in this paper.

III. COMPUTATION OF THE NONLINEAR SPACE WITH

COMPUTATIONAL INTELLIGENCE METHODS

This task can be performed also using evolutionary com-

putation methods.

1) Differential Evolution: Differential Evolution [11],

[12] is a kind of evolutionary algorithm working with real-

valued vectors, and it is relatively less popular than genetic

algorithms. However, it has proven to be very effective in the

solution of complex optimization problems [13], [14]. Like

other EC algorithms, it works with populations of individual

vectors (real-valued), and evolves them. Many variants have

been introduced, but the general scheme is as follows:

step 0 Initialization: Create a population P of random vec-

tors in ℜn, and decide upon an objective function

f : ℜn → ℜ and a strategy S , involving vector

differentials.

step 1 Choose a target vector from the population x⃗t ∈ P .

step 2 Randomly choose a set of other population vectors

V = {x⃗1, x⃗2, . . .} with a cardinality determined by

strategy S .

step 3 Apply strategy S to the set of vectors V ∪ {x⃗t}
yielding a new vector x⃗t′ .

step 4 Add x⃗t or x⃗t′ to the new population according to

the value of the objective function f and the type

of problem (minimization or maximization).

step 5 Repeat steps 1-4 to form a new population until

termination conditions are satisfied.

There are several variants of DE which can be classified

using the notation DE/x/y/z, where x specifies the vector

to be mutated, y is the number of vectors used to compute

the new one and z denotes the crossover scheme. Let F
be a scaling factor, Cr ∈ ℜ be a crossover rate, D be

the dimension of the vectors, P be the current population,

Np = card(P) be the population size, v⃗i, i ∈ [1, Np] be

the vectors of P , b⃗P ∈ P be the population’s best vector

w.r.t. the objective function f and r, r0, r1, r2, r3, r4, r5 be

random numbers in (0, 1) obtained with a uniform random

generator function rnd() (the vector elements are v⃗ij , where

j ∈ [0, D)). Then the transformation of each vector v⃗i ∈ P
is performed by the following steps:

step 1 Initialization: j = (r ⋅D), L = 0
step 2 wℎile(L < D)
step 3 if((rnd() < Cr)∣∣L == (D − 1))

/* create a new trial vector. For example, as: */

t⃗ij = b⃗Pj + F ⋅ (v⃗r1j + v⃗r2j − v⃗r3j − v⃗r4j)
step 4 j = (j + 1) mod D
step 5 L = L+ 1
step 6 goto 2

step 7 stop

Many particular strategies have been proposed and they differ

in the way the trial vector is constructed (step 3 above). The



ones used in this paper are (see Table. I):

DE/ best/2/bin
tPij = vPbj + F × (vPr1j + vPr2j − vPr3j − vPr4j)

DE/ rand/2/bin
tPij = vPr5j + F × (vPr1j + vPr2j − vPr3j − vPr4j)
DE/ rand/1/exp
tPij = vPr3j + F × (vPr1j − vPr2j)
DE/ best/1/exp
tPij = vPbj + F × (vPr1j − vPr2j)

DE/ best/2/exp
tPij = vPbj + F × (vPr1j + vPr2j − vPr3j − vPr4j)

DE/ rand− to− best/1/exp
tPij = vPij + F × (vPbj + vPij − vPr1j − vPr2j)

(3)

where tPij is a new trial vector and b is the index to the best

vector b⃗P . Some of them, like the DE/best/2/bin have been

reported as producing good results in a wide variety of test

problems [14].

When using DE for solving the nonlinear mapping prob-

lem described by Eq.1 the dimension of the vectors in the DE

algorithm was set to D = card(O)×d̂ in order to construct a

representation in which each DE vector provides a candidate

solution to Eq.1, which clearly be an implicit mapping.

A. Genetic Programming

Genetic programming (GP) techniques aim at evolving

computer programs. They are an extension of the Genetic

Algorithm introduced in [15] and further elaborated in [16],

[17] and [18]. The algorithm starts with a set of ran-

domly created computer programs. This initial population

goes through a domain-independent breeding process over

a series of generations. Genetic programming combines the

expressive high level symbolic representations of computer

programs with the search efficiency of the genetic algorithm.

Those programs which represent functions are of particu-

lar interest and can be modeled as y = F (x1, ⋅ ⋅ ⋅ , xn),
where (x1, ⋅ ⋅ ⋅ , xn) is the set of independent or predictor

variables, and y the dependent or predicted variable, so that

x1, ⋅ ⋅ ⋅ , xn, y ∈ ℝ, where ℝ are the reals. The function

F is built by assembling functional subtrees using a set of

predefined primitive functions (the Function Set), defined be-

forehand. In general terms, the model describing the program

is given by y = F (x⃗), where y ∈ ℝ and x⃗ ∈ ℝ
n. Most imple-

mentations of genetic programming for modeling fall within

this paradigm but for some problems vector functions are

required. A GP based approach for finding vector functions

was presented in [19]. In these cases the model associated

to the evolved programs is y⃗ = F (x⃗), which allows for

the simultaneous estimation of several dependent variables

y⃗ from a set of independent variables x⃗. Note that these are

not multi-objective problems, but problems where the fitness

function depends on vector variables. The mapping problem

between vectors of two spaces of different dimension (n and

m) is one of that kind. In this case a transformation like

 : ℝn → ℝ
m, mapping vectors x⃗ ∈ ℝ

n to vectors y⃗ ∈ ℝ
m

would allow a reformulation of Eq. 1:

Se =
1

∑

i<j �ij

∑

i<j (�ij − d(y⃗i, y⃗j))
2

�ij
, (4)

where y⃗i =  (x⃗i), y⃗j =  (x⃗j).
The evolution has to consider populations of forests such

that the evaluation of the fitness function depends on the set

of trees within a forest [19]. In these cases, the cardinality

of any forest within the population is equal to the dimension

of the target space m.

Gene Expression Programming (GEP) [20], [21] is one of

the many variants of GP and has a simple string represen-

tation. In the GEP algorithm, the individuals are encoded as

simple strings of fixed length with a head and a tail, referred

to as chromosomes. Each chromosome can be composed of

one or more genes which hold individual mathematical ex-

pressions that are linked together to form a larger expression.

For the research described in this paper, the extension of

the GEP algorithm which supports vector functions was used

[19]. The GEP implementation is an extension to the ECJ

System [22].

When genetic programming is used for solving Eq. 4 by

estimating  explicitly, the terminal set for the GP algorithm

may become large (potentially very large) if the dimension

of the original space (the number of attributes of the data

vectors) is large and the function set is rich. This poses a

big challenge to the GP search process, as the search space

is huge (perhaps infinite) whereas the number of functions

generated during the evolutionary process is necessarily is a

tiny fraction of it. However, there are important advantages

of GP solutions to Eq. 4 if they provide a reasonable low

error level. The explicit nature of the solution makes it a

transparent model rather than a black-box one, which is

the case of neural networks, svm’s and other computational

intelligence methods. On the other hand, the union of the

set of arguments of the vector equations associated to the

mapping  provides a subset of the original variables found

as relevant, since they are the chosen ones for building the

GP model equations. Of no smaller advantage is the fact that

by retaining not a single, but a set of k-best GP solutions,

an ensemble model (committee of experts) can be built. In

the same way, the solutions can be boosted or jointly used

with a variety of schemes. Yet another potential advantage is

a quantitative assessment of the importance of the selected

variables, which is given by the elements of the Jacobian

matrix as a sensitivity measure.

J (x1, ⋅ ⋅ ⋅ , xN ) =
∂(y1, ⋅ ⋅ ⋅ , yd̂)

∂(x1, ⋅ ⋅ ⋅ , xN )
(5)

IV. A CASE STUDY: AUXILIARY POWER UNIT SENSOR

DATA FUSION

The Auxiliary Power Unit(APU) engines on commercial

aircraft provide electrical power and air conditioning in the

cabin prior to the starting of the main engines and also

supply the compressed air required to start the main engines

when the aircraft is ready to leave the gate. APUs are highly

reliable but they occasionally fail to start due to failures of the



APU starter motor. When this happens, additional equipment

such as generators and compressors must used to replace

APU’s functionalities, which implies significant costs, delays

or flight cancellation. Accordingly, airlines are very much

interested in monitoring the health of the APU starter motors

and proceed with preventive maintenance whenever a failure

is suspected. The data comes from sensors installed at

strategic locations in the APU which monitors various phases

of operation. The ultimate objective is to develop predictive

models that can accurately determine the remaining useful

life of the starter motors. A generic methodology to tackle

this problem was proposed by [23] but non-linear data fusion

could help in further improve the results obtained and also

facilitate the visualization and interpretation of the data.

The dataset comes from APU starting reports containing

18 original attributes (5 symbolic, 11 numeric, and 2 for date

and time of the event) collected around each occurrence of

component failures. The analysis is based on data generated

between a certain starting date prior to the failure. Statisti-

cal, time-series, and signal processing filters on the initial

11 numerical sensor measurements produced an additional

collection of 188 new variables (features) for a total of 198
numerical variables (the dimension of the original space) and

238 time-stamp instances. With such a highly dimensional

space, it is impossible to visualize the characteristics of the

APU sensor data.

V. EXPERIMENTAL SETTINGS

The data used come from a fleet of 35 commercial

Airbus 320 series aircraft collected over a period of 10

years. ACARS (Aircraft Communications Addressing and

Reporting System) Auxiliary Power Unit starting reports

were made available. Among them, an example of an APU

was used for experimentation. Eq. 2 was used for computing

new 3-D spaces by nonlinear transformation of the original

198-D space of the observed and derived sensor data (via

Eq. 1), for 238 time observations. The dissimilarity measure

used has the form

�(x⃗, y⃗) =
1

S(x⃗, y⃗)
− 1 (6)

where x⃗, y⃗ are any two vectors in the original p-dimensional

space of sensor information and S(x⃗, y⃗) is Gower’s similarity

coefficient [24] which for numeric variables is

S(x⃗, y⃗) =

p
∑

i=1

1−
∣xi − yi ∣

Range(i)
(7)

where xi, yi are the corresponding i-th vector components.

A priori, there is no univocal indication about how many

new dimensions are required in order to achieve a good

similarity preservation between the original sensor space and

the reduced target space for an arbitrary dataset. That is, how

many dimensions would ensure an acceptable low mapping

error. In the present case three dimensional target spaces

were tried, as they would allow a visual inspection of the

transformed sensor data obtained by different algorithms. In

the transformed spaces, the Euclidean distance was used as

the dissimilarity measure. These general settings were the

ones used in [4] and were kept the same across the mapping

methods used in this paper. The following subsections cover

those settings specific to the individual algorithms

A. Classical Optimization Settings

For the Fletcher-Reeves method, the settings were those

described in [4]: 10 initial random configurations in the target

space were tried when computing '̂. The best mapping error

solution was kept (in order to cope with local minima).

B. Differential Evolution Settings

Table I shows the experimental settings used for different

runs of the DE algorithm. For every DE run, the 10 best

chromosomes were retrieved. Population size was fixed to

100 vectors of length 714 (238 objects whose image in a

3-D space require 3 coordinates). The maximum number of

generations was set to 15000 as well as a Sammon error

threshold of 0.014. The idea was to asses the DE capabilities

to approximate error levels of those obtained with classical

methods like FR for the same data.

TABLE I

EXPERIMENTAL SETTINGS FOR THE DIFFERENTIAL EVOLUTION

ALGORITHM (DE-FR). 3D AND 1D SPACES WERE COMPUTED

Parameter Values

F {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
Cross-over Rate {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Population Size {100}

Strategies DE/best/2/bin, DE/rand/2/bin,
DE/rand/1/exp,
DE/best/1/exp, DE/best/2/exp,
DE/rand− to− best/1/exp

Number of Trials 5

A total of 1470 runs covered the experimental settings

discussed above, producing a total of 14700 candidate new

spaces, as for each run the 10 best vectors were retained.

From these first round of results, some few were selected

for further exploration (see Section VI-B).

C. Genetic Programming Settings

The ECJ-GEP genetic programming experiments were

performed using a population sizes of 1000 individuals. 100
different random seeds were used for each experiment and

the best individual found was kept for each run. The total

number of GP experiments was 500. The Function Set was

composed by a Basic Set composed of arithmetic functions:

{+,−, ∗, /} with weights given by {2, 1, 1, 1} and additional

functions like the power (x ∧ y = xy) and the Logistic

(ℒ(x) = 1/(1+ e−x)) were used in some cases as shown in

Table. II.

The remaining algorithm parameters were fixed at the

following suggested values [21]: genes/chromosome = 5,

gene headsize = 5, elitism = 3 individuals, constants =

allowed (in [−1, 1]), probabilities: inversion = 0.1, mutation

= 0.044, istransposition = 0.1, ristransposition-prob = 0.1,

onepointrecomb-prob = 0.3, twopointrecomb-prob = 0.3,



Parameter exp-2 exp-3 exp-4 exp-5 exp-6

nbrGenerations 10000 10000 20000 100000 20000
nbr of Genes 4 4 4 4 6

Head Size 8 8 8 8 16
Additional Functions ∧ ∧,ℒ ∧,ℒ ∧,ℒ

Weights 1 1, 1 1, 1 1, 1

TABLE II

EXPERIMENTAL SETTINGS FOR DIFFERENT GENETIC PROGRAMMING

EXPERIMENTS (500 IN TOTAL).

generecomb-prob = 0.1, genetransposition-prob = 0.1, rnc-

mutation= 0.01, dc-mutation-prob = 0.044, dc-inversion=

0.1, dc-istransposition = 0.1.

VI. RESULTS

A. Mapping with classical deterministic methods

The implicit canonical 3-D mapping of the 198-D vectors

(238 in total), corresponding to the APU-1 engine data

obtained in [4] is shown in Fig. 1(Top). It is impossible

to represent a 3D model on hard media. Therefore fixed

snapshots of the actual 3D volume are displayed on the

figure. When comparing them it should be remembered that

the orientation of the coordinate axis is irrelevant as distance

is invariant to rotation.

The small mapping error obtained (0.01315), indicates that

despite of the large amount of sensor space compression

due to nonlinear dimensionality reduction, the amount of

information lost is small. Therefore, the new 3-D space pro-

vides a reasonable representation of the overall data structure

from the point of view of the preservation of the similarity

relationships defined by the original sensor variables.

For comparison purposes, the vectors have been classified

into three categories (1: timeToFailure ∈ (−∞,−100] days,

2: timeToFailure ∈ [−99,−34] days, 3: timeToFailure ∈
[−33, 0] days), as was done in [4], where transparent closed

surfaces wrapping the vectors corresponding to the given

classes were added ( Fig. 1). It is important to recall that the

computed mappings are unsupervised, therefore this time-to-

failure based class information was not used in the process

by any of the methods considered. However, the similarity

preservation space recognizes well the time evolution of the

APU engine status from a far-from-failure states to close-to-

failure situations.

From the point of view of the time evolution, a more

detailed view is provided by a 3-D polyline joining con-

secutive observations starting from the initial vector (237
days before failure), to the final one at failure time. This

polyline represents the trajectory of the 198 individual time

series from the original sensor space and enables a better

understanding of the system’s evolution as failure contribut-

ing factors cumulate and grow in influence on the process.

The X-axis in the canonical nonlinear 3-D space (the one

with the largest variance), clearly shows the time evolution

of the failure classes: timeToFailure ∈ (−∞,−100] days is

located at the low values end, whereas the timeToFailure

∈ [−99,−34] days and timeToFailure ∈ [−33, 0] classes

follows as the X-values increase. Therefore, the nonlinear

X-axis represents an ’aging factor’ of the system. The same

convention was used for representing the DE and GP results.

B. Differential Evolution Results

The overall distribution of the mapping error for the

14700 DE-computed new spaces, is shown in Fig. 2. The

distribution is bimodal and highly skewed towards low error

Fig. 2. Mapping error distribution for the spaces obtained with Differential
Evolution in 15, 000 or less generations.

values, clearly indicating that the overwhelming majority

of the spaces obtained are of good quality and that the

DE algorithm is robust. The error range is [0.0140, 4.0546]
with a median of 0.0264, which is in the order of the best

solution obtained with the classical FR algorithm (0.01314).

Considering the high dimensionality of the DE vectors (714)

this behavior is remarkable. In particular, 267 solutions

achieve the error level threshold of 0.014 in 15, 000 or

less generations. For these, the distribution of the actual

number of generations needed is shown in Fig. 3, which

Fig. 3. Distribution of the number of generations required for the spaces
obtained with Differential Evolution to achieve an error threshold of 0.014
in 15, 000 or less generations.

has a bimodal character with modes located around 7, 500
and 13, 000 generations. Most of the runs leading to low

mapping error models required less than 10, 000 generations.



Fig. 1. ℝ
198 → ℝ

3 mapping of the APU data. A 3D polyline links consecutive points along the original 198-dimensional time series from the starting
point (Time to Failure = -237) to the last (Time to Failure = 0). Semi-transparent surfaces wrap the three main classes: Time to Failure within 33 days
or less, within 33 and 100 days and more than 237 days. The classes are reasonably well distinguished in the 3D space resulting from the nonlinear
information fusion process. Top: Space obtained with the classical Fletcher-Reeves method (Error = 0.01315). Middle: Space obtained with Differential
Evolution (Error = 0.01315). Bottom: Space obtained with Genetic Programming (Error = 0.0338).



Among these, some converged rapidly to the error threshold

in less than 5, 000 generations. In particular, one achieved

the error threshold in 4163 generations and was allowed

to continue evolving. At 10336 generations it achieved an

error of 0.01315, which is the same as the one obtained

with the FR method. Considering the high dimensionality

of the DE vector space, the fact that many solutions come

close to the best result obtained with a classic technique

which exploits the knowledge of the partial derivatives of the

objective function (which DE does not) is remarkable. The

resulting 3D space corresponding to that model is shown

in Fig. 1(Middle). The effect of various DE parameters

considered on the convergence towards accurate mappings

is shown in Table III.

DE Strategy Freq F Freq Crossover
Rate

Freq

DE/best/1/exp 85 0.4 67 0.9 83

DE/rand-to-best/1/exp 63 0.5 61 0.8 55

DE/best/2/exp 44 0.3 57 0.6 44

DE/best/2/bin 28 0.2 43 0.7 38

DE/rand/1/exp 25 0.6 28 0.5 27

DE/rand/2/bin 22 0.7 11 0.3 11

————- - - - 0.4 9

TABLE III

DISTRIBUTION OF THE DE CONTROLLING PARAMETERS FOR THE

MODELS WITH MAPPING ERROR UNDER THE 0.014 THRESHOLD.

The DE/best/1/exp and the DE/rand−to−best/1/exp
strategies were clearly more prone to drive the evolutionary

process towards regions of the search space were high

accurate mappings are found. F factors are in the [0.3, 0.5]
range and Crossover ratios larger than 0.5 lead to good

results. Main features of the data distribution in the new

space, like the relative ordering and trend of the broad classes

defining the system’s state according to the Time to Failure (a

variable not considered in the computation of the mapping),

are clearly expressed in Fig. 1(Middle) as well as the location

of the end states (from −237 days to the failure point).

These results show that DE is capable of performing at a

level comparable to classical deterministic optimization in

providing suitable low dimension implicit mappings.

C. Genetic Programming Results

The general behavior of the mapping error for all GP

experiments is shown in Fig. 4. The distribution is skewed

towards the low error values which is a good behavior for the

algorithm. The error range is [0.03382, 0.09027] with mean

and median of 0.05532 and 0.05450 respectively. This error

range is considerably smaller than the one obtained with DE

after almost three times more runs. However, DE was capable

to achieve a minimum equal to the one obtained with the

FR method, whereas the best GP result was 0.0338 (within

experiment 5), which is two times larger. The breakdown

of the error values for the individual experiments is shown

in the boxplots of Fig. 5. There is not much variation

between the results produced by experiments 2 and 3 which

Fig. 4. Error distribution for the Genetic Programming experiments.

Fig. 5. Mapping error distributions for the GP experiments (See Table. II).

differ in the number of genes (allowing larger mathematical

expressions) and in the introduction of the power function.

However, performance improves by increasing the number

of generations (more search) and the addition of the logistic

function as shown by experiments 4 and 5. Experiment 6, was

conceived as a derivation of 4 in the sense of providing room

for forming longer and more complex expressions (increasing

the number of genes and the chromosome head size). The

performance improvement of experiment 5 with respect to

6 suggests that not too large or complex expressions are

necessary beneficial. The results of experiment 5 seems to

indicate that the amount of search made is the crucial factor

(exps 4 and 5 differ only in the number of generations).

Not only its mean, median, minimum and maximum are

shifted towards lower error values, but also the interquartile

range is smaller than in all other experiments. The best GP

model representing the explicit mapping  is given by Eq. 8.

When used in Eq. 4 the resulting 3D space is shown in

Fig. 1(Bottom) with a mapping error of 0.0338. This error,

although more than two times larger than those of FR and

DE is still small enough as to represent a small information

loss. The main characteristics of the associated 3D space

in terms of the distribution of the time-to-failure classes

and the location of the start and end states of the process



(Time to Failure −237 days and Time to failure 0), are

the same as what is obtained with the other two methods.

However with GP there is the additional advantage of having

an analytical model (white box) in contradistinction with the

implicit mappings, black-box models given by FR and DE.

 x =(((v186/v170) + (v196/v170))

+(((v75 − (v80 − v170))

+((v90/v155) + v191))/v90))

+((v90 + (v10 + (v175 + v165)))/v71)

 y =(((ℒ((v85 + v108)/(v26 + v165)) + v38) (8)

+ℒ(ℒ((6.811566/v55)− (v181/v117)))) + ℒ(v52))

+ℒ(v118)

 z =((ℒ(v14/v94)/v159)
ℒ(ℒ(v33)) + (1/ℒ(v145/v137))

+ℒ(v125/(((v148 − v78) + (v184 ∗ v173))

+(v45 ∗ v197))) + ℒ(ℒ(v103))

With new data, their images in the new space can be directly

obtained by applying Eq. 8. Since the mappings obtained

with FR and DE are implicit, it is necessary to merge the

new data with the previous and recompute Eq. 1 every

time. Another important side result of the GP approach is

the feature selection that occurs as part of the evolutionary

process. From the original 198 attributes defining the original

space, only 35 appear as arguments of the  functions,

meaning that the main similarity structure of the data can

be represented with only 17.7% of the original variables,

which is also an important dimensionality reduction per se.

In terms of search effort, Eq. 8 was found at generation

99, 409. However, another solution obtained with the settings

of experiment 4 achieved a mapping error of 0.03890 after

19225 generations, involving 42 variables. This is a fairly

equivalent result but requiring only 19% of the evolutionary

effort. GP can perform comparable to classical deterministic

optimization in providing low dimension explicit mappings.

The advantage is that both dimensionality reduction and

feature selection can be made (not possible with FR or DE).

VII. CONCLUSIONS

Nonlinear unsupervised transformation approaches to data

fusion were applied to a case study from the aerospace

domain. Experiments for dimensionality reduction were con-

ducted, indicating that nonlinear transformations are effective

to reduce dimensionality while preserving the structure of

the original data and relevant information. The results also

demonstrated that the transformed spaces help in understand-

ing the characteristics of the sensor data. EC techniques

proved to compare well with classical methods, with the

extra advantage of providing white box models which allows

simultaneous feature selection and generation. However, EC

solutions are more expensive that their classical counterparts.

The results suggest that relationships could be established

between the nonlinear variables of the transformed spaces

with the time to failure of the APU unit, which will be further

investigated.
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