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Rtsumt 

Une nouvelle approche est proposte pour knir cornpte de l'aspect ccinf i i i t f5 ,  
des milieux non b t s  analys6s au moyen de la m6thode des tl6ments finis 
dans le domaine temps. Le milieu est divist en une dgion finie, qui 
pdsente un int6dt dans l'analyse, et un milieu dsiduel non born6. L'apport 
en rigidit6 de ce demier est bien repdsentt par la matrice d'influence de sa 
limite avec la dgion finie; la matrice est calcul6e directement dans le 
domaine temporel. Cette approche convient aux situations oh il faut 
effectuer de nornbreuses analyses de la dgion finie. 



Campurrs B Strucrvrns V o l  33, No. 4, pp. 1037-1045. 1989 W45.1949189 S3.W + 0.00 

Printed in Orrat Britain. Psigumon Prcar plc 

ANALYSIS OF WAVE PROPAGATION I 

UNBOUNDED, MEDIA 

M. OSAMA AL-HUNAIDI 

Structures Section, Institute for Research in Construction, National Rese 
Ottawa, Ontario, Canada KIA OR6 

(Received 4 October 1988) 

. Abstract-A new procedure is presented to account for the radiation condition of 
analysed using the finite-element method in the time domain. The medium is divided into a finite region 
that is of interest in the analysis, and the remaining unbounded medium. The stiffness contribution of 
the latter is properly represented by its boundary influence matrix, which is directly calculated in the time 
domain. This procedure is suited for situations in which many analyses of the finite region must be 
performed. 
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1 1. INTRODUCrlON generally lower than the frequency range of interest, 

In many problems of earthquake engineering and 
dynamic analysis of soil-structure interaction, nu- 
merical modelling of wave propagation is necessary. 
Numerical models involve discretization of the con- 
tinuum and if nonlinearities exist they also involve 
temporal discretization, i.e. the use of step-by-step 
time integration. The finite element method is one of 
the most popular discretization techniques because of 
its effectiveness in handling irregularities and compli- 
cated geometries. This method, however, divides the 
space domain into discrete elements, and can there- 
fore only deal with finite domains with well-defined 
boundaries. As such boundaries do not exist natu- 

The third approach has been shown to be inappropri- 
ate [I]. These difficulties have motivated the develop- 
ment of so-called 'transmitting' or 'silent' boundaries. 
The function of these boundaries is to introduce 
appropriate force and/or displacement conditions to 
sim~alate the effect of the truncated exterior infinite ..-- -----. -. .... .... ~ ~~~ ~ ~ 

domain and hence preserve the real physical he- 
haviour of the problem. Many such boundaries have 
been developed and implemented for analyses in the 
time domain, with varying degrees of success. They 
represent only an approximation to the actual 
boundary condition [Z]. In general, they suffer from 
one or more of the following drawbacks: 

rally, waves propagatmg towards these boundaries 
will he reflected back into the model.  his results in (1) they are effective only for a small range 

~ ~ ~ ~~~~ ~~~~ ~~ .~~~ 

false physical behaviour of the problem. To overcome incidence 

this difficulty, analysts may consider the following (2) are to 

approaches: - and 
(3) they may fail under static loads. 

(I) use of a very large finite model so that waves 
reflected at the model's artificial boundaries do not Consequently, use of a large model remains the 

arrive at the area of interest within the time period only available approach to solve wave propagation 

over which the analysis is performed; problems directly with a high degree of accuracy in 
(2) use of large finite elements to model as large a the time domain. This paper introduces an approach 

medium as possible with a minimum number of for the economical analysis of large models when 
degrees of freedom; or many analyses of the same model are required. The 

(3) introduction of material damping in the finite approach is designed for explicit time integration 

model to dissipate reflected wave energy before it methods. It is based on calculating a boundary 

arrives at an area of interest. influence matrix by analysing an extensive model of 
the exterior infinite domain in the time domain using 

The first approach may not be economical because unit triangular force pulses. This matrix is then used 

of its high storage and computational requirements. during the analysis of the interior finite model to 

The second approach is normally not accepted from calculate the boundary's response one time step 

an accuracy point of view. This is because finite ahead. The approach is exact and does not introduce 

elements act like 'low-pass' filters with a certain any approximations. Although the cost of calculating 

cut-off frequency that depends on the size of the the boundary influence matrix may be substantial, 

element-the larger the element, the lower its cut-off computational savings can be made for situations 

frequency. The cut-off frequency of large elements in which many analyses of the same problem are 

necessary to produce large economical models is required. 

1037 
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2. TIME DOMAIN BOUNDARY INFLUENCE element mesh wrth its surrounding nodes. Conse- 
MATRIX (TDBIM) quently, the true behaviour of the problem is not 

For a linear finite element model, the equatlon of 
correctly calculated unless one prescribes the tlme 

motion has the general form 
history of boundary motion (or alternatively 
boundary reaction forces) which would take place in 

[Ml{ul +[Kl{u) = {f } (1) an extended model (1.e. a very large model in which 
no reflections occur). In other words, one always 

where [MI is the mass matrix, [K] 1s the stiffness needs to know the true response of the boundary 
matrix; and { f ), {u), { i i )  are vectors of nodal forces, nodes one time step ahead of the last time station and 
displacements and acceleration, respectively For sim- prescribe it as a boundary condit~on to simulate the 
plicity, dampmg is not included. Equation (1) can be stiffness contribution of the exterior infinite domain. 
solved by either explicit or tmpliat time integration Because the boundary's response is a function of the 
methods, but the proposed artificial boundary treat- wave incidence angle, wave frequency, wave type, 
ment is designed for explicit methods. Examples of etc., the only way to have the true response (i.e. with 
methods commonly used in wave propagation studies no reflections) in time domain analyses IS to use an 

are the well-known explicit central difference method extended finite element mesh. The computational cost 

and the impliclt Newmark famlly of methods [3], of this analysis may become substantial if the prob- 

which includes the central difference method as a lem has to be analysed many times. In the solution 

special case (b = 0, y = 0.5). procedure expliuned next, an extended model s em- 

The stiffness matrix [K] and possibly the mass ployed only as a prehminary step to calculate a 

matrix [MI in eqn (1) couple every nod nite boundary influence matr~x 
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0 LOCAL NUMBERING 

LOCAL NUMBERING 

fig. I. Substructure of soil-structure system for the proposed solution method. 

I 
main. The problem can then be analysed economi- soil parts and therefore it contains all nodes coupled 
cally using a small fin~te model as many times as to degrees of freedom on the boundary B of the so11 

I1 
" J  

desired part The finite element equahons of the soil part and 
In the following procedure, the extended finite interface zone combined may be written in the follow- ' element model, for example the soil-structure model ing form: 

shown in Fig. ](a), is substructured into three parts: 
(1) structure, (2) soil, and (3) ~nterface zone, as shown 0 

~n Fig. l(b). The structure part conslsts of the struc- 
ture itself and a porhon of the supporting soil which 

mr;mbb j{i!} 
may be nonlinear and/or geometrically irregular. The 
soil part must be linearly elastic (or linearly viscoelas- kr 
tic) and it should be sufficiently large for no + [: kfi ksfkbb kq{g=E](2) 
refiect~ons at its far boundary to reach the boundary 

k, k, u, 
with the structure while the solutign a in progress. 
The interface zone consists of one strip of elements In the above equation, the m and k matrices are 
(note. for the sake of simplicity, elements are assumed submatr~ces of the mass and st~ffness matrices of the 
here to be four-noded) that separate the structure and soil and interface zone substructures. The mass ma- 
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Rg 2 Untt triangular load pulse. 

trices are assumed to be diagonal. ti and u a 
acce1eratlon and d~splacement vectors, respectively .f; 
in eqn (2) andf; ~n Rg. I(b) are the attendmg internal 
nodal force vectors actlng on boundary I between the 
structure and interface zone. These forces are of equal 
magnitude but opposite directions. 

S~milarly, the equations of motion for the finite 
nonlinear model, consisting of the structure part and 
interface zone Fig. l(d), are 

The structure part can be nonlinear, but for sim- 
plicity it is considered linear in the above equation. 
In eqn (3), it is assumed that the response of 
boundary B, {u,), is known in advance and therefore 
it is a prescribed boundary condition and therefore 
the contribution k,& . u, is transferred to the right- 
hand side of the equilibrium equations. 

Before solution of eqns (3), a time domain bounary 
influence matrix [Dl is calculated. This matrix de- 
scribes the response of boundary B degrees of free- 
dom resulting from unit triangular pulse forces (see 
Fig. 2) at degrees of freedom of boundary I. For 
instance, an element (i, j, k) of this matrix is defined 
as the response of degree of freedom i of boundary 
B a t  time step k resulting from a unit triangular pulse 
force at degree of freedom j of boundary I. Matrix 
[Dl is calculated by solving eqns (2) for unit triangu- 
lar pulse forces applied at degrees of freedom of 
boundary I, one at a time. The resulting response at 
degrees of freedom of boundary B is collected in 
matrix [Dl. This matrix is then used to calculate the 
displacements {u,) in eqns (3) as explained next. 

As waves propagate from the structure part into 
the soil part, the attending internal nodal forces {f;} 
in Fig. I(d) can be considered to be the source of 
wave motion of degrees of freedom of boundary B, 
{u,}. For the purpose of calculating the boundary 
response {u,), the actual attending nodal forces {A}  
are broken down into triangular pulses as demon- 
strated in Fig. 3. If an explicit time integration soheme 
is used (at least for the interface zone), a non-zero 

Rg 3 Representatton of force time history by triangular 
force pulses 

say over time steps m and (m + I), will start only at 
the end of tlme step (m + 1) or later [note for the 
central difference hme integration scheme it will start 
at the end of time step (m + 211 Hence reflections 
from the boundary nodes to the interior nodes will 
commence after the end of time step (m + I). Conse- 
quently, the boundary's response may be calculated 
one time step ahead of the last time station using the 
attending nodal force vector {f;) at the last and past 
time stations and the boundary influence matrix [Dl 
The previously d e t e m e d  tlme doma~n boundary 
influence matrix is used to calculate the houndary's 
responses resulting from the triangular pulse compo- 
nents of the load by simple multiplication. The 
responses are then superimposed to obtain the 
boundary's displacement {u,)  for the next time step. 

3. NUMERICAL IMPLEMENTATION 

displacement response at any of the degrees of free- Numerical implementation of the above solution 
dom on boundary B resulting from a triangular pulse, procedure using the time domain boundary influence 
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matrix (TDBIM) may at first seem cumbersome. In equation are the same as for eqn (2). These forces are 

reality, its incorporation into existing finite element then stored in an array, called here F, as follows: 

wdes does not represent additional complications. In F(LFNEQ, ISTEP) = attending nodal force acting 

the following, a method is used that effectively gener- on degree of freedom number LFNEQ (local num- 

ates the boundary influence matrix ID1 using the soil ber) at the end of time step ISTEP. 

substructure in Fig. I(c). The method also <ffectively 
calculates the attending nodal vector {A} and then 
calculates the boundary displacement vector { u b }  

which is necessary for the analysis of the structure 
, part in Fig. l(d). 

3.1. Numbering technique 

The finite element nodes in Fig. I(c) and (d) of 
the soil part and the structure, respectively, will 

usually have global node numbering that does not 
produce identical node numbers for nodes on the 
boundary Bin both models. The same is also true for 
nodes on the boundary I. For nodal points on these 

, boundaries, a local node numbering is defined which 
coincides in numbers of both models as shown in 
Fig. l(c) and (d). The proposed treatment uses two 
arrays NATB and NCTB. Array NATB has as many 
element's as the maximum number of nodes on 
boundary B, say NNATB. It stores the global node 
number corresponding to each node on this 
boundary. Array NCTB has the same function as 
arrav NATB but for nodes on boundary I. Its 
dimension is NNCTB, which is the maximum~numher 
of nodes on boundary I. This information is then 
used to identify these nodes during the calculation of 
the boundary influence matrix and to extract the 
appropriate influence coefficients during the calcula- 
tion of the boundary response. 

The boundary influence matrix [Dl is calculated 

using the extended soil model (see Fig. Ic), by 
applying unit triangular pulses to each degree of 
freedom of boundary I, one at a time. The resulting 
displacement time histories of degrees of freedom of 
boundary B are appropriately assembled into the 
matrix [Dl as follows: D (LBNEQ, LFENQ, IS- 
TEP) = displacement response at degree of freedom 
number LBNEQ of boundary B at time step ISTEP 

-, resulting from unit triangular pulse force at degree of 
freedom LFNEQ of boundary I, whereas all other 
DOE'S on I have zero forces (note: LBNEQ and " LFNEQ are local numbers for degrees of freedom on 

7 boundaries B and I, respectively). 

3.2. Calculation of internal forces 
" 

The calculation of the boundary's displacement 
using the time domain boundary influence matrix [Dl 
requires the availability of past time history of the 
attending nodal forces (1;) at boundary I. To calcu- 
late this force vector at the end of a time step, the 
equations of motion of the degrees of freedom for the 
boundary I are used as follows: 

where the definitions of vectors and matrices in t h ~ s  

3.3. Calculation of boundary displacement response 

{ub} 

To calculate the boundary displacement response 

one time step ahead of the last time station ISTEP, 
the amplitudes of triangular pulses composing the 
attending nodal force time history { A }  are multiplied 
by the corresponding influence coefficients of the 
boundary influence matrix [Dl and the results are 
then superimposed. For instance, the response of 
degree of freedom LBNEQ at the end of time step 
(ISTEP + 1) is given by 

LFNEQ STEP 

~ B N , Q  = C C W , k )  
!-I k = I  

D(LBNEQ, i, ISTEP - k + 2). ( 5 )  

These boundary displacements are then prescribed 
as boundary conditions at the truncation boundary 
of the finite model in Rg. I(d). 

4. NUMERICAL EXAMPLE 

To verify the proposed TDBIM procedure, a plane 
strain elasticity problem is considered. The problem 
is that of a layer which is underlain by a rigid base 
and subjected to a vertical line load at the surface. 
The finite element model and the corresponding 
boundary conditions used for this test problem are 
shown in Fig. 4. The finite element mesh consists of 
the structure part, interface elements and the soil part 
as mentioned previously. In this simple example, the 
structure part comprises only a small soil region 
which, for simplicity, is considered to be linearly 
elastic although in general the structure could be 
nonlinear, as discussed in Section 2. Bilinear isopara- 
metric elements are employed and they are all of the 
same size. The soil part of the finite element model is 
sufficiently large for the response of the boundary B 
to be obtained for the duration of the test before any 
reflected waves arrive from the right boundary. 

Material properties of the layer are summarized in 
Table 1. The surface vertical line load consists of a 
one-cycle sine pulse. The duration of the cycle is 
15 sec and its amplitude is one unit. Time integration 
is performed with an implicit-explicit algorithm [3]. 
All elements are considered explicit and the integra- 
tion parameters employed are y = 0.5, fl * 0.0, time 
step At = 0.9 sec. The duration of the analysis is 120 
time steps, which is equal to about seven load cycles. 
No damping is applied. Calculations are performed 
using double precision on an IBM 3090 computer. 
The vertical displacement response time history is 
recorded at point A of Fig. 4. 
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, , 

The finite element model in Fig.4(b), consisting of boundary response of the model in Fig. qc). Results 
the soil part and interface elements, is used to calcu- of the analysis which used the small model in Fig. qc)  
late the time domain boundary influence matrix. This with the. TDBIM approach are then compared with 
matrix is stored and then recalled to calculate the the results of the extended mesh in Fig. 4(a), which 

~ -- 
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Table 1 .  Material properties of layer system 

S-wave velocity 0.5345 units/sec 
P-wave velocity l unit/sec 
Poisson's ratio 0.3 
Unit density 1.0 

are called the reference. solution. As expected, the 
resulting time history at point A for the TDBIM 
solution coincides with the reference solution. The 
difference cannot be resolved within the scale of the 
drawings and it has to  be marked by circles as shown 
in Fig. 5. The time domain boundary influence matrix (b) 
calculated for this problem may be stored for future 
use with the same problem, for different loading 
conditions and/or different material properties of the STANDARD 
structure part. VISCOUS 

As an extension to this test problem, the efficiency BOUNDARY 
\I 

1.. of the popular standard viscous silent boundary [4] is 
,,' 

examined. The purpose of this test is to demonstrate Fis 6. Finite element models using standard viscous 

the approximation involved when using such local boundary: (a) small model; (b) large model. 

5,: 

silent boundaries. Two locations of the lateral silent 
boundary are tested. The first,is at a lateral distance surface points A, B and C. The response obtained by 
equal to one layer depth and the second is at a lateral using this viscous boundary is compared with the 
distance equal to twice the layer's depth, as shown in reference solution which was calculated previously 
Fig. 6. Vertical displacement response is recorded at using an extended mesh. 

- 

- REFERENCE SOLUTION, - - - STO. VISCOUS ED. 
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? 
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Fig, 7. Vertical displa 
viscous boundary (a) at point A, (b) at point B. 
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Fig. 8. 
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Vertlcal d~splacement response: comparison between reference solutlon and large model employing 
vlscous boundary (a) at point A, (b) at polnt B, (c) at polnt (C) 

Results of the small model, shown in Fig 7, are not 
in good agreement w ~ t h  the reference solution. Re- 
sults of the larger model, shown in Rg. 8, represent 
substantial improvement over the results of the small 
model for polnts A and B but the response at point 

C located beside the boundary is poor. This means 
that for the viscous boundary, more accurate answers 
at polnt C require that the boundary be moved 
further away. 

5. SUMMARY 

An economical and accurate method IS presented 
for the analysis of problems involving wave propaga- 
tion m unbounded media. The method uses an 
Influence matrix, calculated in the time domain, for 
the boundary between the finlte model of Interest and 
the truncated unbounded domain. During analysis of 
the finite model, this matrix is used to calculate the 
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boundary's response one tlme step ahead. This re- Th~s paper is a contnbution of the Instttute for Research In 

sponse is then used to simulate the stiffness contribu- Construction, Nat~onal Research Council of Canada 

tlon of the truncated unbounded domain and hence 

preserve the real phys~cal behaviour of the problem. 

The advantage of this procedure is that the boundary 

matrix can he used for as many analyses as desired of 

the fin~te model at minimal additional computational 

cost. The load conditions, geometry and material 

properties of the finite model are arhitraty. 

In the numerical sense, the formulation of this 

method and the results obtained are exact. 
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