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Résumé

Une nouvelle approche est proposée pour tenir compte de l'aspect «infinité»
des milieux non bornés analysés au moyen de la méthode des €léments finis
dans le domaine temps. ILe milieu est divisé en une région finie, qui
présente un intérét dans I'analyse, et un milien résiduel non bommé. L'apport
en rigidité de ce dernier est bien représenté par la matrice d'influence de sa
limite avec la région finie; la matrice est calculée directement dans le

domaine temporel. Cette approche convient aux situations ot il faut
effectuer de nombreuses analyses de la région finie.
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Abstract—A new procedurs is presented to account for the radiation condition of unbounded media
analysed using the finite-element method in the time domain. The medium is divided into a finite region
that is of interest in the analysis, and the remaining unbounded medium. The stiffness contribution of
the latter is properly represented by its boundary influence matrix, which is directly caleulated in the time
domain, This procedure is suited for situations in which many analyses of the finite region must be

performed.

1. INTRODUCTION

‘In many problems of earthquake engineering and

dynamic analysis of soil-structure interaction, nu-
merical modelling of wave propagation is necessary.
Numerical models involve discretization of the con-
tinuum and if nonlinearities exist they also involve
temporal discretization, i.e. the use of step-by-step
time -integration, The finite element method is one of
the most popular discretization techniques because of
its effectiveness in handling irregularities and compli-
cated geometries. This method, however, divides the
space domain into discrete elements, and can there-
fore only deal with finite domains with well-defined
boundaries. As such boundaries do not exist natu-
rally, waves propagating towards these boundaries
will be reftected back into the model. This results in
false physical behaviour of the problem. To overcome
this difficulty, analysts may consider the following
approaches: ' '

(1) use of a very large finite model so that waves
reflected at the model's artificial boundaries do not
arrive at the area of interest within the time period
over which the analysis is performed;

(2) use of large finite elements to model as large a
medium as possible with a minimum number of
degrees of freedom; or

{3) introduction of material damping in the finite

"mode] to dissipate reflected wave energy before it

arrives at an area of interest.

The first approach may not be economical because
of its high storage and computational requirements,
The second approach is normally not accepted from
an accuracy point of view. This is because finite
elements act like ‘low-pass’ filters with a certain
cut-off frequency that depends on the size of the

element—the larger the element, the lower its cut-off
frequency. The cut-off frequency of large elements

necessary to produce large economical models is

generally lower than the frequency range of interest,
The third approach has been shown to be inappropri-
ate [1]. These difficulties have motivated the develop-
ment of so-called ‘transmitting’ or ‘silent’ boundaries.
The function of these boundaries is to introduce
appropriate force and/or displacement conditions to
simulate the effect of the truncated exterior infinite
domain and hence preserve the real physical be-
haviour of the problem. Many such boundaries have
been developed and implemented for analyses in the
time domain, with varying degrees of success. They
represent only an approximation to the actual
boundary condition [2]. In general, they suffer from
one or more of the following drawbacks:

(1) they are effective only for a small range of
incidence angles,
{2) they are not applicable to nonlinear analyses,
and .
(3) they may fail under static loads.

Consequently, use of a large model remains the
only available approach to solve wave propagation
problems directly with a high degree of accuracy in
the titme domain. This paper introduces an approach
for the economical analysis of large models when
many analyses of the same model are required. The
approach is designed for explicit time integration
methods, It is based on calculating a boundary
influence matrix by analysing an extensive model of
the exterior infinite domain in the time domain using
unit triangular force pulses. This matrix is then used
during the analysis of the interior finite model to
calculate the boundary’s response one time step
ahead. The approach is exact and does not introduce
any approximations. Although the cost of calculating
the boundary influence matrix may be substantial,
compuiational savings can be made for situations
in which ‘many analyses of the same problem are
required. - :
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2. TIME DOMAIN BOUNDARY INFLUENCE
MATRIX (TDBIM)

For a linear finite element model the equatlon of

motion has the general form _ _
B+ Ky = ()W

where {M ] is the mass matr:x [K] is. the stiffness
matrix; and { f'}, {u}, {ii} are vectors of nodal forces;

displacements and acceleration, respectively. Forsim= -
’ stlﬁ‘ness contribution of the exterior infinite domain.

plicity, damping is not included. Equation (i) can be
solved by either explicit or implicit time integration
methods, but the proposed artificial boundary treat-
ment is designed for exphclt methods. Examples of
methods commonly used in wave propagatlon studies
are the well-known exphcn central difference method
and the implicit Newmark family of methods [3],
which includés the central difference method as a
special case (8 =0, y=0.35).

The stlﬂ‘ness matrix [K] and possibly ‘the mass
matrix {M]in eqn (1) coqple every node in the ﬁmte,__

- M. Osama AL-HUNAID]

element mesh with its surrounding nodes. Conse-
quently, the tiue behaviour of the problem is not
correctly calculated unless one prescribes the time
hlstory of .boundary motion (or alternatively
boundary reaction forces) which would take place in

‘an exténded model (i.c. a very large model in which

no reﬂecttons occur), In other words, one always

“negds to know the true response of the boundary
-nodes one time step ahead of the last time station and

prescnbe it as’'a boundaty condition to simulate the

Because the boundary’s response is a function of the

wave incidence angle, wave frequency, wave type,

etc,, the only way 1o have the true response (i.e. with
no reﬁectlons) in time domain analyses is to use an
extenc_!ed finite element mesh. The computatapnal cost

. of this analysis may become substantial if the prob-

lem has to be analysed many times. In the solution
proceduire explained next, an extended model is em-
ployéd only as a preliminary step to calculate a
boundary influence matrlx directly in the.time do-
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(¢)

[ LocAL NUMBERING

(d)-

O LOCAL NUMBERING

F1g 1. Substructure of sml—structurc system for the proposed solutmn method.

main, The problem can then be analysed" economi-
cally using a small ﬁnlte model as many txmes as
desired. -

In the followmg procedure, the cxtended ﬁmte
element model, for example the soil-structure model
shown in Fig. 1(a), is substriictured into three.parts:
(1) structure; (2) soil, and (3) interface zone; as shown
in Fig. 1(b}. The structure part consists of the struc-
ture itself and a portion of the supporting soil which
may be nonlinear-and/or geometrically irregular. The
soil part must be linearly elastic (or linearly viscoelas-
tic) and it should be sufficiently large for no
reflections at its far boundary to reach the boundary

with the structure while the solytion is in progress.-

The interface zone consists of one strip -of e!ements
(noté: for the sake of simplicity, elements are assumed

her¢ to be four-noded) that separate the structure and )

so‘il’p"ar'ts and thercfore it contains all nodes coupled
to degreés of freedom on the boundary B of the soil
part, The finite elément equations of thé soil part and
interface zone combined may be wrltten in the fo]low-
ing t‘orm

V-m” 0 2 0 .ﬁl' .

|5 e o |l
A0 0 m b4

ko k0 {w) _ (£
+ kf kﬂ+k6b kbe 'u_,, 0. (2)

| 0 - keb kee _u_e . 0

In the above equatlon, the m and k matrices are

- submatrices of the mass and stiffness matrices of the

soil and interface zone sub_struct_ures The mass ma-
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Fig. 2. Unit triangular load pulse.

trices are assumed to be diagonal. & and u are nodal
acceleration and displacement vectors, respectively. )
in eqn (2) and f; in Fig. 1{b) are the attending internal
nodal force vectors acting on boundary I between the
structure and interface zone, These forces are of equal
magnitude but opposite directions.

Similarly, the equations of motion. for the finite

nonlinear model, consisting of the structure part and

interface zone Fig. 1(d), are
My, m.s'l t'i, + k.\': ks! RN
My iyt omy ky ket k1 b
)
= )
{"‘ kp -y

The structure part can be nonlinear, but for sim-
plicity it is considered linear in the above equation.
In eqn (3), it is assumed that the response of
boundary B, {u,}, is known in advance and therefore
it is a prescribed boundary condition and therefore
the contribution k,, - #, is transferred to the right-
hand side of the equilibrium equations.

Before sotution of eqns (3), a time domain bounary -
influence matrix [D] is calculated. This matrix de-

scribes the response of boundary B degrees of free-
dom resulting from unit triangular pulse forces (see
Fig. 2) at degrees of freedom of boundary I. For
instance, an element (i, j, k) of this matrix is defined
as the response of degree of freedom 7 of boundary
B at time step k& resulting from-a unit triangular pulse
force at degree of freedom J of boundary 1. Matrix
[D] is calculated by solving eqns (2) for unit triangu-
lar pulse forces applied at degrees of freedom of
boundary 1, one at a time. The resulting response at
degrees of freedom of boundary B is collected in
matrix [D]. This matrix is then used to calculate the
displacements {u,} in eqns (3) as explained next.

As waves propagate from the structure part into
the soil part, the attending internal nodal forces { f;}
in Fig. 1(d) can be considered to be the source of
wave motion of degrees of freedom of boundary B,
{u,}. For the purpose of calculating the boundary
response {u, }, the actual attending nodal forces { £}

" are broken down into triangular pulses as demon-

strated in Fig. 3. If an explicit time integration scheme
is used (at least for the interface zone), a non-zero

displacement response as any of the degrees of free-.

dom on boundary B resulting from a triangular pulse,
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Flg 3 Representatmn of force time history by triangular

force pulses.

say over time steps m and (m +1), will start only at '

the end of time step (m + 1) or later [note: for the
central difference time integration scheme it will start
at the end of time step (m + 2)]. Hence reflections
from the boundary nodes to the interior nodes will
commence after the end of time step (m + 1). Conse-
quently, the boundary’s response may be calculated
one time step ahead of the last time station using the
attending nodal force vector { £;} at the last and past
time stations and the boundary influence matrix [D].
The previously determined time domain.boundary
influence matrix is used to calculate the boundary’s
responses resulting from the triangular pulse compo-
nents of the load by simple multiplication. The
responses are -then superimposed .to obtain the
boundar_y’s displacement _{ub }for thc_ next time step.

3. NUMERICAL [MPLEMENTATION

Numemal 1mpiementatzon of ‘the above sohmon
procedure using the time domain boundary influence
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matrix.'(TDBIM)' may at first seem cumbersome. In

reality, its incorporation into existing finite element

codes does not represent additional complications. In
the following, a method is used that effectively gener-
ates the boundary influence matrix {D] using the soil
substructure in Fig. 1(c). The method also effectively
calculates the attending nodal vector {f} and then
calculates the boundary displacement vector {u;}
which is necessary for the. analysm of. the structure
part in Fig. 1{d).

3.1 Numbering technique

The finite element nodes in Fig. l(c) and (d) of
the soil part and the structure, respectively, will
usually have global node numbering that does not
produce identical node numbers for nodes on the
boundary B in both models, The same is also true for
nodes on the boundary I. For nodal points on these
boundaries, a local node numbering is defined which
coincides in numbers of both models as shown in
Fig. 1(c) and (d). The proposed treatment uses two
arrays NATB and NCTB, Array NATB has as many
elements as the maximuam number -of nodes on
boundary B, say NNATB. It stores the global node
number corresponding to cach node. on this
boundary. Array NCTB has the same function as
array NATB but for nodes on boundary L Iis

dimensicn is NNCTB, which is the maximum number

of nodes on boundary I. This information is then
used to identify these nodes during the calculation of
the boundary influence matrix and to extract the
appropriate influence coefficients during the calcula-
tion of the boundary response.

The boundary influence matrix [D] is calculated
using the extended soil model (see Fig. Ic), by
applying unit triangular pulses to each degree of
freedom of boundary 1. one at a time. The resulting
displacement time histories of degrees of freedom of
boundary B are appropriately assembled into the
matsix [D] as follows: D (LBNEQ, LFENQ IS-
TEP) = dlsplacement response at degree of freedom
number. LBNEQ of boundary B at time siep ISTEP
resulting from unit triangular pulse force at degree of
freedom LFNEQ of boundary 1, whereas all other
DOF’s on 1 have zero forces (note: LBNEQ and
LFNEQ are local numbers for degrees of freedom on
boundaries B and I, respectively).

3.2. Calculation of internal Jorces

The calculation -of -the- boundary's displacement
using the time domain boundary influence matrix {D]
requires the availability of past time history of the
attending nodal forces { £;} at boundary 1. To calcu-
late this force vector at the end of a time step, the
equations of motion of the degrees of freedom for the
boundary I are used as follows:

{f} [mtr]{“ + [kif]{ul} + [kfh]{“b} . (4)

where the definitions of vectors and matnces in this

C.AS. N1

equation are the same as for eqn (2). These forces are
then stored in an array, called here F, as follows:
F(LFNEQ, ISTEP) = attending nodal force acting
on degree of freedom number LFNEQ (focal num-
ber) at the end of time step ISTEP.

3.3. Caleulation af boundary displacement response
{us}

To calculate the boundary displacement response
one time step ahead of the last time station ISTEP,
the amplitudes of triangular pulses composing the
attending nodal force time history { f;} are multiplied
by the corresponding influence coefficients of the
boundary influence matrix [D] and the results are
then superimposed. For instance, the response of
degree of freedom LBNEQ at the end of time step

(ISTEP + 1) is given by

LFNEQ ISTEP

UppNBQ = Z kZI F(ik)

Jmt

. D(LBNEQ, i, ISTEP -k +2). (5)

These boundary displacements are then prescribed
as boundary conditions at the truncation boundary
of the finite model in Fig. 1(d).

4. NUMERICAL EXAMPLE

To verify the proposed TDBIM procedure, 2 plane
strain elasticity problem is considered. The problem
is that of a layer which is. underlain by a rigid base
and subjected to a vertical line load at the surface,
The finite element model and the corresponding
boundary conditions used for this test problem are

“shown in Fig. 4. The finite element mesh consists of

the structure part, interface elements and the soil part
as mentioned previously. In this simple example, the
structure part comprises only a small s0il region
which, for simplicity, is considered to be linearly
elastic although in general the structure could be
nonlinear, as discussed in Section 2. Bilinear isopara-
metric elements are employed and they are all of the
same size. The soil part of the finite element model is
sufficiently large for the response of the boundary B
to be obtained for the duration of the test before any
reflected waves arrive from the right boundary.
Material properties of the layer are summarized in

Table 1. The surface vertical line load consists of a

one-cycle sine pulse. The duration of the cycle is
15 sec and its amplitude is one unit. Time integration
is performed with an implicit-explicit algorithm [3].

" All elements are considered explicit and the integra-

tion parameters employed are y = 0.5, § ~ 0.0, time
step At = 0.9 sec. The duration of the analysis is 120
time steps, which is equal to about seven load cycles.
No damping is applied. Calculations are performed
using double precision on an JBM 3090 computer.

. The vertical displacement response time history is

recorded at point A of Fig. 4.
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the soil part and interface elements, is used to calcu:  of the analysis which used the small model in Fig. 4(c)
late the time domain_ boundary lnﬂuence matrix, This  with the TDBIM approach are then compared with
_matnx is stored and then recal]ed to calculate the" the results of the extended mesh in Flg 4(a), _whmh
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Table 1. Material properties of layer system
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S-wave velocity
P-wave velocity
Poisson's ratio

Unit density

- 0:5345 inits/sec
"1 umiysec
.03

10
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are cailed the reference solutlon. As expected the

resulting time history. at point A for the: TDBIM
. solution coincides with the reference. solution. The
’ difference cannot be resolved within the scale of ttie
drawings and it has to be marked by. circles as shown
in Fig. 5. The time domain boundary influence matrix
calculated for this probilem may be stored for future
use with the same problem, for different loading
conditions and/or different matenal propertles of the
structure. part.
N As an extension to th;s test problem the efficiency
g of the popular standard viscous silent boundary [4] is
' examined. The purpose of this test is to demonstrate
the approximation involved when using such local
silent boundaries. Two locations of the lateral silent
boundary are tested. The first is at a lateral distance
equal to one layer depth and the sccond is at a lateral
distance equal to twice the layer’s depth, as shown in
Fig. 6. Vertical displacement response is recorded at

—— REFERENCE SOLUTION,

" STANDARD
VISCOUS
' BOUNDARY

Tz

I

{b)

STAN DARD
ViSCOUS
BOUNDARY

R

Fig. 6. Finite ‘element models usig standard viscous
" boundary: {2) small model; (b) large model.

surface points A, B and C. The response obtained by
using this viscous boundary is compared with the
referenice solution which was calculated previously
using an extended mesh,
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Results of the small model, shown in Fig. 7, are not
in good agreement with the reference solution. Re-
sults of the larger model, shown in Fig, 8, represent
substantial improvement over the results of the smail
model for points A and B but the response at point
C located beside the boundary is poor. This means
that for the viscous boundary, more accurate answers

at point C require .that the boundary be moved
further away.

'8 SUMMARY

An economical and accurate method is presented
for the analysis of problems involving wave propaga-
tion in unbounded media. The method uses an
influence matrix, calculated in the time domain, for
the boundary between the finite model of interest and
the truncated unbounded domain: During analysis of
the finite model, this matrix is used to calculate the
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boundary’s response one time step ahead. This re-
sponse is then used to snmulatc the stiffness contribu-

tion of the truncated unbounded omain and hence
preserve the real physical behaviour of the problem,
The advantage of this procedure is that the boundary
matrix can be used for as many analyses as desired of
the finite model at minimal additional computational
cost. The load conditions, geometry and naterial
properties of the finite model are arbitrary.

In the numerical sense, the formulation of this
method and the results obtained are exact. .
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