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Abstract

We introduce a new bending invariant representation of

a triangular mesh S. The bending invariant mesh X of S is

a deformation of S that has the property that the geodesic

distance between each pair of vertices on S is approximated

well by the Euclidean distance between the corresponding

vertices on X . Furthermore, X is intersection-free. The

main advantage of the bending invariant mesh compared to

previous approaches is that mesh-based features on X can

be used to facilitate applications such as shape recognition

or shape registration. We apply bending invariant meshes to

find dense point-to-point correspondences between a num-

ber of deformed surfaces corresponding to different pos-

tures of the same non-rigid object in a fully automatic way.

1. Introduction

Bending invariant representations of a shape S aim to

represent the intrinsic geometry of S in an embedding space

S with simple extrinsic geometry. This representation sim-

plifies the task of comparing, matching [14], [7], or corre-

sponding [19], [34], [10] two articulated shapes S(1) and

S(2) of the same underlying topology, because the bend-

ing invariant representations of S(1) and S(2) are near-rigid

transformations of each other if and only if S(1) and S(2)

are similar. We consider the case where S is represented by

a possibly incomplete triangular mesh.

Our goal is to find dense point-to-point correspondences

between a population of s deformed shapes S(1), . . . , S(s).

That is, for each vertex p(1) of S(1), we aim to find the ver-

tex p(r) of S(r) corresponding to the same intrinsic location

on S(r) as p(1) on S(1) for r = 2, . . . , s. We need to find

dense point-to-point correspondences between a population

of deformed shapes in order to perform shape comparison

for this population. For this application, it is important that

the correspondence is unbiased.

We assume that the deformation preserves the intrinsic

geometry of the shape. That is, corresponding lengths mea-

sured on the surfaces S(r), r = 1, . . . , s are identical. De-

formations with this property are called isometric. We relax

this condition to allow for small changes in intrinsic geom-

etry. This relaxed condition is a good approximation of the

locomotion of human being and many other animals. When

near-isometric deformations are considered, bending invari-

ant representations of the s shapes can be used to facilitate

computing the correspondences.

With this model, the problem of computing a bending

invariant representation of S becomes an embedding prob-

lem: given a symmetric dissimilarity matrix ∆ and a sym-

metric weight matrix W , find points X in S, such that an

embedding energy EEMB(∆, W, X) is minimized. The

embedding energy EEMB(∆, W, X) aims to find an em-

bedding, such that for each pair of vertices, the dissimilarity

δi,j between two vertices on S and the distance dS(~xi, ~xj)
in S between the corresponding embedding points are sim-

ilar. The influence of a vertex pair can be weighted by the

entry ωi,j of W .

Bending invariant representations of this type are in-

variant with respect to rotation, translation, and reflections.

Hence, to find point-to-point correspondences between two

embeddings X(1) and X(2) in R
d, we need to consider the

2d possible alignments obtained by flipping the shapes with

respect to the coordinate axes [19]. When we aim to find

dense point-to-point correspondences between a population

of s articulated shapes, the number of possible alignments

becomes exponential in s. Even when all of these align-

ments are considered, symmetric misalignments may occur

because the surface orientation is not maintained [19], [34].

This renders these bending invariant representations im-

practical for registering s articulated shapes.

Generalized multi-dimensional scaling [8] uses a trian-

gular mesh as embedding space S. This method is shown to

perform well when registering two articulated shapes. How-

ever, since the orientation of the shape is not maintained,

local surface flippings may occur. When the goal is to com-

pute correspondences between a population of s articulated

shapes, one of the shapes, say S(1), can be used as the em-

bedding space. Embedding S(r), r = 2, . . . , s into S(1)
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gives the dense point-to-point correspondences between the

given population. However, this introduces a bias towards

S(1) in the result because the extrinsic geometry of embed-

dings depends on the extrinsic geometry of S(1). This is

undesirable when the aim is to use the correspondences for

shape analysis.

We introduce a new bending invariant representation of

a shape S. The bending invariant mesh X of S is a defor-

mation of S that has the following two properties. First, the

geodesic distance between each pair of vertices on S is ap-

proximated well by the Euclidean distance between the cor-

responding vertices on X . Second, X has an intersection-

free underlying mesh. These two properties imply that (a)

the surface of X has the same orientation as the surface of

S and that (b) the extrinsic geometry of X depends only on

the intrinsic and extrinsic geometries of S.

To compute the bending invariant mesh X of a trian-

gular mesh S with n vertices, we deform S using multi-

dimensional scaling with an added repelling energy term.

When computing dense point-to-point correspondences

between s deformed shapes, we use feature points on

the bending invariant meshes to find a rigid registration.

Starting from this initial alignment, we iteratively improve

the correspondences using generalized Procrustes analysis.

This allows an unbiased registration in polynomial time.

2. Related Work

To compute a bending invariant representation of a

shape S, geodesic distances are commonly used to mea-

sure the dissimilarity between pairs of vertices on S. If

holes are present in S, the geodesic distances are often

weighted depending on whether or not they pass by a hole

of S [28], [34]. In order to reduce the sensitivity of the dis-

similarities with respect to topological noise, Bronstein et

al. [11] use as dissimilarity a distance that combines the

intrinsic and extrinsic distances between the shapes, and

Bronstein et al. [5, Chapter 12] use as dissimilarity a diffu-

sion distance approximating the average path length of all

paths connecting pairs of vertices on S.

Bending invariant representations were first introduced

by Elad and Kimmel [14]. The representation is called

canonical form and it aims to find an embedding in S = R
k

for a positive constant k. In their work, three embedding

algorithms based on multi-dimensional scaling (MDS) are

tested. The first algorithm computes a canonical form via

classical MDS [17]. Computing an embedding via classical

MDS takes O(kn2) time [22]. The second algorithm com-

putes a canonical form via least-squares MDS [4, p.146-

155]. The algorithm takes O(n2t) time, where t is the num-

ber of iterations needed until convergence of X . The third

algorithm computes a canonical form via Fast MDS [15].

The algorithm takes O(kn) time.

Canonical forms were used for a variety of applications.

Bronstein et al. [7] use canonical forms for expression in-

variant face recognition. Bronstein et al. [12] introduce

multigrid MDS to achieve more efficient algorithms. Jain

and Zhang [18] apply the surface recognition algorithm to

general surfaces. They improve the efficiency of the algo-

rithm by computing a form via the Nyström approximation.

Jain et al. [19] and Wuhrer et al. [34] use canonical forms to

find one-to-one correspondences between pairs of isometric

surfaces by computing near-rigid correspondences between

canonical forms.

Bronstein et al. [6] introduce a representation called

spherical embedding, which aims to find an embedding in

S = S
k
r , where S

k
r is a sphere of radius r in k dimensions.

Spherical MDS can be computed using a gradient descent

approach in O(tn2) time, where t is the number of itera-

tions needed until convergence. Bronstein et al. use this

approach for expression invariant face recognition.

Bronstein et al. [8] introduce generalized MDS (GMDS),

which aims to compute a canonical representation in S =
T , where T is any triangular manifold mesh. If T contains

n vertices, the approach takes Ω(tn2 log n) time, where t

is the number of iterations needed until convergence of the

gradient. Bronstein et al. [9] use GMDS for face recogni-

tion. Furthermore, Bronstein et al. [10] use GMDS to find

one-to-one correspondences between pairs of possibly in-

complete isometric surfaces.

All of the approaches reviewed so far minimize a global

embedding energy. However, in many applications, dissim-

ilarities between similar objects have more importance than

those between totally dissimilar objects. Two popular algo-

rithms for dimension reduction that find an embedding in

S = R
k that minimizes a sum of local embedding energies

are locally linear embedding (LLE) [29] and isomap [33].

3. Bending Invariant Mesh

This section presents an algorithm to compute a bend-

ing invariant mesh structure X representing the triangular

mesh S. To compute the bending invariant mesh efficiently,

a coarse-to-fine strategy is employed. First, we outline how

to compute a bending invariant mesh. Second, we derive a

coarse-to-fine strategy for improved efficiency.

3.1. Computing a Bending Invariant Mesh

A bending invariant mesh X of a shape S is a deforma-

tion of S that has the property that the geodesic distance

between each pair of vertices on S is approximated well

by the Euclidean distance between the corresponding ver-

tices on X while keeping X intersection-free. To compute

the canonical form introduced by Elad and Kimmel [14], an

embedding in R
k is computed such that the Euclidean dis-

tances in the embedding approximate the geodesic distances

on the mesh well. In our application, k = 3. We compute



the geodesic distance δi,j between the vertices pi and pj for

i, j ∈ S using the fast marching technique introduced by

Kimmel and Sethian [20]. Furthermore, we compute con-

fidence values ωi,j = 1 −
mh

i,j

mi,j
, where mi,j is the number

of edges on the geodesic path computed by the fast march-

ing technique from pi to pj and where mh
i,j is the number of

edges tracing a hole of S on the geodesic path from pi to pj .

We say that an edge traces a hole of S if the edge crosses a

triangle that contains at least one vertex on the hole. We use

the geodesic distances δi,j as dissimilarities and the confi-

dence values ωi,j as weights to compute the bending energy

of the manifold S. That is, we aim to minimize

ELS =
2

n(n − 1)

n∑

i=1

n∑

j=i+1

ωi,j (δi,j − dRk(~xi, ~xj))
2
.

To maintain a non-self-intersecting mesh during the de-

formation, we use a repelling energy term. We aim to satisfy

CMD = d(ti, tj) > 0 for all non-adjacent triangles ti and

tj of X , where d(ti, tj) denotes the Euclidean distance be-

tween ti and tj . The Euclidean distance between ti and tj
is computed as the minimum of the Euclidean distance be-

tween any edge of ti and any edge of tj , and the Euclidean

distance between any vertex of ti (respectively tj) whose

perpendicular projection onto the supporting plane of tj (re-

spectively ti) is located at the interior of tj (respectively ti)

and the supporting plane of tj (respectively ti). Ladd and

Kavraki [23] discuss how to compute the Euclidean distance

between two edges using dot products only.

This repelling term is incorporated in the minimization

problem by minimizing

E = (1 − λ)ELS + λ
1

m

∑

ti

1

mintj
(d(ti, tj)2)

,

where m denotes the number of triangles of X , over all non-

adjacent triangles ti and tj .

The constant 0 ≤ λ ≤ 1 regulates how much weight is

given to each of the two terms of E. We only wish to give

weight to the repelling term if two non-adjacent triangles

almost intersect each other. This is achieved by choosing λ

to be small. When two triangles come close to intersecting

each other, the repelling term tends towards infinity. In this

case, the repelling term will have significant influence even

when multiplied by a small λ. Hence, we set λ = 10−10 in

our experiments.

Note that the gradient of E with respect to all the ver-

tex positions can be computed analytically. The gradient of

ELS with respect to the vertex positions is used in the SMA-

COF algorithm explained by Borg and Groenen [4, p.146-

155]. The gradient of the repelling energy term can be com-

puted with the help of the gradient of the Euclidean distance

between two edges used by Ladd and Kavraki [23]. As the

gradient can be computed analytically, E can be minimized

using a gradient descent or a quasi-Newton approach.

We start from the given mesh S and compute the bending

invariant mesh X by moving the vertices of S until E is

minimized. We use the limited-memory Broyden-Fletcher-

Goldfarb-Shanno quasi-Newton approach [25] to minimize

E in our implementation.

3.2. Coarse-To-Fine Strategy

To compute the bending invariant mesh efficiently in

terms of time and space, a coarse-to-fine strategy is em-

ployed. First, we compute uniformly distributed sample

sets P containing n′ vertices from S using Voronoi sam-

pling [27]. Second, we compute the bending invariant mesh

of this sample set. Third, we add the other points to the

bending invariant mesh one by one.

To compute the bending invariant mesh of the sample set

P , we need a low-resolution mesh that only contains the

samples. We compute this reduced mesh SP using edge

collapses. We collapse all the edges until only vertices in P

remain. Of all the edges that do not introduce topological

changes or self-intersections of the mesh when collapsed,

we always collapse the edge that results in the least change

in volume. To find this edge, we use a simplified version of

the approach by Lindstrom and Turk [24]. When collaps-

ing the edge e = (v0, v1), we collapse v0 into v1. Hence,

every triangle t = (v0, vi, vj) becomes t′ = (v1, vi, vj).
We can evaluate the change in volume caused by the edge

collapse by summing all of the signed volumes of the tetra-

hedra (v1, v0, vi, vj). We use this approximation of the vol-

ume change even when holes are present in S. Once the

mesh SP is found, we compute the bending invariant mesh

XP as outlined in the previous section.

Next, all vertices of S\P are added to the bending invari-

ant mesh. We initialize the vertices using the mean-value

geometry encoding [21]. We then minimize for the vertices

~xn′+j , j = 1, . . . , n − n′, the energy

E∗ = (1 − λ)E∗

LS + λ
1

m

∑

ti

1

mintj
(d(ti, tj)2)

,

where

E∗

LS =
1

n′(n − n′)

n∑

j=n′+1

n′∑

i=1

ωj,i (δj,i − dRk(~xj , ~xi))
2
,

where m is the number of triangles in X , and where ti and

tj are non-adjacent triangles of X . The gradient of E∗ with

respect to ~xn′+j can be computed explicitly and we use the

same minimization scheme as above. This results in the

bending invariant mesh X .



3.3. Analysis

To compute a bending invariant mesh X , we first find

a sample set P of size n′ using Voronoi sampling in

O(n′n log n) time.

Second, we compute a low-resolution mesh SP using

edge collapses. During the course of the algorithm, there are

O(n) edges that are candidates for an edge collapse. Com-

puting the associated volume change for each of these edges

takes O(1) time on average, since this computation only de-

pends on the neighborhood of the edge. Each time an edge

is collapsed, we ensure that collapsing the edge does not

cause self-intersections of the mesh. This step takes O(n)
time per edge. Hence, computing SP takes O(n2) time.

To improve the efficiency of this step in our implemen-

tation, we only test self-intersections with a set of triangles

found using nearest neighbor searches on the vertices of S.

For each vertex v of a new triangle t created by an edge

collapse, we find the k = deg(v) + 1 nearest neighbors in

the current partially compressed version of S, where deg(v)
denotes the degree of v after the collapse. We then insert

all of the triangles that are incident to one of the k nearest

neighbors of v and that are not adjacent to t into the set of

triangles used to test self-intersections. We find the k near-

est neighbors of v with the Approximate Nearest Neighbor

library [1], [2]. Although this approach eliminates the guar-

antee that no self-intersections occur, we did not encounter

any problems in our experiments.

Third, we compute XP by minimizing E. Evaluating

E and its gradient with respect to all the vertex positions

takes O(n′2) time. We improve the efficiency of computing

the term
∑

ti

1
mintj

(d(ti,tj)2)
in our implementation with the

same technique used when computing SP .

The quasi-Newton approach evaluates E and its gradi-

ent in each iteration. Hence, computing XP takes O(un′2)
time, where u is the number of iterations.

Finally, we add all vertices of S\P to the bending invari-

ant mesh. This takes O(n) time. Moving each of the added

points by minimizing E∗ takes O(un2) time in the worst

case. As before, we improve the efficiency of computing∑
ti

1
mintj

(d(ti,tj)2)
in our implementation using a kd-tree.

The analysis of all the steps of the algorithm shows that

computing the bending invariant mesh X takes O(un2)
time. Furthermore, the algorithm uses O(n + n′2) space.

3.4. Examples

We compute the bending invariant meshes for a set of

four poses of an Alien model derived from the Princeton

shape benchmark [31] on an Intel Pentium D with 3.5 GB

of RAM. We chose a model of an alien from the Princeton

Shape Benchmark and animated the model to obtain mul-

tiple postures with known correspondences using the au-

tomatic technique by Baran and Popović [3]. The models

contain 429 vertices each.

Figure 1 shows the bending invariant meshes. The back

faces of the models are colored blue. The first row shows the

models. The second row shows the canonical forms of the

meshes computed using ELS . We can see that, especially

in the leftmost model, many self-intersections occur. The

third row shows the bending invariant meshes computed us-

ing E. The computation of these models took about 2 min-

utes on average. The fourth row shows the bending invari-

ant meshes computed using the coarse-to-fine strategy when

n′ = 250. The computation of these models also took about

2 minutes on average. For the results in rows three and four,

few self intersections occur. The meshes in row four are

slightly noisier than the meshes in row three because only

250 samples are used to minimize E. Otherwise, the results

obtained using full resolution and the results obtained using

a coarse-to-fine strategy are similar.

Figure 1. Four poses of an alien model and their canonical forms.

The first row shows the models. The second row shows the canoni-

cal forms of the meshes computed using ELS . The third row shows

the bending invariant meshes computed using E. The fourth row

shows the bending invariant meshes computed using the coarse-

to-fine strategy.

4. Application to Groupwise Correspondence

We apply bending invariant meshes to find dense point-

to-point correspondences between s deformed surfaces

S(1), S(2), . . . , S(s) corresponding to different postures of

the same non-rigid object.

First, we compute the bending invariant meshes

X(1), X(2), . . . , X(s). Second, we present an iterative ap-



proach to compute the correspondences between the near-

rigid meshes X(r). This approach uses the average shape

X of the corresponded points of the meshes X(r).

The iterative approach proceeds in three steps. First,

the alignment of the bending invariant meshes is initial-

ized. Furthermore, the average shape is initialized. For this

step, surface-based feature points on X are used. The initial

alignment is an important step in this algorithm because the

subsequent iteration uses nearest neighbor registration and

can therefore easily get trapped in local minima. Section 4.1

discusses how to find the initial alignment.

Second, we update the current correspondence between

X(r) and the average shape. This step uses levels of nearest

neighbors and is outlined in Section 4.2.

Third, we find the best rotational alignment of the

meshes X(r) via generalized Procrustes analysis (GPA). In

this step, we assume that a correspondence between X(r) is

given. Section 4.3 discusses this step.

Note that the third step yields a new average shape,

which is used in the following iteration. We iterate steps

two and three of the algorithm. We can evaluate the quality

of the correspondence by summing the Euclidean distances

between corresponding vertices over all meshes. The itera-

tion stops once the quality of the correspondence improved

by less than ǫ(corres). We also stop the iteration after a max-

imum number t(max) of iterative steps. In our experiments,

we set ǫ(corres) = 10−5 and t(max) ∈ [10, 100].

4.1. Initializing the Alignment

We start by rigidly aligning the meshes X(r) such that

corresponding points are close to each other. This step of

the algorithm is important because the subsequent iteration

uses nearest neighbor registration and can therefore easily

get trapped in local minima. Finding the best rigid align-

ment between two bending invariant representations based

on vertex coordinates only is a hard problem [19], [34].

Since X(r) is an intersection-free mesh, we use mesh-based

features on X(r) to find the initial alignment.

Let n(min) = min(n(r)) denote the minimum number

vertex count over all the meshes X(r) and let n(max) =
max(n(r)) denote the maximum number vertex count over

all the meshes X(r). Let X(min) denote the mesh X(r) that

consists of n(min) vertices. If there is more than one mesh

X(r) that consists of n(min) vertices, choose X(min) as the

one that yields the best quality of the correspondence.

We start by initializing the alignment of the meshes as

follows. We rotate each mesh X(r), such that X(r) is

aligned with the principal axes defined by X(r)’s vertices.

Note that four different rotations can achieve this alignment.

We fix the alignment of X(min) by choosing one of the four

rotations arbitrarily. We initialize X = X(min).

For each mesh X(r) 6= X(min), we choose of the four

possible rotations the one that minimizes a mesh-based fea-

ture matching cost between X(r) and X(min).

To find and match the features, we use a simplification

of the algorithm introduced by Gelfand et al. [16]. To start,

we compute the mean curvature on each of the bending in-

variant meshes using the approach by Meyer et al. [26]. We

use the mean curvature as this measure is closely related to

the integral volume descriptor developed by Gelfand et al.

To extract the features of X(r), we find the points that

have the most unusual mean curvature by computing a his-

togram of the mean curvature values according to Scott’s

rule [30]. That is, we compute a histogram with bin width

b = 3.49σn(min)− 1
3 , where σ is the standard deviation of

the mean curvature values. To select feature points, we

find the least populated bins containing a total of at most

0.01n(min) points. We do not select feature points that are

in the 1-ring neighborhood of an already selected feature

point. This approach yields k(r) feature points on X(r).

For each ordered pair of meshes X(r1) and X(r2), we

find k(r2) points on X(r1) that correspond to the k(r2) fea-

ture points on X(r2) as follows. For each of the k(r2) feature

points on X(r2), we find the point on X(r1) that is clos-

est to the feature point in terms of mean curvature. This is

the matching feature point. This way, we obtain
∑s

r=1 k(r)

matching feature points on each mesh X(r).

Once the matching features are found, we test for X(r)

all four rotational alignments that align X(r) with the prin-

cipal axes defined by its vertices. For each of the align-

ments, we compute as cost the sum of squared Euclidean

distances between the matched feature points on X(r) and

X(min). Finally, we choose the alignment that yields the

minimum cost.

4.2. Updating the Correspondence

This section explains how to update the correspondence

between a group of meshes X(r) and their average X . The

aim is to register each mesh X(r) to the shape X . We per-

form this correspondence using closest pairs of vertices.

In a first step, we find for each vertex p in X(r) its near-

est neighbor n(p) in X . If p is the nearest neighbor of n(p)
in X(r), then n(p) is the vertex of X corresponding to p and

for the following steps, both p and n(p) are removed from

consideration. In the k-th step, we find for each vertex p in

X(r) that is left for consideration its nearest neighbor n(p)
in the part of X that is left for consideration. As before, if p

is the nearest neighbor of n(p) in the part that is left for con-

sideration of X(r), then the two vertices are corresponded

and for the following steps, both p and n(p) are removed

from consideration. We use kd-trees to efficiently compute

pairs of nearest neighbors.

Once the correspondence is updated, exactly n(min) ver-

tices of X(r) have a corresponding vertex in X . We sort

these vertices in the same order as the vertices in X and we

denote this ordered set by O(r) in the following.



4.3. Computing the Best Alignment via GPA

Given the set O(r) of s shapes with corresponding ver-

tices, we perform generalized Procrustes analysis (GPA) as

outlined in Dryden and Mardia [13]. Each shape O(r) is

rotated in turn to optimally fit the average of the shapes

O(1), . . . , O(r−1), O(r+1), . . . , O(s). While we only use the

vertices of O(r) to compute the optimal rotations, we rotate

the full meshes X(r). These steps are iterated until the qual-

ity of the correspondence improved by less than ǫ(corres) or

until t(max) iterative steps have been executed. Once the

optimal alignment of the shapes is found, the average X is

recomputed as the average of the shapes O(r).

4.4. Analysis

To compute the groupwise correspondence between s

given meshes, we first find the bending invariant meshes

in O(sn(max)2) time as outlined in Section 3.

To find the initial alignment of the bending invari-

ant meshes, we first find k(r) feature points on X(r)

in O(k(r)n(r)) time. Second, we find the match-

ing feature points for each ordered pair of meshes in

O(s2k(max)n(max)) time, where k(max) is the maximum of

all k(r). Finally, for each X(r) 6= X(min), we find the best

of four possible alignments in O(s2k(max)) time. Hence,

the total time of finding the initial alignment of the meshes

is O(s2k(max)n(max)).
To update the correspondence between the bending in-

variant meshes and their current average X , we use a

kd-tree on the vertices of X . Building the kd-tree takes

O(n(min) log n(min)) time. Next, we find for each ver-

tex p in X(r) its nearest neighbor n(p) in X . This

takes O(sn(max)(n(min))2/3) time. We repeat these

steps until all points on X have a corresponding point

in X(r). In the worst case, we need to repeat n(min)

times. Hence, the worst-case running time of this step is

O(sn(max)n(min)(n(min))2/3). Note however that in prac-

tice, we expect to repeat less often than n(min) times.

To compute the best alignment via GPA, we solve a lin-

ear system of equations via least-squares fitting. This takes

O(n(min)2) time. Since there are s shapes that need to be

aligned and since we repeat the alignment uGPA times, the

total time of this step is O(suGPAn(min)2).
To find the groupwise correspondence, u iterations are

performed. This takes O(u(sn(max)n(min)(n(min))2/3 +
suGPAn(min)2)) time.

5. Experimental Results

The experiments were conducted using an implementa-

tion in C++ using OpenMP on an Intel Pentium D with 3.5

GB of RAM.

Figure 2(a) shows the correspondences that are com-

puted for the four alien models when 250 samples are used

to compute bending invariant meshes. Corresponding ver-

tices are shown using the same color. For this experiment

t(max) = 100. Recall that we know the ground truth cor-

respondences for this model. We can therefore evaluate the

accuracy of the computed correspondences.

Let pk, k = 0, . . . , n(min) denote the vertices of X . Let

p
(r)
k , k = 0, . . . , n(r) denote the vertices of X(r). Let the

vertices of the meshes X(r) be ordered, such that the true

correspondence of p
(i)
k is p

(j)
k , for i, j from 1 until s. Fur-

thermore, let a(r) be a function, such that p
(r)

a(r)(k)
is the

correspondence of pk in S(r) computed by our algorithm.

We compute the average correspondence error as

ÊCOR =

∑s
i=1

∑s
j=1 dS(i)

(
p
(i)

a(i)(k)
, p

(i)

a(j)(k)

)

s(s − 1)
,

where dS(i)

(
p
(i)

a(i)(k)
, p

(i)

a(j)(k)

)
denotes the number of edges

on the Dijkstra path from p
(i)

a(i)(k)
to p

(i)

a(j)(k)
along S(i). Fig-

ure 2(b) shows a histogram of the average correspondence

errors ÊCOR. We can see that most correspondences are

accurate within two edge lengths.

Furthermore, we evaluate the approach using a set of ten

cat models. The models contain 7207 vertices and were cre-

ated and used by Sumner et al. [32]. We use 1000 samples

to compute the bending invariant meshes. On average, this

step takes about 11.7 minutes per cat. To improve the effi-

ciency of this experiment, we set t(max) = 10. Figure 3 (a)

shows the result. Corresponding vertices are shown using

the same color. For this set of models the ground truth cor-

respondence is known. Figure 3 (b) shows a histogram of

the average correspondence errors ÊCOR. We can see that

most correspondences are accurate within 13 edge lengths.

The error for this experiment is larger than for the previous

experiment because the bending invariant meshes are not

entirely rigid to each other for the cat models. The accuracy

of the correspondence could be improved by allowing for

non-rigid registration of the bending invariant meshes. We

leave this for future work.

Finally, we demonstrate that the accuracy of the cor-

respondence is strongly related to the amount of non-

isometric deformation. We use the set of four alien mod-

els with small deformation shown in Figure 4 that were de-

rived from the Princeton shape benchmark [31] as above.

We compute the groupwise correspondence between the

four alien models. Instead of computing ÊCOR over the

set of four models, we compute the correspondence er-

ror between two given poses S(i) and S(j) as Ê
(i,j)
COR =

dS(i)

(
p
(i)

a(i)(k)
, p

(i)

a(j)(k)

)
. Furthermore, for each edge e, we

compute the amount of non-isometric deformation D(i,j) as

the difference in length of e in poses S(i) and S(j). We

use D(i,j) although it depends on the scale of the mod-



(a) (b)

Figure 2. (a): Front and back views of the correspondence between four poses of an alien model. (b): Histogram of ÊCOR.

(a) (b)

Figure 3. (a): Correspondence between ten poses of a cat model. (b): Histogram of ÊCOR.

els because all four models have the same scale. Table 1

shows the average and maximum Ê
(i,j)
COR and the average

and maximum D(i,j) for three pairs of aliens. Note that as

expected, there is a direct correlation between the amount

of non-isometric deformation and correspondence error.

6. Conclusion

This paper introduces a new bending invariant represen-

tation of a possibly incomplete triangular mesh S. The rep-

S(1) S(2) S(3) S(4)

Figure 4. Correspondence between four alien models.

resentation preserves the intersection-free mesh structure of



Models S(1), S(2) S(1), S(3) S(1), S(4)

Average D(i,j) 7.7 · 10−5 4.9 · 10−4 8.3 · 10−4

Max D(i,j) 2.0 · 10−3 9.0 · 10−3 1.7 · 10−2

Average Ê
(i,j)
COR 0.45 0.93 1.96

Max Ê
(i,j)
COR 4 14 12

Table 1. Table demonstrates the correlation between D
(i,j) and

Ê
(i,j)
COR. As the amount of non-isometric deformation increases

(left to right in table), the correspondence error also increases.

S and can therefore be used to compute bending invariant

feature points based on local surface properties. We apply

the new representation to solve the groupwise point-to-point

correspondence problem. In this application, we use fea-

tures derived from the mean curvature on the bending in-

variant representation.

We leave the following ideas for future work. First, by

using features that are less sensitive with respect to noise,

we can improve the initial alignment of the shapes. Second,

by allowing for non-rigid alignments of the bending invari-

ant meshes, we can improve the accuracy of the correspon-

dence. Third, by using different local surface properties on

the bending invariant mesh, we can extract feature points

that are bending invariant. These bending invariant features

can potentially be used for various applications.
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