
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

IDS: Improving Aircraft Fleet Maintenance
Wylie, A.; Orchard, Robert; Halasz, Micheal; Dubé, F.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=04d870fe-7043-4a5b-95fa-4201c2187c82

https://publications-cnrc.canada.ca/fra/voir/objet/?id=04d870fe-7043-4a5b-95fa-4201c2187c82



National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

IDS: Improving Aircraft Fleet Maintenance*

R. Wylie, R. Orchard, M. Halasz,

and F. Dubé

Copyright 1999 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

*Published in “Proceedings of the 14th National Conference on Artificial
Intelligence and Innovative Applications of AI (IAAI-97), Providence, RI.
July 27-31, 1997.”

Canada NRC 40181



IDS: Improving Aircraft Fleet Maintenance

Rob Wylie, Robert Orchard, Michael Halasz, François Dubé

Integrated Reasoning Group

National Research Council of Canada

Institute for Information Technology

M50 Montreal Road

Ottawa, Ontario, Canada K1A 0R6

[rob, bob, mike, francois]@ai.iit.nrc.ca

Abstract

This paper describes the Integrated Diagnostic System
(IDS), an applied AI project concerned with the development
of hybrid information systems to diagnose problems and
help manage repair processes of commercial aircraft fleets.
A study at one major airline indicated that significant bene-
fits could accrue (approximately 2% of overall maintenance
budget) through the use of innovative information technol-
ogy. The IDS prototype (currently in extended field trial)
takes as input a stream of messages representing mainte-
nance and diagnostic events. These are filtered and aggre-
gated in order to yield information in an appropriate form for
various decision making tasks (and in particular for the
maintenance staff while performing fault isolation and repair
procedures). IDS was built using ART*Enterprise® and
makes extensive use of its rule-based and case-based reason-
ing facilities in order to apply various sources of knowledge
(manuals, heuristics, historical data) to this problem. As well
as technical issues, this paper discusses the motivation for
and methodology followed in this project.

Introduction
The IDS project was initiated in 1992 by the National
Research Council of Canada (NRC)1 after examining the
economic importance of diagnosing complex equipment
problems correctly. Considering just 10 Canadian industrial
sectors, one finds that for every dollar spent on new
machinery, 51 cents are also spent on maintaining existing
equipment [Statistics Canada 1990]. This amounts to repair
costs of approximately $15.3 Billion per year.

Given the opportunity this indicated, the challenge was to
determine the potential benefits obtainable through better
use of data and information. Studies with a selected number
of fleet operators in the mining, aviation, and road transpor-
tation industries showed that problems encountered by
these operators had many similarities. A strategic decision
was made to start with the commercial aviation industry.
We approached a number of manufacturers and operators of
aircraft engines with a proposal to co-develop a hybrid
diagnostic system and formed a team with Air Canada, GE
Canada, and General Electric (GE Aircraft Engines USA,
GE Corporate Research and Development).

In 1993, a four month study of Air Canada’s maintenance
operations was carried out to define the scope and breadth
of IDS. Resulting highlights were:

• Diagnosing problems was seen as only part of the solu-
tion. To be truly effective, the system had to help predict
incipient failures and make recommendations about the
appropriate repair action given the broader context of the
situation within which the problem occurred.

• The scope of the project had to extend to all aircraft sys-
tems on all fleets (Air Canada’s current fleet size is 134
aircraft and growing). This operator’s perspective is at
odds with the perspective of equipment manufacturers.
The initial intention was to tackle only the engines. 

• The benefits were conservatively estimated to be in the
vicinity of 2% of the entire maintenance budget.

• Decision making is highly distributed. Timely access to
the right data, knowledge, and expertise is necessary to
effectively carry out the maintenance mission.

• Newer generation equipment produces increasing
amounts of potentially useful data. Innovative informa-
tion technology was required to aid in the integration and
interpretation of data.

Thus, the IDS concept had to embody the following ben-
efits and capabilities:

• enhance maintenance performance levels at all sites,
• reduce ambiguity in fault isolation,
• advise on real-time repair action,
• provide clues to incipient failures, and
• access and display relevant maintenance information.

In parallel with this study, an airline market assessment
was carried out. It revealed a potential world market
exceeding $1B/year if similar benefits are obtained at other
airlines (note: only fleet sizes >30 aircraft considered).

Decision Making Environment
This section provides a brief description of the maintenance
decision making environment at Air Canada. Some aspects
are specific, but the general idea applies to all airlines.

Figure 1 depicts the world within which IDS operates.
Aircraft are continually on the move and turn-times at the
gate continue to be shortened to maximize utilization. This
creates new challenges. A number of functional groups
within the airline can be involved in maintenance decisions.
They are briefly described below:

• The line technician repairs aircraft. This happens when

1. The Integrated Reasoning group does applied AI R&D on time critical decision
making processes in information rich environments. NRC’s mandate is to help
develop new technology for Canadian Industry. Our group carries out this man-
date by building functional prototypes, which explore market opportunities and
identify/prove new products and services, with lead users & software developers.



aircraft are met at the gate or on overnight layover. Their
prime objective is to safely turn aircraft around with min-
imum disruption.

• Maintenance Operations Control views the entire fleet
from a maintenance perspective. They react to any prob-
lems reported by the pilot or on-board systems to mini-
mize disruptions. They also monitor fleet status, identify
trends, deal with persistent and foreseeable problems,
and determine maintenance policy.

• Engineering looks at specific performance indicators of
the equipment and will only become involved with diffi-
cult immediate concerns, on an as-required basis. They
typically have the longest decision horizon.

• The manufacturers representative gets involved in cer-
tain difficult problems.

• The personnel in parts stores must ensure that an ade-
quate supply of spares exists from the various production
sources both within and external to the airline.

• The goal of System Operations Control is to keep the
entire fleet flying on schedule. They make system wide
decisions on factors such as, disruptions due to weather
or equipment failure, and flight crew readiness.

Modern aircraft, such as the Airbus A320 or Boeing
B767, have systems on board which can transmit data to
ground stations.1 These data consist of routine performance
snapshots (e.g. altitude, temperature, pressures, engine tem-
peratures, valve positions, etc.), pilot messages, aircraft
generated fault messages, and special purpose reports
which are generated when prescribed limits are exceeded.

There are many additional databases which support
maintenance. They contain descriptions of symptoms and
associated maintenance actions (free form text), deferred
problems, flight schedules, weather, component reliability,
and parts location. There is also a wealth of useful informa-
tion held at the manufacturer, and by people and informa-
tion systems in the engineering and maintenance operations
control departments. This is not widely distributed and thus
not available to the line technician in a timely manner.

When aircraft problems occur, technicians rely heavily
on professional judgement and knowledge. Additional sup-

port tools at their disposal are the:

• aircraft Built-In Test Equipment (BITE),

• Minimum Equipment List (MEL) (document governing
minimum equipment needs for aircraft dispatch safety),

• aircraft log book which provides free form text descrip-
tions of the problems encountered,

• post flight reports (a summary of the messages generated
by the aircraft for a given flight leg), and

• troubleshooting manuals (currently on microfiche, but
migrating to electronic formats)

The decision environment is characterized by distributed
data, information, and knowledge sources. Making timely
and correct decisions is important and requires access to
various combinations of these sources. Given the signifi-
cance of the benefits and the nature of this environment, it
represents a perfect example of the type of problems the
Integrated Reasoning group is interested in tackling.

Approach
Design Considerations and Prototype Scope

The scope of the IDS prototype was defined within the con-
text of Air Canada’s maintenance operation. Since a pri-
mary objective was to explore the design and implement-
ation of integrated diagnostic systems, the principal chal-
lenge was to define a manageable sized prototype which
convinced Air Canada and GE that the technology was rele-
vant, and convinced NRC that the techniques were extensi-
ble/scalable to a full implementation and maintainable.

With these issues in mind, it was decided that:

• at least two distinct user types from within the mainte-
nance organization should be supported,

• entire aircraft maintenance should be supported (rather
than focus on a particular subsystem),

• as far as possible, low level diagnostic reasoning should
be avoided (the trend is towards embedded diagnostics
which is best left to the equipment manufacturer), and

• wherever possible, existing practices and sources of
knowledge should be supported/exploited.

The two categories of users selected were line techni-
cians and maintenance operations control staff. Their activi-
ties differ with respect to decision making time horizon,
information needs, work environment, and requisite skills.
However, communication between them is critical to effec-
tive fleet management. The line technicians contribute to
maintenance operations control’s understanding of fleet sta-
tus and maintenance practices. The expertise of mainte-
nance operations control, if easily accessible to technicians,
can significantly improve diagnostic performance. Finally,
the two groups must be able to interact closely in order to
solve difficult maintenance problems. IDS is designed to
facilitate these forms of communication.

IDS exploits a range of programming techniques. Of par-
ticular interest are the convenience of:

• rules for encoding large quantities of pre-existing knowl-
edge (in our case, from the troubleshooting manuals) and
for capturing small, complex nets of heuristic knowledge
acquired from human experts, and1. Air Canada has real-time communication infrastructure to take advantage of this.

line technician

engineering

manufacturer rep.

parts stores

maintenance operations 
control

- parts manuals
- procedures
- troubleshooting
- equipment lists

system operations 
control

- operating conditions
- pilot messages
- fault messages
- performance data.....

Figure 1.  Current situation - airline



• case-based reasoning (CBR) tools (i.e. indexing) as a
means of retrieval of relevant knowledge from bodies of
noisy, poorly structured, and incomplete historical data.

The fact that IDS’ knowledge is in part derived automati-
cally from troubleshooting documents meant that, with
modest additional effort, we could provide these manuals
on-line (along with others, totalling some 60,000 pages).
This was achieved by linking Netscape and IDS (with
DDE) and managing the manuals using NCSAs HTTPD.
Fortunately this was easy, since without on-line manuals,
IDS would have had limited success. Important notes are
that it is critical to use off-the-shelf technology wherever
possible and one often must include functionality with little
research merit to gain prototype acceptance.

Getting Started

Choosing the tools. In mid-1994, important decisions were
made. One concerned the development environment. His-
torically we worked with UNIX and had experience build-
ing and using a range of AI and conventional development
tools. We expected that IDS would use rules, case-bases,
objects, and databases. Developing in-house tools would
have been too time-consuming. Fully supported products
would likely be more acceptable to our partners and to a
developer taking over after the prototype stage.

We evaluated a number of options including ART*Enter-
prise® (A*E)1, G2®2, RTWorks®3, GEN-X®4, JETA5, and
CLIPS6 and chose A*E. Major benefits were inclusion of
an object system, a database integration tool, a rule infer-
ence engine, an integrated GUI development tool, and a
case-base engine (at the time, it was the same as Inference’s
CBR Express®). It was also multi-platform compatible. So
far we have migrated from OS/2 to Windows 3.1 to Win-
dows NT (first move due to lack of continued support for
A*E; second due to inadequacy of Windows 3.1 for real-
time, multi-tasking applications). This led to delays, how-
ever, A*E code ported without too much effort both times.

Development Methodology. IDS was developed using a
methodology that closely matches the Evolutionary Proto-
typing lifecycle model [Gilb 1988, McConnell 1996]. This
approach is useful when requirements are likely to change,
there is no committed set of requirements, when neither the
developer or client is sure of the application area, and when
the developer does not know the optimal architecture or
algorithms to use. This approach helped us to move through
several phases, ensuring the understanding and support of
our partners/clients at each stage and allowed us to modify
and extend the prototype as our own understanding grew.

Following our analysis of the sector and Air Canada’s
maintenance operations, we had developed a high level
functional description of the IDS concept7. These ideas

were presented in various ways (data flow diagrams, GUI
mock ups, user needs analyses) to the various project partic-
ipants. Though this piqued interest and generated interest-
ing discussions, it was clear that a more concrete
presentation of these ideas (i.e. a system that worked with
operational data and covered enough of the fully envisioned
system) had to be provided in order to get real commitment.

Operating Principles

In broad terms, IDS refines an asynchronous stream of mes-
sages of atomic symptom and repair action events into
descriptions of complete fault-repair episodes. The process
exploits many knowledge sources, some allowing messages
to aggregate, others allowing messages (or clusters) to
merge, be modified or discarded. The ideal result is clear,
concise, complete descriptions of fault events which unam-
biguously associate symptoms and correct repair actions.

In this section we provide an overview of IDS’ operation
and then speak in detail about some of the more interesting
subsystems. The major processing blocks, information
stores (object sets, databases, case-bases, rulesets), and
information flows in IDS are shown in Figure 2. Reading
down from the top, centre of the diagram you see the mes-
sage stream (from aircraft embedded diagnostic computers
and from the maintenance databases) entering IDS.

1. have used ART off and on since 1985 (Inference and Brightware)
2. evaluated G2 for various projects over last 5 years & took training (Gensym)
3. have used RTWorks and in two R&D projects (Talarian)
4. GE in-house expert system development tool 
5. in-house NRC development [Halasz et al. 1992]
6. see Paper Maker’s Assistant [Amyot et al. 1995] & FuzzyCLIPS [Orchard 1994]
7. Air Canada’s 34 Airbus A320s are initially targeted. They represent a modern air-

craft and Air Canada has a lot of operational experience. 
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• The first processing step classifies and cleans up these
messages to produce IDS Message Objects (IMOs).
Classification is performed using CBR. 

• The second processing step clusters these IMOs into
Fault Event Objects (FEOs). This is implemented as a
small set of quite complex rules which were derived
through conventional knowledge acquisition sessions
with engineers and maintenance technicians.

FEO management takes not only an IMO as input but 
also Troubleshooting Manual (TSM) objects and Mini-
mum Equipment List (MEL) objects. 

The TSM objects represent clusters of IMOs which are 
identified in the TSM as indicative of particular faults. 
The TSM knowledge resides in several thousand rules 
generated automatically from the written document.

The MEL objects represent clusters of IMOs which are 
identified in the MEL manual as indicating that for 
safety, the operation of the aircraft is restricted in some 
way. The MEL knowledge comprises a small set of rules 
and several large lookup tables.

• The third stage of refinement associates the symptoms
(i.e. message clusters in the Fault Event Objects) with
appropriate repair actions. The resulting Snag (aviation
term for an equipment “problem”) Rectification Objects
(SROs) are stored. This matching process exploits a com-
bination of rule-based and case-based reasoning.

• Finally, suggested repair actions (bottom right of figure)
are composed and presented to the user. These are
derived from historical maintenance events similar to a
current FEO (using CBR) and from the Troubleshooting
Manual (if the FEO contains a TSM object).

Case-bases for Classifying FLR and WRN Messages.
Two types of messages are generated by diagnostic routines
on-board the A320 aircraft: failures (FLR) and warnings
(WRN). There are about 3400 FLR and 560 WRN mes-
sages generated by the A320. A typical flight leg will gen-
erate about 6 such messages. The messages consist of text
and an ATA number. ATA numbers describe the aircraft
components in a hierarchical manner. For example, the first
two digits represent a major subsystem. Some examples are
shown below (32 indicates landing gear):

It was not possible to recognize any given message
received from the aircraft using a simple string match
because the messages sometimes are distorted by transmis-
sion problems. They also have slightly different versions in
the manual and between aircraft. The inexact matching
facilities of A*E’s CBR module (trigrams) proved useful in
overcoming these difficulties (for example, ‘2GW’ in the
message may be coded as ‘2 GW’ in the manual). Because
of this we created a case-base for all the FLR and WRN
messages and processed the messages, assigning each a
unique identifier. Then as FLR and WRN messages are
received we match the strings and ATA values against the
appropriate case-base and associate the unique identifier
with the message object that is created. A threshold for

matching allows us to flag poor matches and make an entry
in a log. Most often the poor matches are badly transmitted
messages that can not be used. Occasionally we get a mes-
sage that is not in our case-base and we investigate to see if
this is a valid message that needs to be added to the list.

The use of a case-base to identify messages and assign
unique identifiers although not a traditional use of a case-
base has proven to be quite robust and has an excellent
record of matching messages with the types of minor distor-
tions that occur in the FLR and WRN messages.

Case-bases to Operationalize Experience. The snag case-
base is used to retrieve descriptions of historical situations
which appear similar to the current situation. This serves
both as a readily usable corporate memory and as a means
by which maintenance operations control can feed their
knowledge back to line maintenance.

As can be seen in Figure 2, the snag case-base is man-
aged through an off-line facility (the Case-base Manage-
ment Tool). This application allows one to browse the SRO
database, manually clean up the contents of a SRO, convert
SROs into cases, test a new case against the existing case-
base (for redundancy and consistency) and, if appropriate,
add it to the case-base.

On-line, the snag case-base is searched each time a Fault
Event Object is selected by the user. If a case is found
which has similar symptoms (clusters of IMOs) then it is
retrieved. From the retrieved cases, repair actions are
extracted and used to suggest courses of action to the user.

The design of this module is evolving. Initially it was
implemented as an index on the full database of SROs. At
present, snag cases are managed separately from SROs,
though pointers are maintained referring back to the SROs
from which a case was derived. Snag cases contain match,
success, and failure frequency measures based upon tests
against the SRO database. As well, the repair action infor-
mation in snag cases is more structured than in SROs. 

Features used in case retrieval are currently restricted to
individual messages and clusters. There is one feature for
each type of aggregation: textual similarity, time proximity,
TSM reference, and Human Association Grouping (HAG).
Some effort has gone into designing these features so that
search of relatively large case-bases is conducted efficiently
with the tools provided by A*E. Although both speed and
quality of retrieval is adequate, our knowledge acquisition
sessions with Air Canada personnel indicate that some
richer features should be considered (specifically, features
representing temporal relations between messages and sen-
sor data produced by the aircraft). This may require con-
struction of specialized CBR indexing and retrieval tools.

Automatically Generated Rules
Troubleshooting Manual (TSM) Rules: The TSM contains
diagnostic information in the form of FLR and WRN mes-
sage patterns that occur together and suggest probable
causes for a fault (as well as procedures to assess which
cause is the correct one, if any). This can be translated into
a set of rules to detect (as FLR & WRN messages arrive) a
match to these diagnostic situations. The firing of one of
these rules will trigger the creation of a TSM object that

Type Message ATA
FLR BRAKE TEMP SENSOR 4GW OR MONIT UNIT 2GW 324715

FLR L L/G DOOR CLOSED PROX SNSR 27GA 323173

WRN L/G SHOCK ABSORBER FAULT 32xxxx



records the list of probable causes for the situation as well
as the place in the TSM where the detailed diagnostic pro-
cedures are found. We can then guide the user directly to
the place in the manual where the needed information is. A
sample rule is shown below:

(define-rule tsm:TSM-RULE-00044      
   “From TSM ID 21310001 00007001”    ;;; ref to text manual
     (declare (ruleset tsm-ruleset))
      (object ?obj1
         (duplicate-in-leg ORIGINAL)
         (nuisance? ~YES)
         (fin ?fin)
         (instance-of WRN-IMO)
         (flight-number ?fltnum)
         (departing-station ?dept)
         (message-id 107)) ;;; (1.000000) CAB PR SYS 1X2 FAULT
      (object ?obj2
         (duplicate-in-leg ORIGINAL)
         (nuisance? ~YES)
         (fin ?fin)
         (instance-of FLR-IMO)
         (flight-number ?fltnum)
         (departing-station ?dept)
         (sources ?s2&:(member$ “CPC1” (idsmsg:clean-up-message-
string ?s2 nil)))
         (message-id 2079)) ;;; (1.000000) OUTFLOW VALVE ELEC1
     =>
      (bind ?imos (create$ ?obj1 ?obj2))
      (bind ?con (create$ “CABIN PRESS panel 25VU: MODE SEL 
p/bsw FAULT lt on”))
      (make-instance TSM
         IMO-list ?imos
         fin ?fin
         tsm-ata 213100
         tsm-task 810802 ;; allows us to locate the ‘rule’ in TSM
         tsm-confirmation-list ?con)
      (free$ ?con)
      (free$ ?imos))

This example, in a simple form, says for a given aircraft
and during a specific flight leg: IF we see the WRN mes-
sage ‘CAB PR SYS 1X2 FAULT’ (unique identifier 107)
and the FLR message ‘OUTFLOW VALVE ELEC1’
(unique identifier 2079, with a source string ‘CPC1’)
THEN create a TSM object that records (among other
things) a reference to the place in the TSM where the proce-
dures for this problem are found (tsm-task 810802).

This is an ideal use of a rule-base. The rules are encoded
and maintained in a well structured manual and translated
into A*E rules. When the manual is modified the rules can
easily be regenerated.

Nuisance Message Rules: This is a second example of rules
that are (almost) automatically generated from information
in documents. These rules determine if a FLR or WRN
message should be considered or ignored (i.e. a nuisance).
In the TSM rule above, one of the requirements for a mes-
sage is that it is not labelled as a nuisance. The document
that describes nuisance message conditions was deciphered
by hand and a set of rules was generated. We still need to
determine a way to automate this (there are about 280 of
these rules) but the documents do not easily lend them-
selves to this. Nuisance status depends on some conditions
not detectable with the data available (hence use of a
MAYBE nuisance value as well as YES and NO values)
and there are other Air Canada considerations for determin-
ing nuisance status that we have yet to deal with. Future
versions will look more closely at this determination.

Below is an example of a rule that determines if the
WRN message ‘CAB PR LO DIFF PR’ is a nuisance. In
this case it is, if it occurs during flight phase 6 (cruise) or 7
(approach) — information that is available.

(define-rule nuisance:WRN-rule-00003
   (declare (ruleset imo-ruleset))
   (object ?message      (instance-of WRN-IMO)
      (message-id 104) ;;; (1.000000) CAB PR LO DIFF PR
      (ata-chapter 21)
      (flight-phase 6 | 7))
 =>
   (set-attribute-value ?message nuisance? YES))

Hand Crafted Rules. Some rules were hand crafted using
conventional knowledge elicitation. The expertise was
derived from Air Canada personnel and from experience we
gained during prototype development. We describe two
such sets of rules.

Minimum Equipment List (MEL) Impact Rules: The MEL
manual describes conditions under which an aircraft is
allowed to fly. For example if a cockpit loudspeaker is not
working (and the other is ok) the code requires that it be
fixed within 10 days. On the other hand, if the two aircraft
loudspeakers are inoperative, then a NOGO (i.e. “no go”)
situation exists. Each WRN message has been assigned a
MEL impact code (GO, NOGO, GOIF, UNKNOWN, or
NOIMPACT). This is used along with snag (SNG) mes-
sages to indicate that there is a potential problem with the
aircraft that has MEL impact. The SNG message is a text
message generated by the pilot to confirm that a WRN mes-
sage was valid (they may have done some tests to confirm
the condition as per on-board instructions). We identified
several conditions that should raise a warning indication
(either red - most serious, or yellow - potentially serious).
An example is:

    When a WRN IMO with mel-impact slot of NOGO
             and an associated SNG message
     Then create MEL object that identifies the WRN and SNG
              and set status for appropriate system for aircraft to red

These rules are straightforward and easily maintained,
however, it is still to be determined if they are adequate to
capture the essence of all situations that should be flagged
and brought to the attention of the users.

Fault Event Object (FEO) Rules: A FEO represents the
third level of aggregation of fault evidence. The first level
of evidence contains all the individual IMOs (WRN, FLR
messages). The second level contains all the TSM and MEL
objects. The third level are the FEOs which attempt to col-
lect these clusters of messages (plus other messages related
through temporal proximity or textual similarity) into sets
of symptoms indicating a particular fault.

A FEO may evolve during the course of its flight leg.
This corresponds to the process of refining a fault hypothe-
sis as more evidence is accumulated. A simple example of
this involves addition of individual IMOs to a FEO because
they originated around the same time as the important
IMOs in the FEO. More complex examples are: substitution
of a more specific TSM object for a less specific one; sub-
stitution of a MEL nogo object for a MEL goif object; col-
lapsing of two similar FEOs; and deletion of one FEO if it
is a strict subset of another FEO.



The FEO rules are the ones which caused the most diffi-
culty in the prototype. They are not a set of predetermined
operating procedures or well known knowledge. They rep-
resent our best efforts to aggregate information into useful
and meaningful clusters. These rules were reworked at least
3 times during development, either to control the number of
FEOs generated or to correct inconsistent and unwanted
behaviour. It can be difficult to understand the rules, yet we
have not determined that some other technique would be
more appropriate for this problem.

Phases of Development

During the course of development, it was of prime impor-
tance to periodically validate design specifications against
evolving user requirements. Design review sessions were
held at the beginning of each phase to ensure proper com-
munication between the various parties involved in devel-
opment of the application. This allowed design validation
before implementation and also helped the clients better
understand the functions being developed. A prototype
evaluation was done at the end of each phase with develop-
ment and improvement being effected between each.

Basic Database/User Interface Development. The activi-
ties that took place in this phase were: training on the use of
the development tools, creation of databases with Air Can-
ada’s operational data, and development of a GUI to dem-
onstrate capabilities of a major part of IDS.

We had restricted access to internal Air Canada informa-
tion systems. Rather than receiving AIMS1 and MAS2

asynchronously, we were provided with data dumps every
90 days3. The creation of the databases was of great value
since it allowed us to gain a thorough understanding of air-
craft generated information and the formal snag reporting
procedures. It provided the foundation for the next develop-
ment phase and data for a parallel NRC/GE/University of
Ottawa machine learning research project.

The GUI was composed of four basic screens (using
static data) that had limited functionality but were very suc-
cessful in motivating discussion about IDS’ functionality.
Two of these screens are shown in Figure 3. The Fault
Monitoring screen shows the fleet fault status. The aircraft
have identification numbers and current flight status is
shown (i.e. origin, en-route, or destination). Beneath each
identification number are icons for the aircraft’s four major
subsystems: air frame (AF), avionics (AV), engines (ENG),
and auxiliary power unit (APU). These icons and those for
the aircraft change colour depending upon the nature of the
problem. The Fault Resolution screen provides the techni-
cian with a recommendation as to the probable cause of the
fault. It is divided into three sections: a grouping of symp-
toms, the ambiguity group identified by TSM rules, and the
most probable causes based on past experience (case-base).
It should also be noted that IDS will process all the faults
generated by the aircraft and will generate recommenda-
tions for each one, provided they are distinct. From this

screen the technician is provided automatic access to rele-
vant pages of the MEL, electronic parts, and TSM. If the
technicians wish to do some of their own troubleshooting
they can access other screens (not shown) providing rele-
vant snag and maintenance histories to the current problem.

The evaluation consisted of an introduction to IDS con-
cepts and operation through formal presentation, followed
by demonstration of the prototype to Air Canada focus
groups. The prime goal was to provide a general under-
standing of IDS to a wide selection of personnel involved in
subsequent evaluation. This resulted in a much clearer defi-
nition of the IDS concept and improved visibility to Air
Canada’s upper management.

Operational Data driving Off-line Prototype. The data-
bases from the first phase allowed playback of historical
data at any speed (up to limits imposed by the prototype).
This had the benefits of allowing us to pass large amounts
of data through the system for testing purposes, and provid-
ing some feel for the processing requirements of the system
(in fact, on a 90 MHz Pentium we could run at 30 to 40
times real-time indicating that the expected scaling up of
the prototype could be accommodated).

Due to electronic manual unavailability, this version of

1. Aircraft Information Monitoring System: all aircraft/pilot generated messages
2. Maintenance Automated System: free text accounts of symptoms and repairs
3. Data (~1GB) has been provided continuously since October 1994

Figure 3. Sample interface screens



the prototype dealt only with selected aircraft subsystems.
Selected TSM portions were transcribed from microfiche to
text files from which rules (~2000) were derived automati-
cally. Access to on-line manuals was also severely
restricted in this phase for the same reason (only the MEL
in Wordperfect and converted to HTML was available).   

The configuration used in this evaluation is shown in
Figure 4. It allowed us to simulate any time period for
which we had data (approximately one year) and to observe
the interaction between line maintenance and maintenance
operations control personnel. It also allowed validation of
the IDS design and assessment of its potential to meet
requirements. Two-hour sessions, consisting of three parts
were carried out with twelve users: introduction to IDS and
basic training on operating procedure, accomplishment of
assigned tasks, and open discussion. Each user was teamed
with two evaluators, one guiding the evaluation process by
asking the user to carry out specific tasks and providing
assistance when required, and the other taking notes of the
user’s comments and monitoring the process. 

Results were positive and confirmed that the overall con-
cept and functions implemented were meeting client
requirements. Using actual data to drive IDS gave a feeling
of reality which was important to maintaining a high inter-
est level of the evaluators. Having the users operating the
application under close supervision allowed us to limit any
damage arising from operation of fragile software and to
maintain client confidence that IDS might actually become
a robust application. It was clear that the system had value
but the next iteration had to provide on-line manuals.

On-line Prototype with Real-time Data. Critical to this
phase was the extension to the entire aircraft, the inclusion
of full on-line manuals, the use of real-time data and at least
a modest case-base of historical problem resolutions.

We were expecting access to manuals in SGML, to use
these directly and, in the case of the TSM, to extract the
rules contained in them. This did not come to pass and we
were ultimately forced to make use of assorted manuals
(from various sources and in different formats). They were
converted to HTML and rules extracted (now about 9000).

For on-line evaluation, IDS has been installed at two
sites: airport line maintenance (Toronto), and maintenance
operations control (Montreal) as shown in Figure 5. Other
elements of the system include: 

• a data server that preprocesses the data stream, archives
it, and serves it to any IDS client nodes that are running, 

• a HTTP server that provides access to electronic manuals
and manages a comment/bug report facility, and 

• a captive IDS client node at NRC for monitoring. 

The systems access live A320 MAS and AIMS data. To col-
lect user comments and to react promptly to bug reports, the
functionalities provided by internet browsers (Netscape ver-
sion 3.0) were exploited. HTML forms were created and
linked to the IDS application which allowing users to enter
comments while using the system.

This evaluation (minimum 4 month) determined the use-
fulness of the application in the operational environment.
Equally important are the ability to assess user acceptance,
and how IDS meets the prime objective of improving over-
all aircraft operation and maintenance efficiency.

Feedback indicates that an “intelligent” application auto-
matically collecting, grouping and assessing sets of fault
symptoms, and automatically alerting maintenance person-
nel is an asset. Also the ability to automatically index to the
pertinent maintenance manual pages to support the fault
resolution process is extremely useful. Overall recommen-
dations are for a system incorporating more intelligence and
integrated with most of the information systems related to
the maintenance operation.

Conclusions
Technically, IDS has confirmed our belief that hybrid rea-
soning systems (in which appropriate reasoning techniques
are integrated to operationalize diverse knowledge) are
practical and provide promise for further research. They can
be built using currently available tools, but a fair degree of
customization and innovation is required to produce accept-
able results.

IDS has demonstrated that using appropriate tools is crit-
ical to success when building applied AI systems. We feel
that ART*Enterprise® reduced the effort involved in the
development task though it is difficult to quantify. Using
beta versions forced us to patch or work around many bugs.
Also, due to its continuous, time constrained, asynchronous
character, IDS is not typical of the applications for which
A*E is commonly used. This has stretched A*E’s limits and
identified some areas needing improvement.

Other examples of off-the-shelf software easing imple-
mentation include using pcANYWHERE®1 to enhance our

Figure 4.  Set up for second evaluation
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ability to provide support to remote IDS nodes, and embed-
ding Netscape to provide on-line documentation and com-
munication. Both of these are excellent examples of off-the-
shelf functionality costing nearly nothing to incorporate and
radically improving utility.

IDS has also confirmed our belief that, to be useful,
almost any decision-making/decision-support tool must be
closely coupled to the organization’s underlying informa-
tion flows. A corollary to this is that your development
tools must provide good data integration support.

As an experience in managing applied AI, this project is
teaching us a lot about development methodology and the
need for flexibility: continually reviewing functional and
design decisions. Interestingly, our “evolutionary prototyp-
ing” approach has forced us to address many system main-
tenance issues. As a side effect of the development strategy,
we have developed a reasonably complete suite of mainte-
nance and validation tools.

As a government research laboratory, we have carried
many aspects of the work described in this paper as far
towards an operational form as can be justified.1 We have
made a lot of progress in demonstrating both the impor-
tance and viability of this sort of system for an airline. The
intent is to build IDS in stages, with each building block
providing measurable utility and being added once techni-
cal issues are better understood. The existing prototype
serves as the foundation for further development.

Future Work
Our role in the project is evolving towards a longer term
focus. IDS has broad scope. The prototype, along with its
infrastructure and data resources provides an excellent plat-
form upon which to test new ideas. Many important emerg-
ing issues we see are to:

• explore more refined ways in which to extract meanings
from free form text;

• improve upon the automated symptom clustering strate-
gies and the indexing of the case-bases;

• determine if the diagnostic coverage of the case-based
reasoning paradigm is adequate when applied to the col-
lective “experience” of Air Canada or if another opera-
tor’s experience should be shared or if it is worthwhile to
explore deeper reasoning techniques;

• automate case creation and maintenance (from AIMS
and MAS data);

• integrate GE Aircraft Engine performance software and
experiment with model-based trend analysis;

• continue experiments with automatic feature extraction
from aircraft performance data to provide richer symp-
tom sets for case retrieval. We are currently investigating
knowledge and data driven constructive induction, and
automatic trend recognition;

• provide robust repair management advice by extending
IDS to reason about other data sources and knowledge
such as: downline station capability, component repair
history/reliability, aircraft repair/maintenance history,

deferred problems, parts location, schedules, and flight
movement (including weather);

• extend to other Air Canada aircraft, such as Airbus 319/
340, Canadair CL65, and Boeing 767/747;

• investigate and develop a suitable architecture to support
large numbers of geographically dispersed users;

• develop and test Personal Communications Services
(PCS) solutions for end users; and

• generalize the concepts and extend them to other fleet
operation applications.
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