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Abstract

It is becoming widely accepted that neither purely

reactive nor purely deliberative control techniques are

capable of producing the range of behaviors required

of intelligent computational agents in dynamic,

unpredictable, multi-agent worlds. This paper presents

a new architecture for controlling autonomous agents,

building on previous work addressing reactive and

deliberative control methods. The proposed multi-

layered architecture allows a resource-bounded, goal-

directed agent to reason predictively about potential

conflicts by constructing causal theories or models

which explain other agents’ observed behaviors and

hypothesize their goals and intentions; at the same time

it enables the agent to operate autonomously and to

react promptly to changes in its real-time environment.

A principal aim of this research is to understand

the role different functional capabilities play in

constraining an agent’s behavior under varying

environmental conditions. To this end, an exper-

imental testbed has been constructed comprising a

simulated multi-agent world in which a variety of

agent configurations and behaviors have been

investigated. A number of experimental findings are

reported.1

1 Introduction

The computer-controlled operating environ-

ments at such facilities as automated factories,

nuclear power plants, telecommunications

installations, and information processing centers

are continually becoming more complex. As this

complexity grows, it will be increasingly difficult

to control such environments with centralized

1. This research was conducted while the author

was a doctoral candidate at the Computer Laboratory,

University of Cambridge, Cambridge, UK.

management and scheduling policies that are both

robust in the face of unexpected events and

flexible at dealing with operational and

environmental changes that might occur over

time. One solution to this problem which has

growing appeal is to distribute, along such

dimensions as space and function, the control of

such operations to a number of intelligent, task-

achieving robotic or computational agents.

Most of today’s computational agents are

limited to performing a relatively small range of

well-defined, pre-programmed, or human-

assisted tasks. Operating in real world domains

means having to deal with unexpected events at

several levels of granularity — both in time and

space, most likely in the presence of other

independent agents. In such domains agents will

typically perform a number of complex

simultaneous tasks requiring some degree of

attention to be paid to environmental change,

temporal constraints, computational resource

bounds, and the impact agents’ shorter term

actions might have on their own or other agents’

longer term goals. Also, because agents are likely

to have incomplete knowledge about the world

and will compete for limited and shared

resources, it is inevitable that, over time, some of

their goals will conflict. Any attempt to construct

a complex, large-scale system in which all

envisaged conflicts are foreseen and catered for in

advance is likely to be too expensive, too

complex, or perhaps even impossible to undertake

given the effort and uncertainty that would be

involved in accounting for all of one’s possible

future equipment, design, management, and

operational changes.

**
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Now, while intelligent agents must

undoubtedly remain reactive in order to survive,

some amount of strategic or predictive decision-

making will also be required if agents are to

handle complex goals while keeping their long-

term options open. On the other hand, agents

cannot be expected to model their surroundings in

every detail as there will simply be too many

events to consider, a large number of which will

be of little or no relevance anyway. Not

surprisingly, it is becoming widely accepted that

neither purely reactive [Bro86, AC87, Sch87] nor

purely deliberative [DM90, Sho90, VB90]

control techniques are capable of producing the

range of robust, flexible behaviors desired of

future intelligent agents. What is required, in

effect, is an architecture that can cope with

uncertainty, react to unforeseen incidents, and

recover dynamically from poor decisions. All of

this, of course, on top of accomplishing whatever

tasks it was originally assigned to do.

This paper is concerned with the design and

implementation of a novel integrated agent

control architecture, the TouringMachine

architecture [Fer91, Fer92a, Fer92b, Fer92c],

suitable for controlling and coordinating the

actions of autonomous rational agents embedded

in a partially-structured, dynamic, multi-agent

world. Upon carrying out an analysis of the

intended TouringMachine task domain — that is,

upon characterizing those aspects of the intended

real-time indoor navigation domain that would

most significantly constrain the TouringMachine

agent design — and after due consideration of the

requirements for producing autonomous,

effective, robust, and flexible behaviors in such a

domain, the TouringMachine architecture has

been designed through integrating a number of

reactive and suitably designed deliberative

control functions.

2 TouringMachines

Implemented as a number of concurrently-

operating, latency-bounded, task-achieving

control layers, the resulting TouringMachine

architecture is able to produce a number of

reactive, goal-directed, reflective, and predictive

behaviors — as and when dictated by the agent’s

internal state and environmental context. In

particular, TouringMachines (see Figure 1)

comprise three such independently motivated

layers: a reactive layer R for providing the agent

with fast, reactive capabilities for coping with

events its higher layers have not previously

planned for or modelled (a typical event, for

example, would be the sudden appearance of

some hitherto unseen agent or obstacle); a

planning layer P for generating, executing, and

dynamically repairing hierarchical partial plans

(which are used by the agent, for example, when

constructing navigational routes to some target

destination); and a reflective-predictive or

modelling layer M for constructing behavioral

device models of world entities, including the

agent itself, which can be used as a platform for

explaining observed behaviors and making

predictions about possible future behaviors (more

on this below).

Each control layer is designed to model the

agent’s world at a different level of abstraction

and each is endowed with different task-oriented

capabilities. Also, because each layer directly

connects world perception to action and can

independently decide if it should or should not act

in a given state, frequently one layer’s proposed

actions will conflict with those of another; in

other words, each layer is an approximate

machine and thus its abstracted world model is

necessarily incomplete. As a result, layers are

mediated by an enveloping control frame-work so

that the agent, as a single whole, may behave

appropriately in each different world situation.

Implemented as a combination of inter-layer

message-passing and context-activated, domain-

specific control rules (see Figure 2), the control

framework’s mediation enables each layer to

examine data from other layers, inject new data

into them, or even remove data from the layers.

(The term data here covers sensed input to and

action output from layers, the contents of inter-

layer messages, as well as certain rules or plans

residing within layers.) This has the effect of
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Figure 1: The TouringMachine Architecture.
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altering, when required, the normal flow of data

in the affected layer(s). So, in a road driving

domain for example, the reactive rule in layer R

to prevent an agent from straying over lane

markings can, with the appropriate control rule

present, be overridden should the agent embark

on a plan to overtake the agent in front of it.

Inputs to and outputs from layers are

generated in a synchronous fashion, with the

context-activated control rules being applied to

these inputs and outputs at each synchronization

point. The rules, thus, act as filters between the

agent’s sensors and its internal layers

(suppressors), and between its layers and its

action effectors (censors) — in a manner very

similar to Minsky’s suppressor- and censor-

agents [Min86]. Mediation remains active at all

times and is largely “transparent” to the layers:

each layer acts as if it alone were controlling the

agent, remaining largely unaware of any

“interference” — either by other layers or by the

rules of the control framework — with its own

inputs and outputs. The overall control

framework thus embodies a real-time oppor-

tunistic scheduling regime which, while striving

to service the agent’s high-level tasks (e.g.

planning, causal modelling, counter-factual

reasoning) is sensitive also to its low-level, high-

priority behaviors such as avoiding collisions

with other agents or obstacles.

3 Modelling Agent Behavior

Like most real-world domains, a Touring-

Machine’s world is populated by multiple

autonomous entities and so will often involve

dynamic processes which are beyond the control

of any one particular agent. For a planner — and,

more generally, for an agent — to be useful in

such domains, a number of special skills are likely

to be required. Among these are the ability to

monitor the execution of one’s own actions, the

ability to reason about actions that are outside

one’s own sphere of control, the ability to deal
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Figure 2: A TouringMachine’s mediating control framework.
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with actions which might (negatively) “interfere”

with one another or with one’s own goals, and the

ability to form contingency plans to overcome

such interference. Georgeff [Geo90] argues

further that one will require an agent to be capable

of coordinating plans of action and of reasoning

about the mental state — the beliefs, goals, and

intentions — of other entities in the world; where

knowledge of other entities’ motivations is

limited or where communication among entities

is in some way restricted, an agent will often have

to be able to infer such mental state from its

observations of entity behavior. Kirsh, in

addition, argues that for survival in real-world,

human style environments, agents will require the

ability to frame and test hypotheses about the

future and about other agents’ behaviors [Kir91].

The potential gain from incorporating causal

device or mental modelling capabilities in an

autonomous agent is that by making successful

predictions about entities’ activities the agent

should be able to detect potential goal conflicts

earlier on. This would then enable it to make

changes to its own plans in a more effective

manner than if it were to wait for these conflicts

to materialize. Goal conflicts can occur within the

agent itself (for example, the agent’s projected

time of arrival at its destination exceeds its

original deadline or the agent’s layer R effects an

action which alters the agent’s trajectory) or in

relation to another agent (for example, the agent’s

trajectory intersects that of another agent).

Associated with the different goal conflicts that

are known to the agent are a set of conflict-

resolution strategies which, once adopted,

typically result in the agent taking some action or

adopting some new intention.

The structures used by an agent to model an

entity’s behavior are time indexed 4-tuples of the

form 〈C, B, D, I〉 , where C is the entity’s

Configuration, namely (x,y)-location, speed,

acceleration, orientation, and signalled com-

munications; B is the set of Beliefs ascribed to the

entity; D is its ascribed list of prioritized goals or

Desires; and I is its ascribed plan or Intention

structure. Plan ascription or recognition has been

realized in TouringMachines as a process of

scientific theory formation which employs an
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abductive reasoning methodology similar to that

of the Theorist default/diagnostic reasoning

system [PGA86].

The device models used by an agent are, in

fact, filled-in templates which the agent obtains

from an internal model library. While all

templates have the same basic 4-way structure,

they can be made to differ in such aspects as the

depth of information that can be represented or

reasoned about (for example, a particular

template’s B component might dictate that

modelled beliefs are to be treated as defeasible),

initial default values provided, and computational

resource cost. The last of these will subsequently

be taken into account each time the agent makes

an inference from the chosen model.

Reasoning from a model of an entity

essentially involves looking for the “interaction

of observation and prediction” [DH88]; that is,

for any discrepancies between the agent’s actual

behavior and that predicted by its model or, in the

case of a self-model, between the agent’s actual

behavior and that desired by the agent. Model-

based reasoning in TouringMachines specifically

comprises two phases: explanation and

prediction. During the explanation phase, the

agent attempts to generate plausible or inferred

explanations about any entity (object/agent)

behaviors which have recently been observed.

Explanations (models) are then used in detecting

discrepancies between these entities’ current

behaviors and those which had been anticipated

from previous encounters. If any such behavioral

discrepancies are detected, the agent will then

strive to infer, via intention ascription, plausible

explanations for their occurrence.

 Once all model discrepancies have been

identified and their causes inferred, predictions

are formed by temporally projecting those

parameters that make up the modelled entity’s

configuration vector C in the context of the

current world situation and the entity’s ascribed

intention. The space-time projections (in effect,

knowledge-level simulations) thus created are

used by the agent to detect any potential

interference or goal conflicts among the modelled

entities’ anticipated/desired actions. Should any

conflicts — intra- or inter-agent — be identified,

the agent will then have to determine how such

conflicts might best be resolved, and also which

entities will be responsible for carrying out these

resolutions. Determining such resolutions,

particularly where multiple goal conflicts are

involved, will require consideration of a number

of issues, including the priorities of the different

goals affected, the space-time urgency of each

conflict, rights-of-way protocols in operation, as

well as any environmental and physical

situational constraints (e.g. the presence of other

entities) or motivational forces (e.g. an agent’s

own internal goals) that may constrain the

possible actions that the agent can take [Fer92c].

4 Experimenting with Touring-

Machines

The research presented here adopts a fairly

pragmatic approach toward understanding how

complex environments might constrain the design

of agents, and, conversely, how different task

constraints and functional capabilities within

agents might combine to produce different

behaviors. In order to evaluate TouringMachines,

a highly instrumented, parametrized, multi-agent

simulation testbed has been implemented in

conjunction with the TouringMachine control

architecture. The testbed provides the user with a

2-dimensional world — the TouringWorld —
which is occupied by, among other things,

multiple TouringMachines, obstacles, walls,

paths, and assorted information signs. World

dynamics are realized by a discrete event

simulator which incorporates a plausible world

updater for enforcing “realistic” notions of time

and motion, and which creates the illusion of

concurrent world activity through appropriate

action scheduling. Other processes handled by the

simulator include a facility for tracing agent and

environmental parameters, a statistics gathering

package for agent performance analysis, a

mechanism enabling the testbed user to control

the motion of a chosen agent, and several text and
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graphics windows for displaying output. By

enabling the user to specify, visualize, measure,

and analyze any number of user-customized

agents in a variety of single- and multi-agent

settings, the testbed provides a powerful platform

for the empirical study of autonomous agent

behavior.

A number of experiments have been carried

out on TouringMachines which illustrate, in

particular, that the balance between goal-

orientedness (effectiveness) and reactivity

(robustness) in agents can be affected by a

number of factors including, among other things,

the level of detail involved in the predictions

agents make about each other, the degree of

sensitivity they demonstrate toward unexpected

events, and the proportion of total agent resources

that are made available for constructing plans or

building mental models of other agents. Other

experiments point toward a trade off between the

reliability and the efficiency of the predictions an

agent can make about the future (this turns out to

be an instance of the well known extended

prediction problem [SM90]). Yet other

experiments have been carried out which suggest

that predicting future world states through causal

modelling of agents’ mental states, can, in certain

situations, prove useful for promoting effective

coordination between agents with conflicting

goals. To illustrate some of the diverse

opportunities for analysis which are afforded by

the TouringMachine testbed, one particular

experiment that illustrates the role of causal

modelling of agent behavior will now be

described in some detail.

4.1 Counterfactual Reasoning: why model-

ling other agents’ intentions can be

useful

In constructing and projecting models of other

world entities, a TouringMachine must constrain

its modelling activities along a number of dimen-

sions. Implemented as user-definable parameters,

these layer M constraints can be used to define

such things as the tolerable deviations between

the agent’s actual and desired headings, the length

of time into the future over which the agent’s

conflict detection predictions will apply, the rate

at which the agent updates its models, and the

total number of per-clock-cycle resources

available for constructing models. One other

layer M parameter which is of particular interest

here is ConflictResolutionDepth — the

parameter which fixes the number of levels of

counterfactual reasoning the agent should

undertake when projecting entities' models to

discover possible future goal conflicts. In general,

when constructing model projections at counter-

factual reasoning level N, an agent will take into

account any conflicts plus any actions resulting

from the anticipated resolutions to these conflicts

which it had previously detected at level N-1.

Values of ConflictResolutionDepth which are

greater than 1, then, give agents the flexibility to

take into account — up to some fixed number of

nested levels of modelling — any agent's

responses to any other agent's responses to any

predicted conflicts.

In the scenario of Figure 3, two Touring-

Machine agents can be seen following indepen-

dent routes to one destination or another. The

interesting agent to focus on here — the one

whose configuration is to be varied — is

agent1 (the round one). The upper left-hand

frame of Figure 3 simply shows the state of the

world at time T = 15.5 seconds. Throughout the

scenario, each agent continually updates and

projects the models they hold of each other,

checking to see if any conflicts might be

“lurking” in the future. At T = 17.5 (upper right-

hand frame of Figure 3), agent1 detects one

such conflict: an obey-regulations conflict

which will occur at T = 22.0 between agent2

(chevron-shaped) and the traffic light (currently

red).3 Now, assuming agent1 is just far enough

away from the traffic light so that it does not,

within its parametrized conflict detection horizon,

3. All agents possess the homeostatic goal obey-

regulations which, in this particular example,

will trigger a goal conflict if the agent in question

(agent2) is expected to run through the red traffic

light.
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Figure 3:  Altering the  value of  an agent’s ConflictResolutionDepth parameter  can affect

the timeliness and effectiveness of any predictions it might make.
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see any conflict between itself and the traffic

light, then, if agent1 is configured with Conf-

lictResolutionDepth = 1, it will predict the

impending conflict between agent2 and the

traffic light, as well as the likely event of

agent2 altering its intention to stop-at-

light so that it will come to a halt at or around

T = 22.0. If, on the other hand, agent1 is

configured with ConflictResolutionDepth = 2,

not only will it predict the same conflict between

agent2 and the traffic light and the resolution to

be realized by this entity, but it will also, upon

hypothesizing about the world state after this

conflict resolution is realized, predict another

impending conflict, this second one involving

itself and the soon to be stationary agent2.

The observable effects of this parameter

difference are quite remarkable. When agent1

is configured with ConflictResolutionDepth = 1,

it will not detect this second conflict — the one

between itself and agent2 — until one clock

cycle later; that is, at time T = 18.0 instead of at T

= 17.5. Due to the proximity of the two agents, the

relatively high speed of agent1, and the

inevitable delay associated with any change in

intention or momentum, this 0.5 second delay

proves to be sufficiently large to make agent1

realize too late that agent2 is going to stop; an

inevitable rear-end collision therefore occurs at T

= 22.0 (Figure 3, lower left-hand frame).4

Configured with ConflictResolutionDepth = 2

(Figure 3, lower right-hand frame), agent1 ends

up having enough time — an extra 0.5 seconds

— to adopt and realize the appropriate intention

stop-behind-agent, thereby avoiding the

collision that would otherwise have occurred.

Having the flexibility to reason about the

interactions between other world entities (for

4. In fact, this collision need not be “inevi-

table”: in this scenario both agent1 and

agent2 have been configured with fairly insen-

sitive (not very robust) layer R reactions, pri-

marily to emphasize the different behaviours

that could result from different parametriza-

tions of agents' modelling capabilities.

example, between agent2 and the traffic light)

and to take into account the likely future

intentions of these entities (for example, stop-

at-light) can enable TouringMachines like

agent1 to make timely and effective predictions

about the changes that are taking place or that are

likely to take place in the world. In general,

however, knowing how deeply agents should

model one another is not so clear: since the

number of layer M resources required to model

world entities is proportional to both the number

of entities modelled and the (counterfactual

reasoning) depth to which they are modelled,

agents will ultimately have to strike a balance

between breadth of coverage (more entities

modelled, little detail) and depth of coverage (less

entities, more detail). This issue is investigated in

more detail elsewhere [Fer92c].

5 Conclusions

Through the above and a number of other single-

and multi-agent coordination experiments

addressing such issues as the production of

emergent behavioral patterns, the Touring-

Machine architecture has been shown to be

feasible and that, when suitably configured, can

endow rational autonomous agents with

appropriate levels of effective, robust, and

flexible control for successfully carrying out

multiple goals while simultaneously dealing with

a number of dynamic multi-agent events.

The integration of a number of traditionally

expensive deliberative reasoning mechanisms

(for example, causal modelling and hierarchical

planning) with reactive or behavior-based

mechanisms is a challenge which has been

addressed in the TouringMachine architecture.

Additional challenges such as enabling effective

agent operation under real-time constraints and

with bounded computational resources have also

been addressed. The result is a novel architectural

design which can successfully produce a range of

useful behaviors required of sophisticated

autonomous agents embedded in complex

environments.

The research presented here is ongoing;
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current work on the TouringMachine agent

architecture includes an effort to generalize

further the TouringWorld testbed, in particular,

by separating the definition of the agent’s domain

of operation (description of the environment,

initial goals to accomplish, criteria for successful

completion of goals) from the configuration

(capabilities, internal parameters and constraints)

of the agent itself. Another aspect of the current

work is to identify and incorporate new

capabilities in order to extend the behavioral

repertoire of agents; capabilities being considered

at present include, among others, reinforcement

learning, user modelling, episodic memory

management, and WWW navigation.
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