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RESEARCH ARTICLE Open Access

Free energy estimation of short DNA duplex
hybridizations
Dan Tulpan1*, Mirela Andronescu2, Serge Leger1

Abstract

Background: Estimation of DNA duplex hybridization free energy is widely used for predicting cross-hybridizations
in DNA computing and microarray experiments. A number of software programs based on different methods and
parametrizations are available for the theoretical estimation of duplex free energies. However, significant differences
in free energy values are sometimes observed among estimations obtained with various methods, thus being
difficult to decide what value is the accurate one.

Results: We present in this study a quantitative comparison of the similarities and differences among four
published DNA/DNA duplex free energy calculation methods and an extended Nearest-Neighbour Model for
perfect matches based on triplet interactions. The comparison was performed on a benchmark data set with 695
pairs of short oligos that we collected and manually curated from 29 publications. Sequence lengths range from 4
to 30 nucleotides and span a large GC-content percentage range. For perfect matches, we propose an extension
of the Nearest-Neighbour Model that matches or exceeds the performance of the existing ones, both in terms of
correlations and root mean squared errors. The proposed model was trained on experimental data with
temperature, sodium and sequence concentration characteristics that span a wide range of values, thus conferring
the model a higher power of generalization when used for free energy estimations of DNA duplexes under non-
standard experimental conditions.

Conclusions: Based on our preliminary results, we conclude that no statistically significant differences exist among
free energy approximations obtained with 4 publicly available and widely used programs, when benchmarked
against a collection of 695 pairs of short oligos collected and curated by the authors of this work based on 29
publications. The extended Nearest-Neighbour Model based on triplet interactions presented in this work is
capable of performing accurate estimations of free energies for perfect match duplexes under both standard and
non-standard experimental conditions and may serve as a baseline for further developments in this area of
research.

Background
Predicting the stability of a DNA duplex from base

sequences is a well studied problem nowadays. Never-

theless, the accuracy of DNA duplex stability predictions

largely varies with sequence length, base composition

and experimental conditions. The Thermodynamic

Nearest-Neighbour (TNN) Model [1] is a state-of-the-

art approach that is used to estimate the stability of a

single or a pair of DNA (or RNA) molecules based on

pairwise base interactions and structural conformations.

A large collection of thermodynamic nearest-neighbour

parameters were acquired by interpolation of results

obtained from various experimental processes like NMR

[2] and optical melting studies [1,3]. The accuracy of

computing free energies for DNA duplexes is an impor-

tant aspect for all prediction methods, considering their

direct application for selecting, for example, microarray

probes that perfectly hybridize with their complements

within a pre-specified hybridization interval, while

avoiding self-hybridization for each probe [4]. Here we

select four widely used, publicly available computer pro-

grams that implement the TNN Model using large num-

bers of experimentally derived thermodynamic

parameters, namely: the MultiRNAFold v2.0 package

[5,6] with two sets of thermodynamic parameters, the
* Correspondence: dan.tulpan@nrc-cnrc.gc.ca
1National Research Council of Canada, Institute of Information Technology,
100 des Aboiteaux Street, Suite 1100, Moncton, NB, E1A 7R1, Canada

Tulpan et al. BMC Bioinformatics 2010, 11:105

http://www.biomedcentral.com/1471-2105/11/105

© 2010 Tulpan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:dan.tulpan@nrc-cnrc.gc.ca
http://creativecommons.org/licenses/by/2.0


Vienna Package v1.8.1 [7] and the UNAFold v3.5 pack-

age [8].

The MultiRNAFold package (including the PairFold

program for duplexes) predicts the minimum free

energy, suboptimal secondary structures and free energy

changes of one, two, or several interacting nucleic acid

sequences. The thermodynamic model for the thermo-

dynamic stability of a joint secondary structure for two

DNA or RNA molecules at a given temperature is

performed similarly to that of a single molecule [9],

except that an intermolecular initiation penalty is added.

The PairFold algorithm uses dynamic programming to

calculate minimum free energy secondary structures and

runs in time cubic in the lengths of the input sequences

(Θ(n3)). PairFold uses RNA thermodynamic parameters

from the Turner Laboratory [10] and DNA thermody-

namic parameters from the Mathews and SantaLucia

laboratories [11,12].

The Vienna Package consists of a suite of computer

programs and libraries for prediction of RNA and DNA

secondary structures. Nucleic acid secondary structure

prediction is done via free energy minimization using

three dynamic programming algorithms for structure

prediction: the minimum free energy algorithm of [13],

which produces a single optimal structure, the partition

function algorithm of [14], which calculates base pair

probabilities in a thermodynamic ensemble, and the

suboptimal folding algorithm of [15], which generates all

suboptimal structures within a given energy range of the

optimal energy.

UNAFold, the acronym for “Unified Nucleic Acid

Folding”, is a software package for RNA and DNA fold-

ing and hybridization prediction. UNAFold folds single-

stranded RNA or DNA, or two single DNA or RNA

strands, by computing partition functions for various

states of hybridization. The partition functions will then

help to derive base pair probabilities and stochastic sam-

ples of foldings or hybridizations. The package provides

various energy minimization methods, which compute

minimum free energy hybridizations and suboptimal

foldings.

All three packages use similar dynamic programming

algorithms for prediction of minimum free energy

(MFE) and suboptimal structures and for partition func-

tion calculations. For the purposes of our work

(i.e., DNA duplex MFE secondary structure prediction

and free energy of hybridization), the main differences

lie in the thermodynamic parameters used (SantaLucia

or Mathews), and in the features considered (for exam-

ple, the Vienna Package does not consider special types

of poly-C hairpin loops in their model, whereas the

other two packages do). Thus our first goal is to quan-

tify the impact of these differences on the accuracy of

DNA duplex free energy approximations. Throughout

the paper, we use a set of measures that reflect the

degree of similarity of calculated and experimental sec-

ondary structures and free energies. Based on these

measures we quantify the accuracy of the predictions of

the aforementioned programs using a collection of 695

experimental DNA duplex data that we collected from

29 publications.

We also introduce in this work an extended Nearest-

Neighbour Model for perfect matches based on triplet

interactions, that can approximate free energies for

DNA duplexes under a wide range of temperatures,

sodium and sequence concentrations. The model is

similar to the one introduced in 1999 by Owczarzy et al.

[16], the main difference residing in the inclusion of

only triplet interactions for our model, rather than a

mixture of singlets, doublets and triplets for the other.

Thus, our second goal is to show that such a model

outperforms simpler models based on doublet interac-

tions and produces more accurate free energy approxi-

mations for DNA duplex hybridizations occurring in

non-standard experimental environments (for example

for different sodium concentrations or at different

temperatures).

Results and Discussion
In this work, we compare similarities and correlations of

free energy values calculated using three publicly avail-

able packages, namely MultiRNAFold, UNAFold and

Vienna Package and a Nearest-Neighbour (NN) Model

for perfect matches based on triplet interactions. For

this purpose, we collected and used a data set with 695

pairs of short DNA sequences and we investigated what

method produces the closest value to the experimental

free energy and under what circumstances. We acknowl-

edge the fact that not all sequence lengths are equally

represented in the benchmark data set simply due to

their availability and thus our analysis may apply better

to shorter sequences. The majority (91.37%) of experi-

mental free energy calculations were obtained for

perfect (0 mismatches) and almost perfect matches

(1 mismatch), thus the current DNA parameter sets

tend to have higher accuracy for close-to perfect match

DNA duplexes. Another bias in the analysis may come

from the fact that some authors have already tried to

reconcile the existing differences in free energy model

parameters [17,18] by optimizing sets of DNA para-

meters using the same sequences already present in the

benchmark data set.

Comparison of absolute differences between

experimental and estimated free energies (MFE_AD)

We begin the presentation of our results by introducing

a measure that provides insights into “worst” and “best”

estimates for minimum free energies. Thus, the first
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comparison involves the absolute differences between

experimental and estimated free energies (MFE_AD)

among all the methods for model evaluation (column 3

in Table 1) and model prediction (column 3 in Table 2).

In an ideal scenario, the estimated free energy would

equal the experimentally inferred one, nevertheless in

practice we would settle for a low absolute difference. In

both scenarios, namely the evaluation of free energy

estimates and the evaluation of secondary structure pre-

dictions, the largest maximal MFE_AD (18.4 kcal/mol in

both) were obtained for the PairFold-Mathews method,

while the minimal MFE_AD (13 kcal/mol for EVAL-FE

and 11.88 kcal/mol for EVAL-SS) corresponds to the

UNAFold method (see Methods for details). The average

differences for the EVAL-FE methods range between

2.41 kcal/mol (UNAFold) and 3.16 kcal/mol (Vienna

Package), while for the prediction methods the interval

is slightly shifted towards zero. We also observed a simi-

lar improvement trend for MFE_AD standard deviations

of EVAL-SS methods versus EVAL-FE methods, a phe-

nomenon that can be explained by the intrinsic regres-

sion-based construction of the underlying DNA

parameters used by each method.

Comparison of root mean squared errors (RMSE)

We measure the root mean squared error between

experimentally determined and predicted free energies.

In an ideal scenario where predicted values equal experi-

mental values, the RMSE would be zero, thus the lower

the RMSE value is, the closer the predicted values are to

the experimental ones. Here, all methods produce com-

parably low RMSEs, the lowest EVAL-FE RMSE (3.876)

Table 1 Summary of features for the data sets used in this study

Set Num. duplexes Seq. len. T [C] [Na]+ [M] Seq. conc. [M]

Aboul-ela et al. [32] 34 16 25, 50 1 [11e-6,440e-6]

Allawi et al.-1 [37] 24 9 - 12 37 1 1e-4

Allawi et al.-2 [20] 28 9 - 14 37 1 1e-4

Allawi et al.-3 [21] 22 9 - 14 37 1 1e-4

Bommarito et al. [43] 37 8 - 9 37 1 n.r.

Breslauer et al. [26] 12 6 - 16 25 1 n.r.

Clark et al. [44] 1 24 37 0.15 2.5e-6

Doktycz et al. [19] 140 8 25 1 2e-6

Gelfand et al. [45] 4 13 25 1 5e-5

LeBlanc et al. [46] 7 10 - 11 25 1 5e-5

Leonard et al. [22] 5 12 25 1 4e-4

Lesnik et al. [39] 14 8 - 21 37 0.1 4e-6

Li et al. [23] 12 8 - 10 25 1 6.1e-6

Nakano et al. [40] 21 6 - 14 37 0.1 8e-6

Petruska et al.-1 [47] 4 9 37 n.r. n.r.

Petruska et al.-2 [36] 2 30 37 0.17 1e-4

Peyret et al. [48] 52 9 - 12 37 1 1e-4

Pirrung et al. [49] 2 25 25 0.1 1e-6

Plum et al. [50] 2 13 25 1 6e-6

Ratmeyer et al. [51] 2 12 37 1 6e-6

SantaLucia et al.-1 [29] 23 4 - 16 37 1 4e-4

SantaLucia et al.-2 [29] 10 12 24.85 1 5e-6

Sugimoto et al.-1 [30] 50 5 - 14 37 1 5e-6

Sugimoto et al.-2 [38] 1 8 37 n.r. 1e-4

Sugimoto et al.-3 [52] 8 6 - 8 37 1 n.r.

Tanaka et al. [34] 126 12 - 25 37 1 5e-5

Tibanyenda et al. [33] 3 16 24.85 1 17.5e-6

Wilson et al. [35] 3 11 25 0.4 n.r.

Wu et al. [53] 48 5 - 11 25, 37 1 1e-4

TOTAL: 695

Each data set has the following characteristics: the number of sequence pairs (Num. duplexes), the length of the sequences (Seq. len), the experimental

temperature measured in degrees Celsius for estimating free energies (T), the sodium concentration measured in molar units ([Na]+)and the sequence

concentration (Seq. conc). The set of 695 DNA duplexes contains: (i) 143 perfect match free energies measured at a temperature of 37°C and a sodium

concentration of 1 M, (ii) 197 perfect match duplexes measured at a temperature of 25°C and a sodium concentration of 1 M, (iii) 7 perfect match duplexes

measured at a temperature of 50°C and a sodium concentration of 1 M, and (iv) 348 duplexes with mismatches measured at various temperatures and sodium

concentrations. Note: n.r. denotes values that have not been reported in the original documents.
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and EVAL-SS RMSE (3.667) being obtained in both cases

with Vienna Package (column 5 in Tables 3 and 4).

Comparison of Pearson correlation coefficients (r)

A correlation coefficient is traditionally defined as a

symmetric, scale-invariant measure of association

between two random variables, which takes values

between -1 and 1. The extreme values indicate a perfect

positive (1) or negative (-1) correlation, while 0 means

no correlation. Positive Pearson Product Moment corre-

lations are observed for all methods when experimental

and evaluated or predicted free energies are considered

as random variables. The highest Pearson correlation

coefficients (~ .75 and ~ .77) are consistently obtained

with the PairFold-SantaLucia method for both EVAL-FE

and EVAL-SS, closely followed by UNAfold, Vienna

Package and PairFold-Mathews. A major and consistent

deviation from the correlation line of approximately 8

Kcal/mol for the data collected from Doktycz et al. [19]

and a few other minor deviations for the data collected

from four additional publications [20-23] were consis-

tently noticed for all free energy calculation methods

(see Figures 1 and 2). The majority of the deviations (e.g.

Doktycz et al. [19]) may come from potentially different

free energy interpolation functions used in those studies.

If we consider only perfect match data, the TNN-Tri-

plets-PM Model (see Methods) is capable of estimating

free energies that correlate better (r = 0.92) with experi-

mental values (see Figure 3), than all the other methods,

which show an average correlation coefficient r = 0.68.

We notice also an improvement in the RMSE for the

TNN-Triplets-PM Model, compared to the other pro-

grams. To ensure that this improvement is due to the tri-

plet aspect of the model rather than other confounding

factors, we created a TNN-Doublets-PM Model that has

been trained and evaluated on the same perfect match

data set. A detailed description of the training and evalua-

tion procedure is provided in Tables 5 and 6. For the com-

plete data set with perfect matches measured at various

temperatures and buffer concentrations, Figures 4, 5, 6, 7,

Table 2 Summary of results for free energy measurements obtained with EVAL-SS methods

Method Stats MFE_AD [kcal/mol] Pearson coeff. (r) SSSI Sens. PPV F-measure

MultiRNAFold min 0.000 0.7565 4.35 40.00 0.1667 1 0.2857

(Mathews) q1 0.340 100.00 1.0000 1 1.0000

median 0.860 100.00 1.0000 1 1.0000

mean 2.681 95.83 0.9547 1 0.9711

q3 3.590 100.00 1.0000 1 1.0000

max 18.400 100.00 1.0000 1 1.0000

stddev 3.429 10.56 0.1224 0 0.09236

MultiRNAFold min 0.000 0.7663 4.131 40.00 0.1667 1 0.2857

(SantaLucia) q1 0.330 100.00 1.0000 1 1.0000

median 0.720 100.00 1.0000 1 1.0000

mean 2.528 96.44 0.9608 1 0.9747

q3 3.510 100.00 1.0000 1 1.0000

max 17.200 100.00 1.0000 1 1.0000

stddev 3.269 10.23 0.1189 0 0.08966

min 0.000 0.7660 3.992 40.00 0.1667 1 0.2857

q1 0.256 100.00 1.0000 1 1.0000

median 0.630 100.00 1.0000 1 1.0000

UNAFold mean 2.374 96.08 0.9571 1 0.9724

q3 3.016 100.00 1.0000 1 1.0000

max 11.880 100.00 1.0000 1 1.0000

stddev 3.212 10.66 0.1231 0 0.09234

Vienna min 0.010 0.7630 3.667 5.882 0.0000 0.0000 0.0000

Package q1 1.700 100.000 1.0000 1.0000 1.0000

median 2.330 100.000 1.0000 1.0000 1.0000

mean 3.025 95.210 0.9467 0.9856 0.9616

q3 3.935 100.000 1.0000 1.0000 1.0000

max 15.400 100.000 1.0000 1.0000 1.0000

stddev 2.075 13.74 0.1581 0.1192 0.1387

Summary of results for free energy measurements obtained with EVAL-SS methods. The p-values for the Pearson correlation test were less than 2.2e-16 in all

cases.
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8 and 9 show that our TNN-Triplets-PM Model consis-

tently produces better correlations and RMSEs, when we

run a random design experiment using 10 000 randomly

selected subsets with 67% duplexes (228 perfect match

duplexes) used for training and 33% duplexes (112 perfect

match duplexes) used for testing. The same high correla-

tions can be observed when running the TNN-Triplets-

PM Model on perfect match duplex free energies mea-

sured at a temperature of 25°C and 1 M sodium concen-

tration, while for perfect match free energies measured at

37°C and 1 M sodium concentration, the other models

produce better but still comparable correlations (0.9) and

RMSEs (0.7) with the TNN-Triplets-PM Model.

Comparison of secondary structure similarity indexes of

experimental and predicted secondary structures (SSSI)

The accuracy of secondary structure prediction for various

methods can be evaluated by using the newly introduced

measure described in equation 5. The SSSI measure sim-

ply calculates the percentage of correctly predicted sec-

ondary structure bonds corresponding to the positions in

each secondary structure (corresponding to each sequence

in the duplex) that match the position in the experimental

secondary structure, normalized by the sum of sequence

lengths. Comparable mean SSSI values were produced by

all methods with a maximal value of 96.44% attained by

PairFold-SantaLucia. The lowest value (95.21%) was

obtained with Vienna Package (see column 6 in Table 2).

All methods have large standard deviation for SSSI values,

thus suggesting a wide sample distribution.

Comparison of SENS, PPV and F for predicted secondary

structures

The analysis of the variation for sensitivities and F-mea-

sures with respect to sequence length and GC content per-

centages reveals a common pattern for all prediction

methods. Mean sensitivities higher than 0.9 and mean F-

measures higher than 0.95 were obtained for all methods

and all sequence lengths with one exception. For

sequences of length 10 a major drop in sensitivities and F-

measures can be observed (see Figures 10 and 11). The

main cause for the abrupt drop in sensitivities seem to

apply mostly for sequences whose experimentally deter-

mined secondary structures contain two consecutive mis-

matches (collected from [23]), thus partially supporting

the hypothesis that the prediction models under investiga-

tion seem to be optimized to produce better results for

almost complementary pairs of DNA sequences. Next we

look at how GC content % impacts the accuracy of predic-

tion for the methods under consideration. While sensitiv-

ities and F-measures are higher than 0.9 for all methods

for a wide range of GC content % intervals (e.g. 0% -10%,

40% - 100%), there are values for which sensitivities and F-

measures drop under 0.9 for sequences with GC content

percentages in the range 10% - 40%. While Pairfold-Math-

ews, Pairfold-SantaLucia and UNAFold generate predic-

tions with sensitivities higher than 0.9 for sequences with

GC content percentages in the range 20% - 30%, the

Vienna Package has a mean sensitivity of only 0.8. For 3

out of 4 methods, the PPV equals 1 (maximum), while for

the remaining one, namely the Vienna Package slightly

lower mean values (0.98) were obtained.

Comparison of free energy parameters for DNA doublets

measured at 37°C and 1 M sodium concentration

Table 2 presents the estimated free energy parameters

for DNA doublets measured at 37°C. The set of 10

parameters corresponds to the best set obtained with

the procedure explained in Table 6. We compared our

set of NN free energy parameters at 37°C with eight

other sets of parameters reported by SantaLucia [18],

namely the sets obtained by Gotoh [24], Vologodskii

Table 3 Summary of results for free energy

measurements obtained with EVAL-FE methods

Method Statistics MFE_AD [kcal/
mol]

Pearson coeff.
(r)

RMSE

MultiRNAFold min 0.0000 0.7352 4.418

(Mathews) q1 0.300

median 0.800

mean 2.672

q3 3.395

max 18.400

stddev 3.521

MultiRNAFold min 0.0000 0.7456 4.223

(SantaLucia) q1 0.330

median 0.680

mean 2.553

q3 3.390

max 17.200

stddev 3.367

min 0.0000 0.7434 4.101

q1 0.2528

median 0.6128

UNAFold mean 2.4110

q3 2.9970

max 13.0000

stddev 3.319

Vienna min 0.0000 0.7413 3.876

Package q1 1.820

median 2.440

mean 3.167

q3 3.965

max 15.400

stddev 2.236

Summary of results for free energy measurements obtained with EVAL-FE

methods. The p-values for the Pearson correlation test were less than 2.2e-16

in all cases.
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Table 4 Estimated free energy parameters

ID Doublet
ΔGo

37
[kcal/mol]

Counts ID Doublet
ΔGo

37
[kcal/mol]

Counts

1. AA/TT -0.838948 84 6. CC/GG -1.698997 74

2. AC/TG -1.394988 102 7. CG/GC -0.967002 106

3. AG/TC -1.323547 102 8. GA/CT -0.938327 101

4. AT/TA -0.375235 130 9. GC/CG -0.711466 126

5. CA/GT -1.406794 95 10. TA/AT -0.144092 136

ID Triplet ΔGo
37

[kcal/mol] Counts ID Triplet ΔGo
37

[kcal/mol] Counts

1. AAA/TTT -0.844597 10 17. CAG/GTC -1.625284 23

2. AAC/TTG -1.841904 19 18. CCA/GGT -1.568813 18

3. AAG/TTC -1.201194 17 19. CCC/GGG -2.396507 17

4. AAT/TTA -0.991596 19 20. CCG/GGC -1.888906 22

5. ACA/TGT -1.121939 20 21. CGA/GCT -1.668273 19

6. ACC/TGG -1.793995 23 22. CGC/GCG -2.195726 23

7. ACG/TGC -1.615048 30 23. CTA/GAT -0.871636 40

8. ACT/TGA -0.781693 23 24. CTC/GAG -1.198450 16

9. AGA/TCT -1.103536 15 25. GAA/CTT -1.317278 18

10. AGC/TCG -1.528461 36 26. GAC/CTG -1.498999 29

11. AGG/TCC -1.323278 18 27. GCA/CGT -1.454430 21

12. ATA/TAT -0.562379 46 28. GCC/CGG -1.973081 24

13. ATC/TAG -1.157521 29 29. GGA/CCT -1.696158 20

14. ATG/TAC -1.263601 26 30. GTA/CAT -1.158422 32

15. CAA/GTT -0.988509 16 31. TAA/ATT -0.519499 27

16. CAC/GTG -2.088824 17 32. TCA/AGT -1.042342 19

Estimated free energy parameters for unique DNA NN doublets and triplets and their corresponding counts of appearance in the perfect match data set. All

parameters have been estimated using experimental values measured at 37°C and 1 M sodium concentration.

Figure 1 Correlation plot for the evaluation of free energy estimates (EVAL-FE) obtained with MultiRNAFold (with SantaLucia

parameters) versus experimental free energies. The correlation of free energy estimates for all 695 DNA duplexes are represented. The plot

depicts with different symbols and colors the source for each data point.
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[25], Breslauer [26], Blake [27], Benight [28], SantaLucia

[29], Sugimoto [30] and the Unified set [31]. Our set of

NN thermodynamic doublet parameters summarized in

Figure 12 differs from the unified parameters by less

than 0.5 kcal/mol in 8 out of 10 cases. We also notice

that our NN set follows in general the reported qualita-

tive trend in order of decreasing stability: GC/CG =

CG/GC > GG/CC > CA/GT = GT/CA = GA/CT = CT/

GA > AA/TT > AT/TA > TA/AT with one exception,

namely GG/CC has a higher weight than GC/CG and

CG/GC, an effect that could be caused by the low

representation of the GG/CC doublets in the training

set and by the absence of duplex initiation parameters

in our model.

Conclusions
In this work we showed that no major differences exist

among free energy estimations of short DNA duplex

hybridization when comparing four publicly available

programs that employ various sets of thermodynamic

parameters.

Here we introduce a simplified TNN Model based on

triplets interactions for perfect match hybridizations of

DNA duplexes. The model is able to approximate free

energies for DNA duplexes under various experimental

conditions with higher accuracy and lower RMSEs

compared to the four publicly available programs con-

sidered in this work. The improvement is more notice-

able for DNA duplexes at non-standard experimental

temperature conditions (for example at 25°C). This

improvement obtained with the TNN Model based on

triplets could be explained by the presence of a larger

set of parameters consisting of 32 unique triplets

(compared to only 10 unique doublets in the classical

TNN Model) that better capture the impact of

sequence components on the overall free energy of a

DNA duplex. An alternative and potential complemen-

tary explanation of these improvements is the use of a

wider variety of experimental data points in the ther-

modynamic parameter extrapolation process (the

model training stage) compared to the smaller and less

diverse data sets used in the other four programs.

Nevertheless, we notice that additional experimental

data employing longer and more diverse sequences is

required in order to obtain a better approximation of

free energies for DNA duplexes at other non-standard

experimental conditions.

Three extensions of the TNN-Triplets-PM Model

might improve its performance, given that additional

experimental data that covers a higher percentage of the

parameters and experimental condition combinations is

obtained experimentally: (i) the model can incorporate

Figure 2 Correlation plot for the evaluation of secondary structure predictions (EVAL-SS) obtained with MultiRNAFold (with

SantaLucia parameters) versus experimental free energies. The correlation of free energies for predicted secondary structures for all 695
DNA duplexes are represented. The plot depicts with different symbols and colors the source for each data point.
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weighted additive terms that account for hybridization

initialization, temperature, pH, sodium concentration or

sequence concentrations; (ii) the model can incorporate

symmetrical and asymmetrical internal loops, multi-

branch loops, dangling ends and hairpin rules similar to

those already existent in the classical TNN Model; (iii)

the model can also incorporate positional dependencies

of triplets with respect to the 5’ and 3’ ends of the

sequences.

Methods
The present study is divided into two major sections:

• Evaluation of free energy estimates (EVAL-FE):

a comparative assessment of free energies calculated

for DNA duplexes using different methods when

both the duplex sequence and the duplex experi-

mental secondary structure are given.

• Evaluation of secondary structure predictions

(EVAL-SS): an accuracy assessment of secondary

structure predictions when only the duplex sequence

is given and the secondary structure is predicted.

Data

The benchmark data set used in this work consists of 695

experimental free energies and secondary structures for

DNA duplexes, including 340 perfect matches and 355

imperfect matches. We collected these data from 29 pub-

lications and we present its characteristics in Table 1. We

must mention that a total of 42 DNA duplexes were

removed from the original data set (with 737 DNA
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Figure 3 Correlation plots for estimated versus experimental free energies of perfect matches. Each correlation plot consists of 340 data
points corresponding to all perfect match duplexes covering all temperatures, sequence and sodium concentrations. The top left plot depicts

the correlation between experimental free energies and free energies estimated by MultiRNAFold with SantaLucia parameters. The Pearson

correlation equals 0.6917 and the RMSE is 5.35. The bottom left plot depicts the correlation between experimental free energies and free

energies estimated by MultiRNAFold with Mathews parameters. The Pearson correlation equals 0.6711 and the RMSE is 5.56. The top middle plot
depicts the correlation between experimental free energies and free energies estimated by UNAFold. The Pearson correlation equals 0.6808 and

the RMSE is 5.35. The bottom middle plot depicts the correlation between experimental free energies and free energies estimated by Vienna

Package. The Pearson correlation equals 0.6785 and the RMSE is 4.31. The top right plot depicts the correlation between experimental free

energies and free energies estimated by the TNN-Doublets-PM Model. The Pearson correlation equals 0.8466 and the RMSE is 3.15. The bottom
right plot depicts the correlation between experimental free energies and free energies estimated by the TNN-Triplets-PM Model. The Pearson

correlation equals 0.9221 and the RMSE is 2.20.

Table 5 Model training

Require: A thermodynamic model T, an input set S with perfect match
DNA duplexes.

Ensure: An optimal set of thermodynamic DNA parameters X for the
input model

1: Initialize counts matrix F with zeros for all unique doublets/triplets

2: Initialize results matrix R with experimentally approximated free
energies for each duplex

3: for i = 0 to ||S|| do

4: Count unique doublets/triplets in duplex S[i] and update F

5: end for

6: Solve the equation X = arg minX (F × X - R)2

7: return X

Tulpan et al. BMC Bioinformatics 2010, 11:105
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duplexes - see Additional file 1) because the ctEnergy

function from UNAFold failed to produce valid free ener-

gies, due to the lack of DNA parameters for mismatches.

The removed data corresponds to 30 duplexes from [31],

4 duplexes from [32], 4 duplexes from [33], 2 duplexes

from [34] and 2 duplexes from [35]. The lengths of DNA

sequences in the data set range from 4 nucleotides [29]

to 30 nucleotides [36], some of them (length 8 and 9)

being over represented (see Figure 13).

The GC-content (%) of the sequences in the benchmark

data set (see Figure 14) cover the whole spectra from

0% to 100%, with a dominant peak at 50%.

Sequence concentrations range from 17.5 × 10-6 M in

[33] to 10-4 M in [20,21,31,37,38]. The sodium concen-

tration varies from 0.1 M in [39] and [40] to 1 M in 20

out of 29 sources. The reported free energies were mea-

sured at reaction temperatures ranging between 24.85°C

[33,41] and 50°C [32].

Free energy calculations

In this study, three publicly available packages were used

to calculate and compare the free energies for pairs of

short DNA sequences: MultiRNAFold (with Mathews

and SantaLucia parameters), UNAFold and the Vienna

Package. All packages implement the TNN Model based

on base doublet parameters.

The basic free energy calculations implemented in

MultiRNAFold and Vienna Package are performed

according to the Gibbs equation:

Δ Δ ΔG H T ST
o o o

= − ⋅ (1)

where G° is the free energy measured, H° is the

enthalpy, T is the absolute temperature measured in

degrees Kelvin and S° is the entropy.

For a general two-state transition process of the type

A + B ⇌ AB at equilibrium, the free energy change is

calculated as follows:

ΔG R T ln ko
= − ⋅ ⋅ ( ) (2)

where R is the gas constant (1.98717 cal/(mol K)), T is

the absolute temperature, and k is the equilibrium

constant.

Computational procedures

The two main sections of this study, namely the evalua-

tion of free energy estimates and the evaluation of sec-

ondary structure predictions, employ computational

procedures made available in the corresponding software

packages. The evaluation of free energy estimates

(EVAL-FE) includes the following procedures:

• The function free energy pairfold (sequence1,

sequence2, known structure) is provided by the Mul-

tiRNAFold package to compute the free energy for

two sequences when the known secondary structure

is given. The pairfold wrapper has been slightly

modified to accept as parameters: two sequences,

the temperature, the set of parameters (Mathews or

SantaLucia), the nucleic acid (DNA or RNA) and the

type of hybridization (with or without intra-molecu-

lar interactions between nucleotides).

• The function RNAeval is provided by the Vienna

Package to compute the free energy for two

sequences when the known secondary structure is

provided. We wrote a Python wrapper that calls this

function with the following parameters: -T tempera-

ture, -P dna.par. The wrapper also pre-processes the

sequence and structure input so to satisfy the inter-

activity requirements of the RNAeval function.

• The function ctEnergy is provided by the UNAFold

Package to compute the free energy for two

sequences when the known secondary structure is

given. We wrote a Python wrapper that pre-

processes the sequences and structures into a CT-

formatted input file and calls the function with the

following parameters: -n DNA, -t temperature, -N

sodium concentration.

The evaluation of secondary structure predictions

(EVAL-SS) includes the following procedures:

• The function pairfold mfe (sequence1, sequence2,

output structure) is provided by the MultiRNAFold

package to compute the minimum free energy sec-

ondary structure for two DNA sequences that fold

into ’output structure’. The pairfold wrapper has

been slightly modified as described above.

Table 6 Model evaluation

Require: A thermodynamic model T, an input set S with perfect match
DNA duplexes.

Ensure: Vectors of Pearson correlations ( rv ) and root mean square
errors ( RMSEv ) for all duplexes.

1: Initialize correlations vector rv = []
2: Initialize root mean square errors vector RMSEv = []
3: for i = 0 to 10 000 do

4: Training set TrS = 67% of randomly chosen data from S

5: Testing set TeS = remaining 33% of data from S

6: Train model T on data in TrS

7: Compute r and RMSE for each data point in TeS

8: rv i r[ ] =

9: RMSEv i RMSE[ ] =

10: end for

11: return vectors rv and RMSEv

Tulpan et al. BMC Bioinformatics 2010, 11:105
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• The function RNAcofold is provided by the Vienna

Package to predict the free energy secondary struc-

ture for two sequences. A wrapper has been created

for this function to accommodate the input and the

parameters for the interactive interface as described

above.

• The script UNAFold.pl is provided by the UNA-

Fold Package to predict the free energy secondary

structure for two sequences. We wrote a Python

wrapper that pre-processes the sequences and

structures into a CT-formatted input file and calls

the function with the same parameters as for the

ctEnergy function.

The TNN-Triplets-PM Model

For the case when only free energies for perfect matches

are evaluated, we explore an approach that extends the

classical TNN Model by looking at base triplets. A simi-

lar approach was introduced in 1999 by [16]. For the
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Figure 4 Box plots for Pearson correlations (r) corresponding to all 340 perfect match duplexes. The figure represents box plots for

Pearson correlation coefficients for all 340 perfect match duplex free energies measured at various temperatures, sequence and sodium
concentrations. The doublet- and triplet-based models were executed 10 000 times on randomly selected subsets with 67% training data and

33% testing data.
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classical TNN Model, only ten different nearest-neigh-

bour interactions (out of 16) are possible for any Wat-

son-Crick DNA duplex structure due to rotational

identities. Here A is hydrogen bonded with T and G is

hydrogen bonded with C. These interactions are AA/

TT, AT/TA, TA/AT, CA/GT, GT/CA, CT/GA, GA/CT,

CG/GC, GC/CG, and GG/CC. Here the slash, /, sepa-

rates strands in anti parallel orientation (e.g., TC/AG

means 5’ - TC - 3’ paired with 3’ - AG - 5’). While the

classical TNN model assumes that the stability of a

DNA duplex depends on the identity and orientation of

only close neighbouring base pairs, the one based on tri-

plet interactions takes the approach one step further and

assumes that the stability of a DNA duplex can be

approximated if the first two neighbours of each base

are considered. Since our goal is to examine and

Doublets
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Figure 5 Box plots for RMSEs corresponding to all 340 perfect match duplexes. The figure represents box plots for RMSEs for all 340

perfect match duplex free energies measured at various temperatures, sequence and sodium concentrations. The doublet- and triplet-based

models were executed 10 000 times on randomly selected subsets with 67% training data and 33% testing data.

Tulpan et al. BMC Bioinformatics 2010, 11:105

http://www.biomedcentral.com/1471-2105/11/105

Page 11 of 22



Doublets

Triplets

MultiRNAFold (Mathews)

MultiRNAFold (SantaLucia)

Vienna Package

UNAFold

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pearson coeff. (r)

Figure 6 Box plots for Pearson correlations (r) corresponding to 197 perfect match duplex free energies measured at 25°C. The figure
represents box plots for Pearson correlation coefficients for 197 perfect match duplex free energies measured at 25°C and a sodium

concentration of 1 M. The doublet- and triplet-based models were executed 10 000 times on randomly selected subsets with 67% training data

and 33% testing data.
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Figure 7 Box plots for RMSEs corresponding to 197 perfect match duplex free energies measured at 25°C. The figure represents box
plots for RMSEs for 197 perfect match duplex free energies measured at 25°C and a sodium concentration of 1 M. The doublet- and triplet-

based models were executed 10 000 times on randomly selected subsets with 67% training data and 33% testing data.
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Figure 8 Box plots for Pearson correlations (r) corresponding to 143 perfect match duplex free energies measured at 37°C. The figure
represents box plots for Pearson correlation coefficients for 143 perfect match duplex free energies measured at 37°C and a sodium

concentration of 1 M. The doublet- and triplet-based models were executed 10 000 times on randomly selected subsets with 67% training data

and 33% testing data.
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Figure 9 Box plots for RMSEs corresponding to 143 perfect match duplex free energies measured at 37°C. The figure represents box
plots for RMSEs for 143 perfect match duplex free energies measured at 37°C and a sodium concentration of 1 M. The doublet- and triplet-

based models were executed 10 000 times on randomly selected subsets with 67% training data and 33% testing data.
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Figure 10 Histograms of average variations of the SENS, PPV and F-measure with respect to sequence length. The histograms

corresponding to average variations of the SENS, PPV and F-measure (defined in Methods) with respect to sequence length were calculated for
all 695 duplexes. All minimum free energies were calculated with PairFold-SantaLucia.

Figure 11 Histograms of average variations of the SENS, PPV and F-measure with respect to GC-content percentage. The histograms
corresponding to average variations of the SENS, PPV and F-measure (defined in Methods) with respect to GC-content percentage were

calculated for all 695 duplexes. All minimum free energies were calculated with PairFold-SantaLucia.
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Figure 12 Variation of doublet NN values for 9 sets of parameters. Free energy values corresponding to nine sets (our set and 8 others) of

thermodynamic nearest-neighbour doublet parameters at 37°C are displayed in this plot. Four (Gotoh, Vologodskii, Blake and Benight) out of the

eight publicly available sets of doublet parameters correspond to models that do not account for initiation penalties for duplex formations [18],
and the sodium concentration for their experiments was between 0.0195 M and 0.195 M. For the other 4 sets (Breslauer, SantaLucia, Sugimoto

and Unified) the sodium concentration equals 1 M.

Figure 13 The distribution of sequence lengths for the complete data set. The sequence length distribution of 695 DNA duplexes. The 8-

mers, 9-mers followed by 17-mers have the highest frequencies, while 4-mers, 5-mers and 25-mers have the lowest frequencies.
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compare the impact of doublet versus triplet interac-

tions on the accuracy of free energy estimations, the

approach proposed in this paper relies solely on triplet

interactions, while the one proposed by [16] uses a

more complex cumulative approach that combines sing-

let, doublet and triplet interactions within the same

model. Due to rotational identities, only 32 different

nearest-neighbour interactions are possible (out of a

total of 64) for any Watson-Crick triplet structure.

These interactions are enumerated in Table 2 together

with corresponding parametric values obtained via a

least-mean squared optimization solution for equation 3.

F X R× = (3)

where F is a N × 32 matrix of counts for all perfect

match data points, X is a vector with 32 unknown triplet

parameter values, and R is a vector with N free energy

experimental values for perfect matches. We solve the

following equation:

X F X R
X

= × −arg min( )2
(4)

These values were obtained by using an over deter-

mined system of N equations (3) and solving equation 4

with a least-mean squared optimization function (imple-

mented in the backslash operator for matrices) available

in Matlab 7.7. Here N takes the value 228 (67% of 340

perfect match free energies measured at 25°C and 37°C),

132 (67% from 197 perfect match free energies mea-

sured at 25°C), or 96 (67% of 145 perfect match free

energies measured at 37°C). The system with N equa-

tions has been extrapolated by selecting from the initial

data set only the free energy measurements for perfect

match DNA duplexes and counting the frequency of tri-

plets in each duplex. Thus, for each duplex, the sum of

parametric values for each triplet multiplied with its

counts equals the experimental free energy. While our

model is very simple and currently does not take into

consideration mismatches, internal loops, and dangling

ends, its strength is given by its ability to estimate per-

fect match DNA duplex free energies for a wide range

of sodium, sequence and target concentrations and tem-

peratures. This strength is given by the presence of a

large and mixed training data set that was used to extra-

polate the nearest-neighbour (NN) parameters for both

the doublet- and the triplet-based models.

Model training and testing

The training process for the TNN-Triplets-PM Model is

summarized in Table 5. We first process the input set,

which contains perfect match DNA sequences and their

corresponding experimentally derived free energies. The

processing consists of scanning each perfect match

sequence from left to right by moving a window of size

3 nucleotides (or 2 for the doublets) and counting the

Figure 14 The distribution of GC-content percentages for the complete data set. The distribution of GC-content percentages for 695
duplexes. The majority of sequences have a 50% GC-content while only a few sequences have either low (10%, 20%) or high (100%) GC-content

percentages.
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frequency of each of the 32 unique triplets. We record

each frequency at corresponding positions (i, j) in

matrix F and each experimentally derived free energy is

recorded at position i in matrix R. Here i represents the

number of the sequence in the set and j represents the

number of the triplet (from 1 to 32), whose frequency is

recorded. After matrices F and R have been populated, a

solution for equation 4 is computed and the value of

vector X containing free energy parameters for all the

unique triplets is reported.

The evaluation process of the TNN-Triplets-PM

Model is summarized in Table 6. The evaluation process

is repeated 10 000 times in this work. Each iteration

consists of the following steps. First the data set is

divided uniformly at random in a training set, TrS con-

sisting of 67% of the data and a testing set, TeS that

contains the remaining 33%. Next, the training process

described in Table 5 is used to extrapolate the first set

of perfect match triplet parameters. The derived para-

meters are used next to compute the Pearson momen-

tum correlation coefficients and the RMSEs for each

DNA perfect match duplex from TeS. Each correlation

coefficient and RMSE is recorded in corresponding vec-

tors to be analyzed later. The complete coverage of the

triplet space, i.e. all possible triplets during the genera-

tion of training and testing sets using a randomized

mechanism is not ensured for some of the 10 000 sets

mostly due to the presence of a few under-represented

(less than 20 CCC/GGG) or over-represented (more

than 180 GAC/CTG) triplets that characterize the data

set with perfect matches (see Figures 15 and 16). Never-

theless, we noticed that the training sets that produced
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Figure 15 Distribution of doublet frequencies. The distribution of frequencies for all doublets corresponding to 340 perfect matches is

presented. The doublet with the lowest frequency is TA/AT and the one with highest is GC/CG.
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the best results cover completely the triplet space. The

same coverage was observed for the doublets.

Comparative measures

We use a large number of measures of similarity

between experimental and computed free energies.

Some of these measures were previously used by [42] to

compare melting temperatures obtained with different

methods and by [6] to estimate model parameters for

RNA secondary structure prediction. If not stated other-

wise, all comparisons in this paper were done on a data

set comprising 695 pairs of DNA sequences collected

from 29 publications. The measures used in this study

are grouped in two categories, namely:

Measures that evaluate accuracy of free energy

estimations

The following measures are used for free energy estima-

tions of the known structures, as well as free energy

estimations of predicted structures.

• the observed absolute difference between experi-

mental and estimated free energies (MFE_AD),

• the Pearson correlation coefficient (r),
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Figure 16 Distribution of triplet frequencies. The distribution of frequencies for all triplets corresponding to 340 perfect matches is presented.

The triplet with the lowest frequency is CCC/GGG and the one with highest is GAC/CTG.
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• the root mean squared error (RMSE),

Measures that evaluate accuracy of secondary structure

predictions

• the secondary structure similarity index of experi-

mental and predicted secondary structures (SSSI)

• the prediction sensitivity for secondary structures

(SENS)

• the positive predictive value for secondary struc-

tures (PPV)

• the F-measure for predicted secondary structures (F)

For MFE_AD, SSSI, SENS, PPV and F we report the

minimum, the first quartile, the median, the mean, the

third quartile, the maximum and the standard

deviation.

We define the secondary structure similarity index

(SSSI) for two equally long structures as follows:

SSSI
SS s exp s calc SS s exp s calc

len s exp len s exp
=

+

+

( , ) ( , )

( ) (

1 1 2 2

1 2 ))
⋅100 (5)

where s1exp, s2exp are two equally long structures

obtained experimentally, s1calc, s2calc are two equally

long calculated structures, and SS(a, b) is the total num-

ber of identical characters at corresponding positions in

both structures. SSSI represents the percentage of posi-

tions in which two structures agree.

Unlike similar measures that assign a +1 score for two

identical base pairs in two duplex structures, SSSI

assigns a +1 score for two base pairs that have either

the start or the end positions identical. This mechanism

allows the differentiation between duplex secondary

structures that have either one (score +1) or both (score

+2) bases in a base pair correctly predicted.

The sensitivity, positive predictive value and F-mea-

sure are defined as in [6], namely:

Sensitivity =
number of correctly predicted base pairs

number  of true base pairs
(6)

PPV =
number of correctly predicted base pairs

number of prediicted base pairs
(7)

F-measure =
⋅ ⋅

+

2 Sensitivity PPV

Sensitivity PPV
(8)

Computational infrastructure

The entire analysis of this study was done with R ver-

sion 2.5.1, Perl 5.8.8 and Python 2.5. All computations

were carried out on a Open SuSe 10.2 Linux (kernel

version 2.6.18.2) machine equipped with a Pentium 4,

2.8 GHz processor with 1 GB of RAM.

Additional file 1: Data set in comma separated value. The file
contains information representing the data set used in this work. The
data is structured on 15 columns as follows: (col 1) first sequence of the
duplex, (col 2) second sequence of the duplex, (col 3) unique duplex ID
containing the first and last authors of the papers that have first
published the data, (col 4) dot-parenthesis notation of the secondary
structure representation for the first sequence, (col 5) dot-parenthesis
notation of the secondary structure representation for the second
sequence, (col 6) experimental free energy measurement, (col 7)
measurement error for the free energy, (col 8) experimental entropy
measurement, (col 9) measurement error for the entropy, (col 10)
experimental enthalpy measurement, (col 11) measurement error for the
enthalpy, (col 12) experimental temperature of hybridization, (col 13)
concentration for self-complementary sequences, (col 14) concentration
for non self-complementary sequences, (col 15) [N a] + concentration.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
105-S1.CSV ]
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