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Abstract

The static recovery kinetics of warm deformed ferrite have been characterized by a combination of in situ laser ultrasonics and stress relaxation

measurements. During recovery the ultrasonic velocity change decreased whilst the ultrasonic attenuation generally remained constant. The velocity

change was explained in terms of dislocation damping, whilst for the attenuation the results were due to a combination of grain scattering and

dislocation damping. From the ultrasonic velocity and attenuation measurements, the dislocation density and pinning point separation have been

determined using a model in the literature. These values have been compared to those obtained from stress relaxation data for the same experimental

conditions. The results showed that the difference in calculated dislocation densities differed by one or two orders of magnitude. The difference in

the values of pinning point separation was about one order of magnitude. Finally possible reasons for these differences have been discussed with

reference to the dislocation structure present during recovery.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Laser ultrasonics is a relatively recent technique that uses

laser light pulses to generate and detect ultrasonic waves in

materials. Due to the interaction of the microstructure with

the ultrasonic waves, various phenomena can be studied. The

literature on ultrasonics has mostly focused on: grain size mea-

surement [1–3], monitoring of phase transformations [4,5],

recrystallization [3,6–8], magnetic domain effects [9,10] and

dislocation behaviour [10–14].

A key advantage of this technique is that it is non-contact and

non-destructive. Thus, it has great potential to be used in indus-

trial online monitoring of microstructural development during

materials processing. Indeed trials have already been performed

during the processing of steel strip [15], sheet [16] and a system

has been continuously operating for a few years for monitoring

tube thickness and austenite grain size [17].

∗ Corresponding author at: Netherlands Institute for Metals Research, 2628

AL Delft, The Netherlands. Tel.: +39 65055461.
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Whilst some progress has been made, there is a lack of ultra-

sonic studies of annealing behaviour following warm or hot

deformation of steels. The studies mentioned earlier concern-

ing recrystallization were performed on samples annealed after

cold deformation only. Similarly, the ultrasonic studies concern-

ing dislocation behaviour were mainly focused on creep [11],

ageing [12] and fatigue [13,14]. Thus, if ultrasonics is to be used

for online monitoring of recovery and recrystallization after hot

forming in steels, then further study is required.

Currently these two phenomena are best studied by using the

more established in situ stress relaxation technique [18–21]. It

can be argued that a combination of stress relaxation measure-

ments and simultaneous ultrasonic measurements will strongly

facilitate the interpretation of ultrasonics data. This concept will

be applied in the present paper.

This investigation focuses on the recovery process in ferrite

following warm deformation. An ultra low carbon (ULC) steel

was chosen for this investigation, since it is known (and con-

firmed here) that recrystallization following warm deformation

is unlikely to occur, except for longer annealing times [22–24].

In the current investigation, measurements of ultrasonic

velocity and attenuation have been made during anneal-

ing for a variety of deformation conditions and at various

0921-5093/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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temperatures. Stress relaxation measurements were made

simultaneously.

In addition samples were quenched after various annealing

times and analysed by optical microscopy.

2. Effect of microstructure on ultrasonic velocity and

attenuation

Microstructural features cause changes in ultrasonic veloc-

ity and attenuation. The ultrasonic velocity mainly depends on

texture [6,7], the dislocation structure [13,14], magnetomechan-

ical effects [25] and on scattering effects. Scattering is caused

by acoustic inhomogeneities, like grains, porosity, cracks, etc.

Given the perfection of the steel samples used, in this study only

grain scattering needs to be considered.

The attenuation of ultrasonic waves is due to grain scattering

and absorption effects. Absorption is mainly due to the disloca-

tion structure [11–14] and magnetomechanical effects [9,10].

Thus, the ultrasonic velocity and attenuation during annealing

should be due to a combination of some or all of the above effects,

depending on the deformation and temperature conditions. In

the following sections the theory for each of these effects is

discussed.

2.1. Dislocation damping

The effect of dislocations on velocity and attenuation has

been treated by Granato and Lucke [26]. In their model, a dis-

location is regarded as a string that vibrates between pinning

points. Forced vibration of the dislocation occurs by the interac-

tion of the dislocation with the ultrasonic waves. In addition, the

motion of the dislocation is inhibited by a drag force. The mag-

nitude of this depends on a combination of thermal vibrations

(phonons), electrons, and impurity atoms.

Assuming strain amplitude independent damping, the veloc-

ity change (vd(ρ) − vd(0)/vd(0)) and attenuation αd (in dB/s)

due to the presence of dislocations with density ρ and average

pinning point separation L, are given by equations [26]:

(

vd(ρ) − vd(0)

vd(0)

)

=
(

4Gb2ρL2

π4C

)

(

1 − β2

(1 − β2)
2 + (β2/g2)

)

(1)

αd =
4fGBρL2

0.115π5Cf0dΛ

(

β

(1 − β2)
2 + (β2/g2)

)

(2)

where vd(ρ) is the velocity due to dislocations, vd(0) the veloc-

ity when there are no dislocations, G the shear modulus, b the

Burgers vector, C the dislocation line tension, B the damping

constant, f the frequency of the ultrasonic waves, f0d the reso-

nance frequency of the dislocations and Λ is the density of the

material. The factors β and g are given by

β =
f

f0d
(3)

g =
2π2Λb2f0d

B
(4)

A maximum in attenuation occurs at the resonance frequency,

given by

f 2
0d =

C

4πΛb2L2
(5)

When β and β2/g2 are small, then Eqs. (1) and (2) can be

approximated by

(

vd(ρ) − vd(0)

vd(0)

)

=
(

4Gb2ρL2

π4C

)

(6)

αd =
16GBb2f 2ρL4

0.115π4C2
(7)

As can be seen from Eqs. (1)–(5), for isothermal anneal-

ing, the velocity change and attenuation are dependent on the

dislocation density and pinning point separation only.

2.2. Magnetomechanical damping

The interaction of magnetic domain walls with ultrasonic

waves gives rise to magnetomechanical damping. In the absence

of an applied magnetic field two effects dominate: micro-eddy

current damping and hysteresis damping. For ultrasonic waves

in the MHz range (used in this study), the first effect dominates

[27].

In the micro-eddy current mechanism, ultrasonic waves cause

the movement of magnetic domain walls. This leads to changes

in local magnetization, giving rise to micro-eddy currents [28].

This contribution depends on the ultrasonic frequency but not

on its amplitude [29].

The velocity change (vme(µi) − vme(0)/vme(0)) and attenu-

ation αme in this case are given by [30]:

(

vme(µi) − vme(0)

vme(0)

)

=

(

0.225

1 + f 2/f 2
0r

)

(

µiλ
2
s Esat

I2
s

)

(8)

αme =
(

0.45f

0.115

) (

µiλ
2
s Esat

I2
s

)

(

f/f0r

1 + f 2/f 2
0r

)

(9)

where vme(µi) is the velocity in the presence of magnetic

domains and vme(0) the velocity when there are no domains, µi

the initial permeability, λs the magnetostriction constant, Esat

the Young’s modulus at saturation, Is the saturation magnetisa-

tion and f0r is the relaxation frequency given by the following

equation:

f0r =
πRe

24µiD
2
d

(10)

where Re is the electrical resistivity and Dd is the domain size.

The initial permeability in Eqs. (8) and (9) also depends

on the internal stress σi. According to Becker and Kersten,

the initial permeability as quoted by Degauque [28], is given

by

µi =
8πI2

s

9λsσi
(11)
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Thus it can be seen, in micro-eddy current damping, the pres-

ence of internal stresses will act to reduce the velocity change

and attenuation.

2.3. Texture effects

In the presence of texture, the longitudinal ultrasonic velocity

vLx is given by [6]:

vLx =

√

√

√

√

(

1

Λ

(

(λ + 2µ) +

(

32
√

2

35
π2cW400

)))

(12)

where Λ is the density of the material, λ, µ and c are single

crystal elastic constants and W400 is a texture coefficient. This

coefficient comes from a series expansion of the crystallographic

orientation distribution function. For an orthorhombic aggregate

of cubic crystallites W400 is one of the lowest order non-zero

texture coefficients in the Roe notation [6,16].

During isothermal conditions the elastic constants and den-

sity can be assumed constant. In addition in most metals the

texture term (32
√

2/35)π2cW400 is much smaller than the con-

stant term (λ + 2µ), thus Eq. (12) can be simplified to:

vLx = d + eW400 (13)

where d and e are the constants. Thus, from Eq. (13) the velocity

is linearly related to the texture coefficient.

2.4. Grain scattering effects

Grain scattering affects both the velocity and attenuation

of ultrasonic waves. The relationships between velocity and

grain size or attenuation and grain size depend on the ratio

of the ultrasonic wavelength in the material λu to the grain

size Dg. For the experimental results presented here, the

ultrasonic wavelength in the material is around an order of

magnitude larger than the average deformed grain size. Thus,

assuming the Rayleigh regime (λu ≫ Dg), the group velocity

vLGg and attenuation αLg for longitudinal waves are given by

[31,4]:

vLGg =
vL

1 + (A/Λv2
L)

2
(2/(3 × 53 × 7))(14 + (21κ2/k2)

+(6/5)(106/7)(6κ2/7k2)(21κ4/k4)(kDg)2)
(14)

αLg = SLD3
gf

4 (15)

where A is a single-crystal anisotropy factor and SL is the scat-

tering factor in the longitudinal direction.

The wave numbers κ and k in Eq. (14) are given by [31]:

κ =
2πf

vs
(16)

k =
2πf

vL
(17)

where vs is the shear wave velocity.

For Eq. (15), the scattering factor for longitudinal waves SL,

is given by [32]:

SL =
0.0308π4µ2

a

Λ2v2
L

(

2

v5
L

+
3

v5
s

)

(18)

where µa is related to the anisotropy of the grain, and is defined

as

µa = c11 − c12 − 2c44 (19)

where c11, c12 and c44 are the elastic constants of the cubic

crystal.

It should be noted that in the above equations the grains are

assumed to be spherical. Thus, for the majority of results in this

study, where a deformation strain of 0.15 was used, Eqs. (14)

and (15) should give reasonable estimates of the grain scattering

effect.

2.5. Total effect of microstructure

To summarise, the overall velocity change (
v/v0)T and

attenuation αT due to microstructure, can be expressed as
(


v

v0

)

T

=
(

vLx(W400) − vLx(0)

vLx(0)

)

+
(

vLGg(Dg) − vLGg(∞)

vLGg(∞)

)

+
(

vd(ρ) − vd(0)

vd(0)

)

+
(

vme(µi) − vme(0)

vme(0)

)

(20)

αT = αd + αme + αg (21)

where vLx(0) and vLGg(∞) are the velocities in the absence of

texture (W400 = 0, Eq. (12)) and grain scattering (Dg = ∞, Eq.

(14)), respectively. In obtaining v0 the minimum values observed

in the time scale of each experiment were used.

In the case of recovery in ferrite following plastic defor-

mation, the grain size should be constant (i.e. constant

((vLGg(Dg) − vLGg(∞))/vLGg(∞))) and there should be a con-

stant texture (i.e. constant ((vLx(W400) − vLx(0))/vLx(0))). This

means that as recovery proceeds, any change in (
v/v0)T will

be due only to dislocation damping and magnetomechanical

damping.

Using Eq. (15) the grain size effect can be subtracted from

experimental measurements of attenuation therefore:

αT = αd + αme (22)

Furthermore, from Eqs. (8)–(11) the magnetomechanical

damping is expected to be small during the initial stages of

recovery (large internal stress) and should increase as recovery

proceeds.

3. Experimental

The composition of the ULC steel used in the experiments is

shown in Table 1.
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Table 1

Steel composition shown in wt%

C 0.0024

Mn 0.561

Si 0.147

Al 0.038

Fe Balance

Cylindrical samples were machined from rolled plate, with

diameter 10 mm and length 12 mm. The samples were machined

with the axis parallel to the rolling direction.

Fig. 1A shows the experimental set-up used for the ultra-

sonic measurements. A Nd:YAG laser (pulse energy of 200 mJ,

pulse duration of 5 ns, wavelength of 532 nm) is used to gen-

erate ultrasonic waves in the deformed sample. The ultrasonic

waves propagate through the sample and are reflected off the

back surface. Each time the waves reach the original sample sur-

face a small displacement of the surface occurs. These “echoes”

are detected by a second laser (pulse duration of 50 �s, peak

power of 1 kW, wavelength of 1064 nm) coupled to an confo-

cal Fabry–Perot interferometer. The signals are digitised and

recorded for further processing. Fig. 1B shows an example of

a signal obtained after deformation. The signals are used to

calculate the ultrasonic velocity and attenuation. The velocity

was determined by the ratio of the distance travelled through

the material (twice the sample diameter) to the time delay

between generation and the first echo. The attenuation (deter-

mined for a range of frequencies) was obtained from the ratio

of the amplitude of the first echo to the second echo. This

allowed an attenuation versus frequency curve to be obtained for

each measurement. Finally, this curve should be corrected for

diffraction effects to provide the true attenuation of the material.

However, due to the sample geometry present after deforma-

Fig. 1. (A) Laser ultrasonic monitoring apparatus. (B) Example of signal

obtained.

tion (barreled cylinder), a diffraction correction could not be

made.

To investigate the relaxation kinetics after plastic deforma-

tion, a Gleeble® 3500 thermo-mechanical simulator coupled

with a laser ultrasonic monitoring device was used. Each test

comprised of three stages. Firstly the desired starting microstruc-

ture was made via austenitisation at 1100 ◦C for 3 min under

vacuum. Then, the samples were cooled to the desired test tem-

perature in the ferritic state. Secondly, after holding for 5 min,

the samples were deformed in compression. Lubrication was

provided via graphite paste. To protect the steel against the pos-

sibility of carbon pick-up during the test, tantalum sheets were

used as a protective layer between the sample and the lubricant.

Just before deformation the Gleeble® chamber was filled with

argon, since this provided better conditions for the generation

of ultrasonic waves.

Finally in the third stage, the annealing kinetics after defor-

mation were monitored via both the stress relaxation and laser

ultrasonics techniques. In the stress relaxation technique the

stress required to maintain a constant strain in the sample is

recorded. In the laser-ultrasonics technique the ultrasonic signals

were recorded for later calculation of velocity and attenuation.

To investigate the microstructural development during

annealing, selected samples were water quenched after different

annealing times in the third stage. To provide less interference

with the ultrasonic measurements, the quenching was carried

out using a separate Gleeble® 3500 for the same experimental

conditions. Samples were quenched with a rate of approximately

200 ◦C/s. The samples were then analysed by optical microscopy

after suitable metallographic preparation.

4. Results

4.1. Microstructural evolution

Figs. 2–4 show examples of the microstructural changes dur-

ing annealing.

As can be seen from Fig. 2, after 3000 s annealing

at 550 ◦C for a strain of 0.5, the microstructure consists

Fig. 2. Optical micrograph of ULC steel after 3000 s annealing. Deformation

and annealing temperature = 550 ◦C, strain = 0.5, strain rate = 0.1 s−1.
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Fig. 3. Optical micrographs after annealing at 730 ◦C. Strain = 0.15, strain

rate = 0.1 s−1. (A) 36 s; (B) 200 s.

of a deformed grain structure with no sign of recrystalli-

zation.

After 36 s annealing at 730 ◦C for a strain of 0.15, Fig. 3A

shows a deformed grain structure. Some grains however seem

to have a clean interior and have negative curvature. After 200 s

(Fig. 3B), the structure appears similar. Thus, it is difficult to

decide whether or not recrystallization has begun.

After 14 s annealing at 800 ◦C for a strain of 0.15, Fig. 4A

shows a deformed structure with some grains possessing a clean

interior. After 300 s (Fig. 4B), the structure appears partially

recrystallized with very large grains.

In light of the uncertainty in determining the transition

between pure recovery and the start of recrystallization, only the

first 10 s of annealing will be considered in the following results

and discussion for T = 730 and 800 ◦C. This is highlighted by

the dotted lines in Fig. 5. For T = 550 ◦C the whole time range

is considered.

4.2. Effect of temperature

Fig. 5 shows the effect of temperature on stress relaxation,

ultrasonic velocity and attenuation. It should be noted that in all

Fig. 4. Optical micrographs after annealing at 800 ◦C. Strain = 0.15, strain

rate = 0.1 s−1. (A) 14 s; (B) 300 s.

figures concerning ultrasonic velocity, the fractional change in

velocity (
v/v0) is plotted. In each experiment v0 was taken to

be the value at 100 s annealing. In addition for the attenuation,

only the results for a frequency of 8 MHz are shown. Similar

trends were found for other frequencies. However, for lower fre-

quencies changes in attenuation are less clear, whilst for higher

frequencies the experimental scatter becomes much larger. Thus,

it was found that the data collected at 8 MHz, offered the best

compromise between the above-mentioned effects.

As can be seen from Fig. 5A the stress decreases with time

for all annealing temperatures. Also it can be seen that the initial

stress decreases with increasing temperature. This is due to faster

dynamic recovery occurring as at higher temperatures. In addi-

tion, the rate of stress relaxation appears to decrease between

550 and 800 ◦C.

Analysis of the fractional ultrasonic velocity change in

Fig. 5B yields similar trends. The initial values decrease with

increasing temperature (although for 730 and 800 ◦C the values

are similar) and the rate of change in (
v/v0) with time appears

to decrease slightly from 550 to 800 ◦C.

From Fig. 5C, the ultrasonic attenuation appears generally

larger for a higher temperature. In addition, the attenuation at
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Fig. 5. (A) Stress, (B) fractional ultrasonic velocity change and (C) attenuation for strain = 0.15 and strain rate = 0.1 s−1. Open triangles = 550 ◦C, open dia-

monds = 730 ◦C and open squares = 800 ◦C. Attenuation results are for an ultrasonic frequency of 8 MHz.

550 and 730 ◦C appears constant, whilst at 800 ◦C it tends to

increase.

4.3. Effect of applied strain

Fig. 6 shows the effect of strain on stress relaxation, ultrasonic

velocity and attenuation.

The stress relaxation data in Fig. 6A indicate that a higher

strain gives rise to a higher initial stress and that both curves are

almost parallel, indicating similar rates of softening.

Analysis of the fractional ultrasonic velocity change in

Fig. 6B shows that for the higher strain the initial value after

deformation is higher. In addition, the rate of change in (
v/v0)

with time appears similar for both strains.

From Fig. 6C, it can be seen that the ultrasonic attenua-

tion is higher for the lower applied strain. In addition, for both

strains the attenuation remains approximately constant during

annealing, although some fluctuations are observed.

5. Discussion

As explained earlier, for a constant grain size and texture the

values of 
v/v0 should only change with time due to changes

in dislocation damping and magnetomechanical damping. For

the attenuation the values of αT should also depend on the above

effects with the addition of a grain scattering effect, since not

the change in αT, but the absolute value is considered.

The contribution of magnetomechanical damping to the

observed velocity changes and attenuation can be assessed with

reference to Fig. 5B and C and the Curie temperature. For the

steel used in this investigation the Curie temperature is around

768 ◦C [10]. Hence, differences in the data for T = 550 ◦C (ferro-

magnetic behaviour) and T = 800 ◦C (paramagnetic behaviour)

may reveal the magnitude of the effect.

From Fig. 5B there is a decrease in the velocity change

between 550 and 800 ◦C suggesting the loss of the magnetome-

chanical effect described by Eq. (8). However, with reference

to Fig. 5A, at 550 ◦C there is a much higher stress (dislocation

density) compared to that at 800 ◦C. Thus, it is also likely that

the decrease in the velocity change is due to a decrease in dis-

location damping, i.e. in ρL2 from Eq. (6). An indication of the

dominating effect can be obtained with reference to Eqs. (11)

and (8), where it can be seen that larger internal stresses (due

to dislocations) should give rise to a smaller magnetomechani-

cal damping effect. Thus, it is suggested that the experimental

velocity change values are mostly due to dislocation damping.

From the attenuation results it can be seen in Fig. 5C that the

values at 800 ◦C are significantly higher than at 550 ◦C. There is

no drop in attenuation at 800 ◦C, which would be expected from

Eq. (9) if there was significant magnetomechanical damping.

Assuming a constant grain size, the trend of increasing attenua-

tion with increasing temperature in Fig. 5C should be therefore

mostly due to a change in dislocation damping, i.e. an increase

in ρL4 from Eq. (7).
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Fig. 6. (A) Stress, (B) fractional ultrasonic velocity change and (C) attenuation for T = 550 ◦C and strain rate = 0.1 s−1. For open triangles, strain = 0.15. For crosses,

strain = 0.5. Attenuation results are for an ultrasonic frequency of 8 MHz.

Hence, it is concluded that magnetomechanical damping

gives only a small contribution to the experimental results.

From Fig. 6B the initial value of 
v/v0 is much higher for

the higher strain. Based on the above conclusion, this can be due

to an increase in ρL2. Other factors that control the initial values

of 
v/v0 are texture and grain scattering effects. However, the

effects are difficult to estimate since firstly Eq. (14) assumes

spherical grains and secondly, W400 in Eq. (13) can be positive

or negative, thus, the velocity change can increase or decrease

during deformation.

The smaller attenuation values observed in Fig. 6C for the

higher strain are expected to be due to a combination of disloca-

tion damping, i.e. smaller ρL4 for larger strains and a difference

in grain scattering compared to the lower strain case.

For the attenuation results, a constant contribution due to

grain scattering effects during recovery is expected. This effect

can be estimated from Eqs. (15), (18) and (19) provided that

the grain size, velocities vL and vs, and the single crystal elastic

constants are known. The grain size was obtained from analysis

of optical micrographs. For each experiment around 200 grains

were analysed and the average equivalent circle diameter (ECD)

obtained. For vL, values were obtained from experimental data

using the values after 100 s of annealing, whilst vs was assumed

equal to 0.5vL. The single crystal elastic constants were assumed

equivalent to those for pure iron. In the literature Rayne and

Chandrasekhar [33] have measured these constants up to room

temperature. However, the experiments performed here were at

higher temperatures, thus the reported temperature variation of

the elastic constants was extrapolated to obtain values relevant

to this study. The theoretical attenuation due to grain scattering

for each of the experiments is shown in Table 2. Also shown

are the calculated scattering factors and the average equivalent

circle diameters.

By subtracting the theoretical attenuation due to grain scat-

tering from each experimental result yields attenuation values

that are expected to be due to dislocation damping only.

Table 2

Theoretical calculation of attenuation due to grain scattering

Temperature (◦C) Strain SL (×10−10 s3/m3) Average ECD (�m) Calculated αg at 8 MHz (dB/�s)

550 0.15 6.9 50 0.35

550 0.50 6.2 41 0.17

730 0.15 9.0 49 0.43

800 0.15 11.2 52 0.64
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Thus, since the velocity change has been shown to mostly

depend on dislocation damping, Eqs. (1)–(5) can then be used

to determine the dislocation density and pinning point separation

for each experiment.

Whilst the parameters G, b, C and Λ are known, the damping

constant B requires further discussion.

The damping constant B is defined by the equation:

τb = Bvdis (23)

where τ is the resolved shear stress that acts on the slip plane of

the dislocation, b the Burgers vector, and vdis is the dislocation

velocity [34]. The quantity τb is the force per unit length acting

on the dislocation. Thus, B can in principle be obtained from

experimental measurement of dislocation velocities as a function

of applied stress.

The value of B depends on a combination of damping due

to (i) phonons, (ii) impurities and (iii) electrons. The effect of

electrons is only significant at very low temperatures and will

not be considered here. The overall B is a summation of the

damping constant due to phonons Bp and the damping constant

due to impurities, Bs:

(i) The damping constant due to phonons Bp in a pure metal is

given by Liebfried‘s formula, which is quoted in the paper

of Granato and Lucke [35]:

Bp =
3kTZ

10Vsa2
(24)

where k is the Boltzmann’s constant, Z the number of atoms

per unit cell, a the lattice parameter and Vs is the shear wave

velocity in the material.

Eq. (24) has been shown to give good agreement with

experimentally obtained values of B for pure metals above

50 K [34,36].

(ii) The effect of impurity drag on dislocation motion has been

treated by Hirth and Lothe [37]. In the case of dragging

of interstitial solute atmospheres, e.g. carbon, the damping

constant Bs is given by

Bs =
2πkTC∞

3ω
(25)

where C∞ is the concentration of the interstitial solute far

from the dislocation and ω is the jump frequency of the

solute in the material, given by

ω = υd exp

(

−
Q

RT

)

(26)

where υd is the Debye frequency, R the gas constant and

Q is the activation energy for diffusion of the solute in the

solvent [37].

Finally, Lucke and Granato [38] proposed the following rela-

tion for Bs, when the dislocations are dragging along movable

point defects:

Bs =
kT

DLd
(27)

Fig. 7. Damping constant as a function of temperature: open diamonds indicate

literature experimental values for iron with 1.4 ppm carbon and 0.1 ppm nitrogen

[34], light grey line is Eq. (24), black line is Eq. (25) and dark grey line is Eq. (27).

where D is the diffusivity of the movable point defects and Ld

is their separation along dislocations.

To decide whether to use a theoretical value for B or one from

experimental data in the literature, Eqs. (24), (25) and (27) have

been compared to experimentally obtained B values by Urabe

and Weertman [34]. The results of the comparison are shown in

Fig. 7.

As can be seen, the experimental B values in the literature

decrease with increasing temperature. In addition the values are

much larger than those predicted by the phonon drag mechanism

(light grey line). According to the authors the damping behaviour

was thought to be caused by the interaction of interstitials (C and

N) with dislocations [34]. Indeed the decrease of the damping

constant with increasing temperature would be consistent with

a reduction in the drag due to interstitials.

The predictions of Eqs. (25) and (27) are shown by the black

line and the dark grey line, respectively. In calculating B, it was

assumed that the dominant solute effect was that due to carbon

atoms. For Eq. (25) C∞ was assumed to be equal to the bulk

carbon concentration, whilst for Eq. (27) the separation of pin-

ning points on dislocations (carbon atoms), was assumed to be

10 nm. This last value was chosen just to illustrate the shape of

the curve obtained from Eq. (27).

As can be seen, both equations predict a decrease in damp-

ing constant with increasing temperature but they are not in

quantitative agreement with the experimental values. Also, the

calculated rate of decay in B is much higher than that suggested

by the experimental data.

In light of the large difference between the theoretical pre-

dictions and the literature experimental data, B values for use

in this study will be derived from the experimental literature

data. The values of B are obtained by fitting a line to the exper-

imental data and extrapolating it to the temperature of interest

(see Fig. 7). In addition, assuming that the damping constant is

proportional to the carbon concentration, the damping constant

values in Fig. 8 are multiplied by the ratio of the carbon concen-

tration in this study to that in the literature experimental study.

The damping constant B to be used in the data analysis to follow

can be represented by the following empirical relation:

log B =
C0

C0 ref
(−0.203 log(T ) − 2.8003) (28)
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Fig. 8. (A) Dislocation density evolution for various temperatures. (B) Cor-

responding evolution in pinning point separation. Open triangles = 550 ◦C,

open diamonds = 730 ◦C and open squares = 800 ◦C. Strain = 0.15 and strain

rate = 0.1 s−1.

where C0 is the carbon concentration the steel in this study

and C0 ref is the concentration from the literature experimental

investigation in Fig. 7 [34].

The calculated dislocation densities and pinning point separa-

tions are shown in Figs. 8 and 9. As can be seen from Fig. 8A the

calculated dislocation densities decrease with time. The initial

Fig. 9. (A) Dislocation density evolution for two strains. (B) Corresponding

evolution in pinning point separation. Open triangles: strain = 0.15, crosses:

strain = 0.5. Strain rate = 0.1 s−1 and T = 550 ◦C.

dislocation densities are expected to decrease with increasing

temperature, since dynamic recovery is more rapid at higher

temperatures. However, the dislocation densities at 730 ◦C are

slightly lower than at 800 ◦C. Errors in the choice of v0 and pos-

sible errors in determining the attenuation due to dislocations

only, are blamed for this unexpected result.

From data in Fig. 8B it follows that the calculated pinning

point separation increases with time for all temperatures. In addi-

tion, the pinning point separation is generally smaller for lower

temperatures.

From Fig. 9 it follows that a higher dislocation density and a

smaller pinning point separation are obtained at the higher strain.

The time dependence of the dislocation density is generally

similar for both strains.

The pinning point separation is expected to reflect a com-

bination of two characteristic lengths. Firstly, the separation of

carbon atoms on dislocations and secondly, the jog separation.

The effect of temperature, strain and recovery on the carbon

atom separation is difficult to estimate. For the jog separation,

an increase in temperature should decrease the dislocation den-

sity and therefore increase the jog separation. Increasing the

strain increases the dislocation density and therefore decreases

the jog separation. For the recovery evolution, when the disloca-

tion density decreases the jog separation should increase. These

trends are in general agreement with the experimental results in

Figs. 8B and 9B.

The evolution in dislocation density can also be calculated

from the stress relaxation data using [18]:

σf − σy = Mα1Gb
√

ρ (29)

where σf is the flow stress (assumed equal to the experimentally

measured relaxation stress), σy the yield stress, M the Taylor

factor (for BCC metals M = 2 [37]) and α1 is a constant of the

order 0.3 [40].

Fitting of the stress relaxation curves to a recovery model

[41] allows the average activation volume over the time scale of

the experiments to be determined. From this an activation length

is obtained from [42]:

V ≈ b2la (30)

where V is the activation volume and la is the activation length.

This length is expected to be equal to the jog separation or the car-

bon atom separation on dislocations, depending which obstacle

is controlling the rate of dislocation glide [40].

A comparison of the dislocation densities and pinning point

separations, obtained from the stress and ultrasonic parameters,

is shown in Figs. 10 and 11 for two strain levels.

From Figs. 10A and 11A it can be seen that the dislocation

densities calculated from the ultrasonics data are considerably

lower than those calculated from the stress. For the lower strain

the difference is two orders of magnitude whilst for the higher

strain it is one order of magnitude. For the pinning point sepa-

ration the values obtained from the stress are about one order of

magnitude smaller than those obtained from the ultrasonics. The

difference is the same for both low and high strains at 550 ◦C.
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Fig. 10. (A) Dislocation density evolution. Open black triangles represent ultra-

sonic values, open dark grey triangles represent stress relaxation values. (B)

Dislocation loop length. Open black triangles represent ultrasonic values, dark

grey line is average loop length from stress relaxation values. For both figures:

T = 550 ◦C, strain = 0.15 and strain rate = 0.1 s−1.

Fig. 11. (A) Dislocation density evolution. Open black triangles represent ultra-

sonic values, open dark grey triangles represent stress relaxation values. (B)

Dislocation loop length. Open black triangles represent ultrasonic values, dark

grey line is average loop length from stress relaxation values. For both figures:

T = 550 ◦C, strain = 0.5 and strain rate = 0.1 s−1.

For the calculated dislocation densities the difference can

be explained with reference to the dislocation structure. Eq.

(29) involves a total dislocation density, including contributions

from both mobile dislocations, e.g. in cell interiors, and immo-

bile dislocations, e.g. in cell walls. The dislocations that cause

damping of the ultrasonic waves, however, are free to vibrate

in response to the ultrasonic stress [11]. Thus, the dislocation

density “detected” by the ultrasonics method is likely to be dom-

inated by mobile dislocations in the cell interior, rather than by

relatively immobile dislocations in the cell walls. Since the dis-

location density in cell walls is generally higher than in cell

interiors, the values calculated from the ultrasonics data should

be lower.

The difference in the values of the pinning point separation

is understandable, since the pinning point separation for the

stress is defined differently to that determining the ultrasonics,

as explained earlier.

Part of the differences in calculated dislocation densities and

pinning point separations could be due to the values of the

damping constant B. The values have been estimated from exper-

imental values determined for iron in the literature with 17 times

less carbon. Although this was taken into account by assuming

that B is proportional to the concentration of carbon, there still

could be some uncertainty in this assumption. In addition, if B

was used as a fitting parameter, a single value of B could not give

good agreement for all the data in Figs. 10 and 11. Thus, this

strengthens the view that the dislocations “detected” by ultrason-

ics are not the same as those “detected” by the stress relaxation

technique.

Fig. 12. Change in dislocation density calculated from ultrasonics data (open

black triangles) and for stress relaxation data (open grey triangles): (A)

T = 550 ◦C, strain = 0.15, strain rate = 0.1 s−1 and (B) T = 550 ◦C, strain = 0.5,

strain rate = 0.1 s−1.
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Finally, the fractional change F in dislocation density

can be calculated and compared for both sets of data in

Figs. 10A and 11A using:

F =
ρi − ρ(t)

ρi − ρf
(31)

where ρi is the initial dislocation density, ρ(t) the value at time

t after deformation and ρf is the final or minimum value calcu-

lated.

Fig. 12A and B shows the fractional change in dislocation

density obtained from the data in Figs. 10A and 11B.

As can be seen for both strains, the rate of change in dis-

location density appears to be more rapid for the ultrasonics

compared with the values calculated from the stress.

Since the rate of change in dislocation density is independent

of the damping constant B, the difference is most likely due to the

fact that the ultrasonic waves are more sensitive to dislocations

in the cell interior, which might be expected to have different

annihilation rates compared to those in cell walls.

6. Conclusions

(1) For the first time, laser ultrasonics has been applied to the

study of recovery in ferrite following warm deformation. In

addition the stress relaxation method was used simultane-

ously with laser ultrasonics. This allowed a comparison to

be made concerning the sensitivity of the two techniques to

the recovery process.

(2) The recovery process was revealed by the change in stress,

ultrasonic velocity and attenuation.

(3) Application of the vibrating string model for dislocation

damping [26] allowed the determination of the dislocation

density and pinning point separation during recovery.

(4) This was compared to the corresponding values calculated

from the stress relaxation technique. The results showed a

difference of between two orders and one order of magni-

tude for dislocation density. The pinning point separations

differed by one order of magnitude.

(5) The observed differences in dislocation densities were

thought to be due the stress reflecting all dislocations, while

the ultrasonic waves were thought to be more sensitive to

mobile dislocations in cell interiors.

(6) The rate of change in dislocation density was higher for the

ultrasonic values compared to the stress. This strengthens

the view that the dislocations detected by ultrasonics are

mobile dislocations in cell interiors.
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