NRC Publications Archive
Archives des publications du CNRC

Toward upgrade risks assessment for OTS development
Putrycz, Erik

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

Publisher’s version / Version de I'éditeur:

Proceedings of the IOTSDM Workshop, ICCBSS, 2006

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=015a74c4-e126-446d-a5dd-069a8dc0e7¢
https://publications-cnrc.canada.ca/fra/voir/objet/?id=015a74c4-e126-446d-a5dd-069a8dc0e76d

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez
la premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C d“l
I*I Council Canada recherches Canada ana, a

I o I National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN3C

Toward upgrade risks assessment for OTS
development*

Putrycz, E.
February 2006

* Proceedings of the IOTSDM Workshop, ICCBSS. Orlando, Florida, USA.
February 2006. NRC 49330.

Copyright 2006 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

i+l

Canada

Toward upgrade risks assessment for OTS development

Erik Putrycz
National Research Council of Canada
Software Engineering Group
erik.putrycz@nrc-cnre.ge.ca

Abstract

Updates are a major part of the maintenance of every
COTS-based application. Security flaws, bugs or missing
functionalities can cause a vendor to reissue a new version
and when major new functionality is added to the COTS
component, vendors usually release a new major version.
Every update - minor or major - is a potential risk for the
existing functionality of the COTS-based application. This
makes updating a difficult choice when a new version is
available: will the new features and bug fixes be worth
all the potential work to ensure existing functionality will
not be broken? This paper presents a process and a risk
scale factor that aims to evaluate the risk of updating of
one COTS component in an application.

1. Introduction

A large part of the maintenance of COTS-based system
is the upgrade process. NASA estimated in 2002, 400 can-
didate vendor patches per year, and more than 40 COTS
upgrades per year. Many more patches have been neces-
sary to address problems, especially that of security. Today
applying upgrades to production systems requires a com-
plex process to ensure the system operates correctly. At
first, regression testing must verify that none of the exist-
ing functionality has been broken and that the upgrade in-
tegrates correctly with the other COTS products. Then the
update must be planned and deployed on all the concerned
systems.

This paper presents a process that aims to assess, before
executing the update, the risk of breaking existing function-
ality by replacing one COTS component by a new version.
The process proposed is focused on changes and impacts
at the code level. Code level changes are usually the most
expensive to implement. COTS-based applications consist
of several COTS components and a glue code that connects
all the components together. If another COTS component is
not compatible, then the vendor is required to fix the issue.

If the glue code connecting all the COTS component is af-
fected by the update, the assembler (usually responsible of
executing the update) can correct his/her code. Code level
changes and connection can be obtained even with compiled
programs using reverse engineering and simple disassem-
bling with virtual machines such as Java or .Net.

At first (Section 2), the different types of connections
between COTS components and their impact on updates and
risks are discussed. Then, a process for assessing risk is
presented in Section 3. Section 4 shows how this process is
applied on a simple Java application. Finally, related works
are detailed in Section 5.

2. Background

COTS applications are composed of several components
and a glue code that the assembler uses to coordinate all the
components together. The different types of connections of
the components affect the consequences of the updates and
the risks involved.

2.1. Types of connection

Components in a COTS-based application can be con-
nected in many different ways. The connection types range
from high level middleware communications to low-level
runtime support (c.f. Table 1). In high-level types of con-
nections, such as Web Services, the developers only need
to describe the communications and low-level communica-
tions are delegated to external components (usually called
middleware). Many middleware are even standardized by
international organizations (w3c for Web Services and omg
for CORBA), and help to ensure that communications take
place correctly between all implementations. In this high-
level type of connection, the coupling between the compo-
nents is reduced to a simple interface that can be easily ob-
tained.

In many other applications, especially legacy applica-
tions, the connection between components is made at a low
level. It is common to see applications that communicate

using a low-level binary or text file between components
(due to historical reasons). This implies that developers on
every component respect the same file format and handle
text parsing or binary details. This type of coupling in-
creases the risk of the upgrade as bugs or new features may
affect the file and generate errors in other components.

2.2, Types of updates

Two main types of updates are considered. minor ver-
sion and major version. The details of each type of up-
date are vendor dependant. In most cases, minor versions
fix bugs, add new functionalities and don’t break the spec-
ifications. Major versions may break previous APIs and
other specifications. For instance, Service packs for win-
dows known bugs and only minor new functionality (such
as firewall for Windows XP) are added. Major releases (e.g.
update from Windows 2000 to Windows XP) broke many
existing APIs with newer versions of specifications (COM+,
DirectX, etc.).

2.3. Types of risks

The risk caused by an upgrade depends on which ele-
ment(s) of the COTS-based application is affected. If the
glue code is affected, the risk is controllable since the same
shareholder is in charge of maintaining this code and of up-
grading the components.

If the upgrade affects another COTS component of the
application, the risk is more important. In this case, it is pos-
sible that the upgrade breaks the functionality of the whole
application. For instance, a change in the API of the com-
ponent can prevent the application to execute correctly. Ina
Java application, a change of the API of a library will gen-
erate an exception at runtime that in many cases cause the
execution to stop.

3. Assessing risk of updates

The objective of this paper is to propose a solution for
assessing the risk of an upgrade by looking at the program-
ming language level.

3.1. Objectives

The process proposed, aims to analyze the usage of one
component by another without source code access using
introspection, compiled code analysis and the analysis of
other artifacts such as documentation and release notes.

In virtual machine based execution such as Java or
NET, the introspection capabilities enable API details to

be queried without requiring source code access and byte-
code disassembly can provide enough information to find
dependencies.

By analyzing changes in the component being updated
and the dependencies with the rest of the application, it is
possible to calculate an estimate of the risk encountered.

3.2. Analysis process

The analysis process of the update risk consists of four
steps:

1. Creation of a database containing all public artifacts
for each COTS component;

2. Analysis of dependencies in the COTS-based system
using code, release notes and documentation analysis;

3. Analysis of changes in the new version of the COTS
component;

4. Assessment of the risk using the collected information.

Figure 1 presents an example of the process with two
components A and B, where B is updated with a newer ver-
sion.

At first, all the COTS components code are scanned us-
ing introspection or other techniques to build a list of all
public artifacts (public types, functions, methods and other
resources) that can be referenced by other COTS compo-
nents. Then dependencies are collected using reverse engi-
neering techniques and text analysis on the code plus doc-
umentation of each COTS component. After, changes in
the new version of the COTS-component are discovered by
comparing all the public artifacts of the new version with
the identical artifacts of the previous version. The types of
dependencies and the changes in the new version provide
enough information to provide a report with a risk of up-
grade. This scale is detailed in Section 3.5.

3.3. Types of changes in a component

In an object oriented system, the usage of one COTS
component by another COTS component can take the fol-
lowing forms:

e class inheritance: inheritance of a class from another
COTS component;

e field and variable declarations: fields and variables
used in a class are of a type from another COTS com-
ponent;

e method and function parameters: the parameters of
one method (or function) reference classes from an-
other COTS component;

Type of connection

Example of connection

Example of upgrade

Middleware communications

‘Web Service communications

Change in web service definition

Data centric-applications Database for communicating between components

Database schema change

Programming Language level

A is used as a library of B

New major version of A

Runtime support Component A is running on top of New version of the operating system
an operating system
Table 1. Types of Connection
(" ComponentBvi)
Public artifacts of B used | [A
Component A by sorponent A - [| Publicartifacts |
N\ J/
\ 4 Component B v2 h
Changes in public - Public artifacts
artifacts used by A ‘-{ |
Upgrade !
report /{ Documentation l
Y
Documents that refer to
the changes in public "“ Release notes I
artifacts used by _ Y,
component.A

Figure 1. Example of the analysis process with two components

e static method or function call from another COTS
component;

o meta information: modern languages such as C# or
Java allow to add meta information descriptors from
another COTS component to a class/method or func-
tion.

All the references from one component by another
(fields, methods and inherited classes) are possible using
the proper visibility level in the language. For instance in
Java, only public classes and interfaces are visible by
other components.

API changes between two versions of a component can
be gathered by looking at the differences in the visible API.
If possible, changes in the non public API can show if sig-
nificant changes have been made internally.

When a source configuration management data such as
CVS is available, changes in the source code can be taken
into account and it is possible to determine precisely where
the changes have been made. To calculate precisely the
number of changes, non-significant changes (such as for-
matting or variable name changes) need to be ignored.

3.4. Analyzing dependencies

Once changes have been gathered between two versions
of a component, it is necessary to know how the component
is involved in the application and to find out how the rest of
the application depends on the component being upgraded.

If source code is available, dependencies can be ex-
tracted by parsing the source code and tracking all refer-
ences to external components. When no source code is
available, compiled code for virtual machines (such.as Java
or .NET) can be analyzed and dependencies can be ex-
tracted. In Java, libraries such as Jakarta’s BCEL or Ob-
jectweb’s ASM [3] enable to disassemble compiled code
and extract all type information. This way, it is possible to
automatically build a map of dependencies between COTS
components and the glue code. Also other dependencies can
be extracted by analyzing the documentation; and searching
type names, COTS product names and other keywords.

3.5. Risk factor scale

The risk scale proposed aims to capture:
¢ the break of dependencies causing the execution to fail;

¢ impacts on the connections used to communicate in the
COTS-based application;

No changes found in
new version

Binary compatibility

Dependencies found
in Release notes

One binary
dependency broken

Several binary
dependencies broken

Figure 2. Risk Scale and risk examples for one updated component and one component affected

e amount of work required.

The break of dependencies happens when the public API
that is used has been changed. This is considered the high-
est risk because it is very likely that the execution will fail.
Other potential risks can be found when the interfaces used
are mentioned in the release notes of the updated compo-
nent. This usually signifies that internal changes have been
made in the interface and causes a risk to introduce new
bugs.

All these risks are ranked from 1 to 10 for each pair of
components affected in the application. The final mark is
the the maximum rank obtained between all pairs and de-
picts the risk for the whole application.

Ideally, the vendor or distributor of a COTS component
could include an update report that lists the changes and
give a risk factor on the impact of each one. This.way, tools
could make use of these risk factors and give more accurate
estimates of the update risk.

4. Example

This section shows a simple example of how the upgrade
risk can be analyzed. The example is a simple Java applica-
tion with a single COTS component.

4.1. Java specific challenges

Method overriding was a major challenge when a sub-
class wants to override a method of the parent class, the
class declares a method with the same name, same argu-
ments and same visibility. Before Java 5, there wasn’t any
checking done that the similar method did exist in the parent

class. So if the parent class is in a different COTS package
and the parent method was renamed or removed, then the
overridden method would never be called. In Java 5, Sun
introduced the @Override annotation that is processed at
compilation time and ensures that a similar method exists
in the parent class. But Java doesn’t implement any run-
time mechanism to verify method overriding. As a con-
sequence, when performing updates, overridden methods
must be checked.

4.2. Application structure

The example application depends only of Log4l.
Log4l[1] is a configurable and extensible logging frame-
work for Java. The simple application is presented on
Figure 3. The update considered is the update of Log4]
version 1.2.4 to version 1.3-alpha7. Although the ver-

sion 1.3-alpha7 doesn’t have the final API, it already con-

tains the major changes including class inheritance of
Category and Level which are major elements of the
framework. The simple application presented makes a non
standard usage of Category and Priority in order
to show consequences of the update. At line 11, the re-
turn type of category.getChainedPriority () is
aPriority object. In Log4J 1.3-alpha7, the new return
type is Level which is incompatible with the previous re-
turn type. The update will require to modify this code and
replace Priority by Level.

4.3. Assessing the update risk

The first step of the analysis process consists in gathering
all public artifacts for each COTS component and the glue

1

2

3 public static void main(String[] args) {

4 SimpleProgram program = new SimpleProgram();

s program.init(); .

6 program.breakingCode () ;

1 H

8

9 private void breakingCode() {

10 category.error ("I shouldn’t use Category");

11 Priority willBreak = category.getChainedPriority();
12 category.error ("error", new RuntimeException(});
13 }

private static final Category category = Category.getInstance(SimpleProgram.class};

Figure 3. Example application

code. In this case, the Jar file (Java Archive file containing
compiled classes) and the compiled example are being an-
alyzed. All the Java types used are collected using Java’s
introspection capabilities.

Then, dependencies are extracted using the ASM library.
All types (classes, interfaces and static methods) used in the
simple example that belong to Log4] are collected. Depen-
dencies are found two classes from Log4J: Category and
Priority. '

Next, the changes of Log4J are analyzed by comparing
the new API with the existing one collected at the first stage.
This showed that 148 public classes were removed and 30
public class were changed. Since Category was found in
the changed classes, the release notes have been searched
with the word Category. The search found the following
sentence: ”...These changes are intended to enforce the rule
that client code should never refer to the Category class
directly, but use the Logger class instead.” This explains the
cause of the incompatibility with the new version and this
information will help the developer to correct the problem.
The risk scale result in this scenario is 8 because of one
significant binary incompatibility.

5. Related work

M. NorthCott looked in his Master’s Thesis [8] at man-
aging constraints and dependencies in a COTS system. He
proposes a model for the software assembly process and
for assembled software systems. In his model, a config-
uration consists of a graph of resources containing all the

elements involved. This work is complementary and can -

allow a more complete representation of dependencies be-
tween components.

IBM released recently a tool called API Usage Scanner
[6]. This tools is also based on ASM and scans Java JAR
files to analyze the usage of an APL The usage of the APl
has to be described using a set of rules. The result of the ex-
ecution generates a report that list all the usages described
in the rules. The approach proposed in this paper doesn’t

require a developer to describe the API usage manually, the
usage is extracted automatically by looking at changes be-
tween two versions of a component.

[9] presents a case study of the lessons learned during
a massive nationwide, networked computer system upgrade
of a government entity. This article discusses ail the or-
ganization issues and is more focused on the deployment
process as the work proposed aims to find risks before the
deployment. ‘

6. Conclusion

Updates of COTS components are a major element of
the lifecycle of any COTS-based application. They are often
necessary for security reasons or bug fixes but the amount of
changes in the COTS component may introduce new bugs
in the component which can break existing functionality.

This paper presents a process for assessing the risk of an
update before deployment and aims to estimate the amount
of changes in the new version of a COTS component that

- may affect the application. At the code level, this can be es-

timated automatically with reverse engineering, introspec-
tion and other techniques. Introspection allows the collec-
tion of information about public artifacts of all COTS com-
ponents and disassembly enables the extraction of depen-
dencies between the components involved. Introspection
also enables the differences between the current version and
the new version of the component (being updated) to be an-
alyzed. Finally, a report is generated with all of the informa-
tion related to the changes that impact the application, using
release notes and documentation. In addition a simple risk
scale captures the most significant factors in the update and
gives a mark from 1 to 10 (where 10 is the most risky). This
process has been applied with a simple Java application to
explain how it can be used.

The research proposed in this paper is a preliminary pro-
posal for assessing updates and the risk scale needs to be
validated using several real examples. Also other factors
such as-amount of work required could be integrated in the

scale to bring more relevant results.

References

(1]
(2]

(3]

4]

[5]

[6]

7

(8]

[0l

Apache Software Fundation. Log4j.
http://logging.apache.org/log4j, 2005.

B. Boehm, W. Brown, and R. Turner. Spiral development of
software-intensive systems of systems. In ICSE ’'05: Pro-
ceedings of the 27th international conference on Software en-
gineering, pages 706-707, New York, NY, USA, 2005. ACM
Press.

E. Bruneton, R. Lenglet, and T. Coupaye. "ASM: a code ma-
nipulation tool to implement adaptable systems”. In Proceed-
ings of Adaptable and extensible component systems, 2002.
J. Dean, P. Oberndorf, M. Vigder, C. Abts, H. Erdogmus,
N. Maiden, M. Looney, G. Heineman, and M. Guntersdorfer.
Cots workshop: continuing collaborations for successful cots
development. In Proceedings of ICCBSS 2001, volume 26,
pages 61-73, New York, NY, USA, 2001. ACM Press.

A. Egyed and R. Balzer. Unfriendly cots integration-
instrumentation and interfaces for improved plugability. In
ASE ’01: Proceedings of the 16th IEEE international confer-
ence on Automated software engineering, page 223, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

A. Hui, A. Brodie, C. Sahoo, L. Nguyen, M.-R. Fisher,
and R. Beasley. Api usage scanner: A java utility that
scans java bytecode to detect references to targeted apis.
http://www.alphaworks.ibm.com/tech/aus.

A. E Minkiewicz. Six steps to a successful cots implementa-
tion. CrossTalk, The Journal of Defense Software Engineer-
ing, 18(8), aug 2005.

M. NorthCott. Managing dependencies and constraints in as-
sembled software systems. Master’s thesis, Ottawa-Carleton
Institute for Computer Science, Carleton University, sep
2005. -

M. A. Raley and L. H. Etzkorn. Case study: lessons learned
during a nationwide computer system upgrade. In Proceed-
ings of the 42nd annual Southeast regional conference, 2004.

