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ABSTRACT

Two models are proposed to describe the rheological behavior of straight run and

modified binders in the linear viscoelastic region.  These models characterize the

absolute value of the complex shear modulus (|G*|) and the phase angle (δ).  They allow

for the establishment of master curves based on measurements made at a limited

number of loading times and temperatures.  A matching function approach was used to

develop the models, which were validated experimentally by characterizing the dynamic

mechanical properties of polymer-modified and straight run binders at intermediate and

high service temperatures.  There was good agreement between the measured and

predicted values for the complex shear modulus.  The phase angle model describes

unmodified binders with less than 5% error.  Although the model does not simulate the

plateau region observed for polymer-modified binders, the error in this case was less

than 10%.  The models were successfully used to estimate other viscoelastic functions

such as the storage and loss shear moduli, and the relaxation spectrum.

Keywords: asphalt binder, viscoelasticity, matching function approach
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INTRODUCTION

Asphalt binder is a viscoelastic, thermoplastic material that is characterized by a certain

level of rigidity of an elastic solid, but at the same time, flows and dissipates energy by

frictional losses as a viscous fluid.  As with any viscoelastic material, asphalt’s response

to an imposed excitation (stress or strain) is dependent upon both temperature and

loading time.

To predict the engineering performance of asphalt binder under the wide spectrum of

temperatures and loading conditions encountered in the field, asphalt rheologists have

repeatedly tried to describe its viscoelastic behavior using mathematical models.  Such

models may be used to predict asphalt binder viscoelastic properties over a wide range

of loading times and temperatures from measurements made at limited loading times

and temperatures (Marasteanu et al, 1996).  Since the Van der Poel nomograph (Van

der Poel, 1954) was presented in the early 1950s, a variety of one-dimensional

competitive models have been used to describe the time and temperature dependency

of asphalt binders within the region of linear response.  Unfortunately, most of these

models suffer from at least one of the following drawbacks:

• Excessive complexity when used in practice (e.g., Jongepier et al, 1969; Dickinson et

al, 1974).

• Lack of theoretical rigorousness (e.g., regression-based models).

• Lack of generality required to model modified binders.  Most of the available models

were developed based only on straight run binder experimental data and did not

accurately fit modified binders.

This paper presents two models for predicting the dynamic behavior of straight run

and polymer-modified binders at intermediate and high temperatures.  These models,
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which characterize the absolute value of the complex shear modulus (|G*|) and the

phase angle (δ), were developed using a matching function approach (Tschoegl, 1989)

and were experimentally validated.

SYSTEM MODELING

Three factors control the rheological behavior of asphalt binders: loading time (or

frequency), load amplitude, and temperature (Figure 1).  The traditional approach to

dealing with this system is to reduce the three-dimensional problem (affected by

temperature and loading time) to a two-dimensional problem (only affected by loading

time) using the Time Temperature Superposition Principle.  Assuming the validity of the

Time Temperature Superposition Principle introduced by Tobolsky (1956) and

theoretically validated based on the William-Landel-Ferry (WLF) equation (Ferry, 1980),

the system may be modeled with only one control variable: loading time or frequency.

Assuming a dynamic description of the problem, the required model may be developed

through the following steps:

• Data collection utilizing an experimental program,

• Formulating the model,

• Validating the model,

• Analyzing the model performance, and

• Monitoring the system as to calibrate and update the model.

FIGURE 1



4

EXPERIMENTAL PROGRAM

Both straight run and polymer-modified asphalt binders were used in the experimental

program.  This selection was based on two criteria:

• For the polymer-modified binder, only elastomeric modification was considered.  This

choice was mainly based on the extent to which the polymers are used in the

industry.  Styrene Butadiene Styrene (SBS) linear block copolymers and Styrene

Ethylbutylene Styrene (SEBS) linear block copolymers were selected.  Each polymer

was mixed with a typical paving grade asphalt (PG 64-22) at three different

concentration levels: 3%, 4%, and 5%.  In addition, a commercial modified PG 76-22

binder used in the Commonwealth of Virginia was selected for comparison.

• For the straight run binder, the choice was restricted to the binders widely used in the

Commonwealth of Virginia (i.e., PG 64-22 and PG 70-22).

The laboratory-prepared polymer-binder blends were prepared in 1995 (Gahvari and

Al-Qadi, 1996) and were stored at room temperature in small 88 ml tins for

approximately four years with no exposure to aging simulation.  For each polymer-binder

blend, three aging statuses were considered: unaged, short, and long-term.  Short and

long-term aging were simulated using the rolling thin film oven (RTFO) test and the

pressure-aging vessel (PAV), respectively.

Each polymer-binder is designated by a four-character code.  The first character, A,

refers to the asphalt type, i.e., Amoco PG 64-22.  The second character, U, R, or P,

refers to the aging status of the binder: U stands for unaged condition, R refers to the

RTFO-aged condition, and P designates the PAV residue (all PAV-aged specimens

were RTFO-aged first).  The third character denotes the polymer type: D for linear SBS

and X for linear SEBS.  The last character shows the polymer concentration in
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percentage, i.e., 3%, 4%, or 5%.  For example, AUD4 denotes a blend of asphalt binder

with 4% polymer D (SBS) in an unaged condition.

Five characters were designated for the binders used in Virginia.  The first two

characters refer to the maximum temperature expected for the binder to perform

adequately within the limits set by the SuperPaveTM specifications.  The next two

characters refer to the minimum temperature expected for the binder to perform

adequately within the limits set by the SuperPaveTM specifications.  The last character

was used to indicate the aging condition of the binder: U for unaged condition, R for

RTFO residue, and P for PAV residue.  For example, 76-22P denotes a Performance

Grade (PG) 76-22 PAV-aged.

Dynamic mechanical analyses (DMA) were performed using a CS Bohlin stress

controlled rheometer with parallel plate configuration at frequencies between 0.01 to 30

Hz and temperatures ranging from 5 to 75°C.  Two sample sizes were used depending

on the testing temperature.  A sample with a 25-mm-diameter and a thickness of 1mm

was used at high temperatures (45 to 75°C) and a sample with an 8-mm-diameter and a

thickness of 2mm was used at intermediate temperatures (5 to 35°C).  This test is used

to measure the linear viscoelastic moduli of asphalt binders in a sinusoidal loading mode

(Christensen et al, 1992).

Dynamic Mechanical Analysis

Prior to the frequency sweeps, the linear viscoelastic range was determined for each

binder-polymer blend by performing strain sweeps over the entire range of temperatures

and specified frequencies.  Strain sweeps were performed at frequencies of 0.01, 0.15,

1.5, and 10 Hz.

In strain-controlled mode, the linear viscoelastic region is assumed when the

complex shear modulus (G*) is above 95% of its initial value at a given frequency and
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temperature (AASHTO, 1994).  A linear viscoelastic material can also be defined as a

material in which the stress is proportional to the strain at a given frequency and

temperature.  Hence, at high service temperatures (45-75°C), modified binders may

behave in the linear viscoelastic region even at a high strain (Figure 2).

FIGURE 2

At intermediate temperatures (5-35°C), however, the stress-strain relationship

indicates a strong susceptibility to the applied strain (Figure 3).  To ensure that

measurements are made in the linear viscoelastic region of response, the applied strain

at intermediate temperatures was defined in very small values to avoid non-

proportionality of the applied strain and resulting stress.  Therefore, the target strains for

5, 15, 25, 35, and 45°C were chosen to be 0.8%, 1%, 2%, 3%, and 6.5%, respectively.

For temperatures of 55°C and above, the target strain was set at 9%.  These values

were established to correspond to greater than 95% of the initial complex shear

modulus, and they are well within the linear range of response as established by

AASHTO TP5 for straight run asphalts.

FIGURE 3

After completing the strain sweeps and establishing the target strains for each

temperature, frequency sweeps were performed on all samples in the unaged and aged

conditions and over the entire range of temperatures.  A total of 34 frequencies were

used ranging from 0.01 to 30 Hz.

To develop a viscoelastic model that may describe the rheological behavior of

asphalt binder over a wide range of loading times, the experimental data measured at
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eight different temperatures were reduced to a reference temperature (25°C) using the

Time-Temperature Superposition Principle.  Shifting was applied to the complex

modulus and its two components simultaneously, resulting in smooth master curves for

the three functions.  The resulting shift factors were then applied to the phase angle.

MODEL FORMULATION

Based on the theory of linear viscoelasticity, the complex shear modulus can be

expressed as a function of the relaxation spectrum H(τ) as follows (Ferry, 1980):

( ) ( ) ln td
? ti1

? ti
tHG?G* e ∫

∞

∞− +
+= (1)

where,

G*(ω) is the complex shear modulus at frequency ω;

Ge is the equilibrium shear modulus;

H(τ) is the relaxation spectrum;

τ is the relaxation time; and

1i −= .

The main problem associated with this equation is that the relaxation spectrum

cannot be directly obtained by any experiment.  Using Equation (1), the following

dimensionless function, ZH(ω), may be defined (Tschoegl, 1989):
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( )
( ) ( )

( )∫

∫
∞
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∞
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where k(ω,τ) is the kernel function.

Using Equation (2), the following relation can be validated:

( ) ( )?Z]G[GGsQ Hegg −−= (3)

where )s(Q is the relaxance in the Laplace domain.

The main advantage of the relaxance, which is a ratio of polynomials in the transform

variable ‘s’, is that any function of interest (e.g., complex shear modulus, phase angle,

etc.) can be directly obtained using well-defined relations.  For instance, the complex

shear modulus (G*) may be obtained from the relaxance using the following substitution:

( ) ? )i(Q)]s(Q[?*G ?is == = (4)

As the corresponding kernel function, the function ZH(ω) (also called Z function)

should range between 1 ≥ ZH(ω) ≥ 0.  As defined by Tschoegl (1989), this function

should be a monotone, non-increasing function of its arguments.  A suitable Z function

must have at least two parameters, one for locating it along the time or frequency axis,

and another to regulate its spread.  Table 1 presents some valid forms for this function.
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In this table, the parameter that controls the location along the frequency axis is denoted

by the same symbol, ω0.  In each model, all other parameters govern the spread of the

function along the frequency axis (i.e., k, c, p, b, and v).

TABLE 1

At the limits of its domain, a suitable Z function should satisfy the following two limits:

1)?Z(lim
0?

=
→

and =
∞→

)?Z(lim
?

0 (5)

Combining Equations (3) and (4), the following equation results:

)?(iZ]G[GG)?(*G Hegg −−= (6)

The equilibrium shear modulus (Ge) for asphalt binder is equal to zero since it has no

preferred undeformed state (viscoelastic liquid).  Therefore, Equation (6) can be

rewritten as follows:

)]?(iZ1[G)?(*G Hg −= (7)

Complex Shear Modulus Model

Based on equation (7), the model development is then reduced to the selection of a

suitable mathematical function ZH(iω) that fulfills the previous set of conditions and

‘matches’ the viscoelastic functions of interest.  Most of the suggested functions are
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derived from their corresponding kernel functions (e.g., Cole-Cole function).

Surprisingly, this approach has been used successfully in fields ranging from ladder

modeling to dielectric constant modeling.  One function of particular interest in the rest of

this formulation is the Havriliak and Negami model, which takes the following form

(Havriliak et al, 1966):

( )
wv

o

*

H
])?? /i(1[

1
?Z

+
= (8)

where,

)(Z*

H
ω  is a dimensionless complex function that takes a value between zero and one;

ω is the reduced frequency;

v and w are model parameters; and

ωo is a reduced frequency value that defines the location along the x-axis.

Figure 4 presents the behavior of this function over a wide range of frequencies.  It can

be seen that this function satisfies the boundary conditions previously stated in Equation

(5).

FIGURE 4

Combining Equations (7) and (8), G*(ω) can be written as follows:

( ) ]
])? /?i(1[

1
1[G?*G

wv

o

g +
−= (9)
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The functions resulting from separating the real and imaginary parts of the complex

shear modulus are not entirely practical due to the mathematical complexity of the

equations (Elseifi, 1999).  Moreover, the complex mathematical equations for the real

and imaginary parts have not resulted in a statistically robust modeling due to the

excessive accumulation of truncation errors.  Consequently, the assumption that |G*| is a

response function that might be formulated similarly results in the following equation by

omitting the complex factor, i, from Equation (9):

( )
















+
−=

wv

0

g

])
?

?(1[

1
1G|?*G| (10)

Direct modeling of the absolute value of the complex shear modulus does not affect the

main assumptions in the formulation as long as the rules for the Z dimensionless

function are validated.  The parameters of this model are as follows:

• v (0-1) that controls the spreading of the model along the x-axis (dimensionless);

• ω0 that defines the location along the x-axis with unity of frequency (rad/sec); and

• w (greater than zero) that defines the location along the y-axis (dimensionless).

Other Z functions were tested (e.g., Cole-Cole function, Kobeko function), but the

Havriliak and Negami function showed the best results for the evaluated problem.

Phase Angle Model

The formulation of the phase angle also uses the previously introduced Z function (the

Havriliak and Negami model), which ranges between zero and unity.  If this function is

multiplied by a scaling factor, 90°, the resulting model ranges between zero and 90°,
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which is the searched range for the phase angle.  The resulting equation takes the

following form (Elseifi, 1999):

w
v

0?
?1

90
)degreesd(












+

= (11)

EVALUATION AND VALIDATION OF PROPOSED MODELS

The model parameters were obtained using a non-linear regression method.  This was

accomplished using the SAS (version 6.12) software package (SAS, 1988).  The

manipulation of the complex shear modulus, which varies over several orders of

magnitude (10 – 109 Pa), often results in an excessive accumulation of the error

components and an overflow in computations.  To avoid these problems, the model was

dealt with in the logarithmic domain, resulting in the following model:

( )[ ] 











+
−+=

wv

0

g

*

? /?1

1
1logGlogGlog (12)

Estimates of the models’ parameters were obtained for all binders in the three aging

stages in order to minimize the Mean Square Error (MSE).  Approximately 250

measurements were available for each fit.  As previously explained, these

measurements were obtained at eight different temperatures and shifted to a 25°C

reference temperature, resulting in a smooth master curve for the complex shear

modulus (|G*|) and phase angle (δ).  Although defined to be in the order of 109 Pa for

most polymeric materials, the glassy shear modulus (Gg) was not kept constant.  A wide
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range of frequencies was used in this study; however, it was not feasible to reach the

glassy region, which is defined as a temperature ranging from –15 to –30°C for most

asphalt binders (Lesueur et al, 1997).  Such temperatures could not be reached with a

dynamic shear rheometer that uses a water bath.

Table 2 summarizes the results of the non-linear regression analysis for the complex

shear modulus.  The obtained values for the glassy shear modulus were relatively close

to the expected value (109 Pa).  The parameter v ranged from zero to unity and tended

to decrease with aging for all binders.  The parameter’s values were not significantly

different due to polymer modification.  The statistical soundness of the fitted models, the

coefficient of determination (R2), and MSE are presented in Table 2.

TABLE 2

Figures 5 and 6 present the comparison between the measured and fitted complex

shear modulus and phase angle, respectively, for the AUX3 unaged binder.

FIGURE 5

FIGURE 6

The proposed model could not accurately simulate the small plateau region observed

in the phase angle master curves of the polymer-modified binders.  However, the

difference between the model prediction and the experimental results of this case was

less than 10%, which is within the range of the expected experimental error in such

tests.  This difference is presented in Figure 7 as a percentage of the measured values

for AUX3.
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FIGURE 7

Storage and Loss Moduli Prediction

The developed models were also used to estimate the storage and loss moduli based on

the following equations:

G' = |G*| cos(δ) (13)

G" = |G*| sin(δ) (14)

As an example, Figure 8 presents the comparison between measured and predicted

storage shear moduli (G’) computed using the proposed models for the AUX3 binder.

This approach indicates that the proposed models can be successfully combined to

estimate other viscoelastic functions (e.g., G’ and G”) with reasonable accuracy.

FIGURE 8

Relaxation Spectrum Prediction

As a final step in the validation of the models, Booij and Palmen’s approximation was

used to evaluate the relaxation spectrum, H(τ) (Booij et al, 1982):

( ) ( ) /t1?

* d]2sin|?G[|
p

1
tH =≈ (15)

This approximation was selected because it has proven to be accurate for polymer

melts when only a small window of relaxation times is sufficient to describe the material

rheological behavior.  When the full relaxation spectrum is needed to describe the

material rheological behavior, a more complex approximation should be used, such as
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the one introduced by Ninomiya and Ferry (1959).  In Figure 9, a comparison is made

between the relaxation spectrum obtained from the experimental data and the one

obtained from the proposed models for AUX3.  As shown in this figure, the proposed

models estimate the relaxation spectrum with reasonable accuracy.

FIGURE 9

PRACTICAL IMPLICATIONS OF THE DEVELOPED MODELS

The developed models can be used to construct master curves for any viscoelastic

function of interest (e.g., complex shear modulus, phase angle, etc.) based on a limited

number of experiments at a few frequencies and/or temperatures.  These master curves

can then be used to predict the binder’s viscoelastic behavior over a wide range of

temperatures and loading times.  Estimates of the model parameters were determined

for commonly used binders in the US (e.g. PG 64-22 and PG 70-22), and may be

considered as guidelines for similar binders.  For other binders, the model parameters

can be determined based on a limited number of tests results.

CONCLUSIONS

This study presents the development of two models to describe the behavior of straight

run and polymer-modified binders in the thermal-rheological simple linear viscoelastic

region.  These models, which characterize the absolute value of the complex shear

modulus (|G*|) and the phase angle (δ), are valid as long as the considered binder obeys

the time-temperature superposition principle.  The models were derived based on the

matching function approach and validated by comparing their predictions to actual
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experimental data.  The presented models are useful when describing the linear

viscoelastic behavior by a small, easily manageable number of parameters.  The

developed models are based on the theory of viscoelasticity; however, the introduction

of the Z function may provide some empiricism to the models.  Thus, if one of these

mathematical models adequately describes the response of a linear viscoelastic material

to a given excitation, it may not be used to describe another type of excitation.  For

example, if a model accurately describes the response to a shear excitation, the same

model may not describe a normal excitation.  In applications such as asphalt rheology, in

which interconvertibility is not a major issue, the simplicity and accuracy at a given

excitation of these models justify their applications.  Based on the model formulation and

the validation steps, the following conclusions can be drawn:

• The proposed model for the complex shear modulus is adequate to describe the

linear viscoelastic behavior of asphalt binders.

• The phase angle model is found to adequately describe unmodified binders with a

small percentage of errors (less than 5%).  Although, the model is unable to

accurately simulate the plateau region found in polymer-modified binders, the error in

this case is relatively small (less than 10%).

• The two models performed well together; their ability to estimate other viscoelastic

functions (e.g., storage and loss shear moduli, relaxation spectrum) is adequate.
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TABLE 1 Matching functions of the Z-type

Function Name Form Field introduced

Kohlrausch (1863)
( ) ]? /?exp[)?Z(

k

0−= Torsion of Glass

Fibers

Cole-Cole (1941) ( )c

0? /?1

1
)?Z(

+
=

Complex Dielectric

Constant

Hyperbolic Tangent

Function

( )p

0? /?tanh)?Z( = Ladder Modeling

Kobeko Function

(1937)
b

0 )/??(1

1
)?Z(

+
= Dielectric Constant

Havriliak and Negami

(1966)
( ) wv

0 ]? /?[1

1
)?Z(

+
=

Dielectric Constant
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TABLE 2 Estimated parameters for the complex shear modulus from least square

analysis

Binder v w
ω0

(r/s)

Log

(Gg)

R2 MSEb SSEa

AUD3 0.83 0.008 31.65 9.0459 0.99 0.0092 2.3274

AUD4 0.80 0.001 55.42 9.6332 0.99 0.0076 1.9119

AUD5 0.76 0.002 54.49 9.7103 0.99 0.0066 1.5921

ARD3 0.79 0.005 19.91 9.0871 0.99 0.0078 1.9302

ARD4 0.74 0.009 27.41 8.9909 0.99 0.0078 1.8733

ARD5 0.70 0.014 35.00 8.9466 0.99 0.0045 1.0498

APD3 0.59 0.017 10.44 9.0362 0.99 0.0039 0.8504

APD4 0.65 0.015 14.55 9.0059 0.99 0.0045 1.0484

APD5 0.62 0.016 17.85 8.9699 0.99 0.0040 0.9482

64-22U 0.91 0.002 100.3 9.6105 0.99 0.0059 1.4954

70-22U 0.84 0.009 58.66 8.9411 0.99 0.0093 2.3249

76-22U 0.72 0.010 524.4 9.3732 0.99 0.0020 0.5163

64-22R 0.87 0.009 40.96 9.0852 0.99 0.007 1.8939

70-22R 0.78 0.009 32.45 9.0809 0.99 0.0096 2.2341

76-22R 0.67 0.010 504.3 9.5259 0.99 0.0008 0.1948

64-22P 0.76 0.008 10.45 9.2060 0.99 0.0090 2.1018

70-22P 0.91 0.019 103.7 8.7341 0.99 0.0045 1.1401

76-22P 0.59 0.008 173.4 9.5880 0.99 0.0006 0.1610
a SSE: Sum square errors of Log(|G*|)

b MSE: Mean square error of Log(|G*|)
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FIGURE 1 Causal diagram for the binder viscoelastic system
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FIGURE 2 Strain sweep of unaged binder with 3 percent SBS modifier at high

temperatures (1.5 Hz)
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FIGURE 3 Stress-strain relationship for unaged binder with 3 percent SBS modifier at

intermediate temperatures (1.5 Hz)



24

0

0.2

0.4

0.6

0.8

1

1.2

1.E-06 1.E-03 1.E+00 1.E+03 1.E+06 1.E+09 1.E+12 1.E+15

Frequency (rad/sec)

Z(w)

FIGURE 4 The Havriliak and Negami model
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FIGURE 5 Comparison between the measured complex shear modulus for AUX3 and

results of the proposed model
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FIGURE 6 Comparison between the measured phase angle for AUX3 and the proposed

model
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FIGURE 7 Percentage difference between the measured and fitted phase angle for

AUX3
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FIGURE 8 Comparison between the measured storage shear modulus and predicted

values of the proposed models for AUX3
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FIGURE 9 Comparison between the relaxation spectrums obtained from the

experimental data and from the proposed models for AUX3


